上水箱液位与进水流量串级控制系统
实验三 水箱液位串级控制系统实验

(实验三)水箱液位串级控制系统实验报告班级测控四班学号0800201428 姓名王常玥一、实验目的1.通过实验了解水箱液位串级控制系统组成原理。
2.掌握水箱液位串级控制系统调节器参数的整定与投运方法。
3.了解阶跃扰动分别作用于副对象和主对象时对系统主控制量的影响。
4.掌握液位串级控制系统采用不同控制方案的实现过程。
二、实验原理本实验为水箱液位的串级控制系统,它是由主控、副控两个回路组成。
主控回路中的调节器称主调节器,控制对象为锅炉汽包,其液位为系统的主控制量。
副控回路中的调节器称副调节器,控制对象为上水箱,又称副对象,其液位为系统的副控制量。
主调节器的输出作为副调节器的给定,因而副控回路是一个随动控制系统。
副调节器的的输出直接驱动电动调节阀,从而达到控制液位的目的。
为了实现系统在阶跃给定和阶跃扰动作用下的无静差控制,系统的主调节器应为PI 或PID控制。
由于副控回路的输出要求能快速、准确地复现主调节器输出信号的变化规律,对副参数的动态性能和余差无特殊的要求,因而副调节器可采用P 调节器。
本实验系统结构图和方框图如图4-2所示。
图4-2 水箱液位串级控制系统(a)结构图(b)方框图三、实验设备DDD-Z05-I实验对象及DDD-Z05-IK控制屏、DDD-Z05-III 电源控制柜一台、SA-12挂件一个、SA-13A挂件一个、计算机一台、万用表一个、实验连接线若干。
四、实验内容与步骤本实验选择上水箱和锅炉汽包,实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-6、F2-14全开,F1-9 、F2-15开适当开度(F1-9﹥F2-15),其余阀门均关闭。
1.按照第一章1-6用网线和交换机连接操作员站和服务器,以及服务器和主控单元,“SA31 FM148现场总线远程I/O模块”、“SA31 FWM158现场总线远程I/O模块”挂件挂到屏幕上,并将挂件的通讯线街头插入屏内Profibus-DP总线接口上,将控制屏左侧Profibus-DP总线连接到主控单元DP口,并按照下面的控制屏接线图连接实验系统。
(最新整理)水箱液位控制系统

(完整)水箱液位控制系统编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)水箱液位控制系统)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)水箱液位控制系统的全部内容。
课程设计报告设计题目:水箱液位控制系统班级:自动化0901班学号:20092395姓名:郝万福指导教师:王姝梁岩设计时间:2012年5月7号----5月25号摘要在人们生活以及工业生产等诸多领域经常涉及到液位和流量的控制问题, 例如居民生活用水的供应,饮料、食品加工等多种行业的生产加工过程,通常需要使用蓄液池,蓄液池中的液位需要维持合适的高度, 既不能太满溢出造成浪费, 也不能过少而无法满足需求。
因此液面高度是工业控制过程中一个重要的参数,特别是在动态的状态下,采用适合的方法对液位进行检测、控制,能收到很好的效果。
在这次课程设计中,我们主要是设计一个水箱液位控制系统,涉及到液位的动态控制、控制系统的建模、PID 参数整定、传感器和调节阀等一系列的知识。
通过将电磁流量计和涡轮流量计分别作为主管道和副管道控制系统的调节阀控制水箱液位高度.首先测取被控液位高度过程的图像,建立了主回路的进水流量和主管道流量、进水流量和水箱(上)液位高度、副回路进水流量和水箱(上)液位、双容水箱的进水流量和水箱(下)液位之间的数学模型,从而加强了对液位控制系统的了解。
然后,通过参数试凑法对PID参数的调试,使上述的模型能快速的达到稳定并且超调量和余差等满足设计要求。
最后通过MATLAB仿真实验,加深了对双容水箱滞后过程以及串级水箱液位过程和前馈控制系统的理解,对工业控制工程中对控制系统设计过程有了一定的认识。
液位—流量串级过程控制系统课程设计

工业过程控制课程设计任务书设计目的与要求1.1设计目的(1)加深对过程控制系统基本原理的理解和对过程仪表的实际应用能力。
(2)培养运用组态软件和计算机设计过程控制系统的实际能力。
1.2 设计要求(1)根据液位-流量串级过程控制系统的具体对象和控制要求,独立设计控制方案,正确选用过程仪表。
(2)根据液位-流量串级过程控制系统A/D、D/A和开关I/O的需要,正确选用过程模块。
(3)根据与计算机串行通讯的需要,正确选用RS485/RS232转换与通讯模块。
(4)运用组态软件,正确设计液位-流量串级过程控制系统的组态图、组态画面和组态控制程序。
2 系统结构设计2.1 控制方案在本系统中被控参量有两个,上水箱液位和管道流量,这两个参量具有相关联系,流量的大小可以影响上水箱液位,根据流量与液位的关系,故系统采用串级控制,内环为流量控制,外环为液位控制。
内环与外环的控制算法均采用PID 算法,PID算法实现简单,控制效果好,系统稳定性好。
外环液位控制器的输出作为内环流量控制器的设定值,流量控制器的输出来控制调节阀的大小,来控制管道流量的大小,进而控制上水箱液位。
2.2 系统结构系统框图如图2.1所示。
图2.1 计算机控制上水箱液位和流量串级系统控制框图3 过程仪表的选择3.1 液位传感器液位传感器用来对上位水箱和下位水箱的液位进行检测,采用工业用的DBYG扩散硅压力变送器,本变送器按标准的二线制传输,采用高品质、低功耗精密器件,稳定性、可靠性大大提高。
可方便地与其它DDZ—X型仪表互换配置,并能直接替换进口同类仪表。
效验的方法时通电预热15分钟后,分别在零压力和满量程压力下检查输出电流。
在零压力下调整零电位器,使输出电流为4mA,在满量程压力下调整量程电位器,使输出电流为20mA。
本传感器精度为0.5级,因为为二线制,故工作时需串24V直流电源。
液位传感器用来对上水箱和中位水箱的液位进行检测,采用工业用的DBYG扩散硅压力变送器,0.5级精度,二线制4-20mA标准信号输出。
上水箱液位与进水流量串级控制系统设计

课程设计任务书摘要设计采用水箱液位和注水流量串级控制,设计系统主要由水箱、管道、三相磁力泵、水压传感器、涡轮流量计、变频器、可编程控制器及其输入输出通道电路等构成。
系统中由液位PID控制器的设定值端口设置液位给定值,水压力传感器检测液位。
涡轮流量计测流量,变频器调节水泵的转速,采用PID算法得出变频器输出值,实现流量的控制。
流量控制是内环,液位控制是外环。
用WinCC组件制作相对应的控制画面,让画面的个按钮与变量相对应,对系统的个参数进行整定,通过不断的调试,使系统尽可能的保持在要求的位置。
系统电源由接触器和按钮控制,系统电源接通后PLC进行必要的自检和初始化,控制器接收到系统启动按钮动作信号后,通过接触器接通电机电源,启动动力系统工作,开始两个闭环系统的调节控制。
关键词:串级控制;PLC控制;PID控制;WinCC组件目录一、概述 (1)1.1 串级控制系统简介 (1)1.2 串级控制系统的特点 (1)1.3 主、副调节器控制规律的选择 (1)1.4 串级控制系统的整定方法 (2)二、课程设计使用的实验设备 (3)2.1 高级过程控制系统实验装置 (3)2.1.1 电源控制台 (3)2.1.2 总线控制柜 (3)2.2 计算机及相关软件 (3)2.2.1 STEP 7简介 (3)2.2.2 WINCC简介 (4)三、基本原理 (5)3.1 系统组成 (5)3.1.1 被控对象 (5)3.1.2 检测装置 (5)3.1.3 执行机构 (6)3.1.4 控制器 (6)3.2 系统工作原理 (6)3.3 控制系统流程图 (7)3.4 系统投入运行步骤 (8)四、串级控制系统PID参数整定 (11)4.1 调节器参数整定过程 (11)4.1.1 主调节器为PID (11)4.1.2 主调节器为PI (13)4.2 系统在阶跃扰动作用下的静、动态性能 (15)4.3 主、副调节器采用不同PID参数时对系统动态性能的影响 (16)结束语 (17)参考文献 (18)一、概述1.1 串级控制系统简介图2.1是串级控制系统的方框图。
水箱水位与水泵供水流量串级控制系统

水箱水位与水泵供水流量串级控制系统
简介
本文档将介绍一种水箱水位与水泵供水流量串级控制系统,该系统可以根据水箱的水位变化自动调整水泵的供水流量,确保水箱的水位处于合适的范围内。
系统原理
该系统由水箱、水位传感器、水泵和控制器组成。
水位传感器安装在水箱中,用于测量水位的变化。
控制器根据传感器测量到的水位信息,通过调整水泵的供水流量来控制水箱的水位。
系统工作流程
1. 当水箱的水位低于设定的最低水位时,控制器将开启水泵,并将供水流量调至最大。
2. 当水箱的水位达到设定的最高水位时,控制器将关闭水泵。
3. 当水箱的水位处于最低水位和最高水位之间时,控制器将根据水位的变化调整水泵的供水流量。
水位上升时,供水流量逐渐减小;水位下降时,供水流量逐渐增大。
通过这种方式,系统可以稳定地控制水箱的水位。
优点与应用
该系统具有以下优点:
- 系统简单可靠,易于实现和维护。
- 可根据实际需求设定水位范围,确保水箱的水位在合适的范围内。
- 可自动调整供水流量,避免过度供水或供水不足的情况。
该系统适用于以下场景:
- 水箱供水系统,如楼宇供水系统、农田灌溉系统等。
- 需要稳定控制水位的场合,如水池、水塔等。
总结
水箱水位与水泵供水流量串级控制系统是一种简单可靠的系统,可根据水箱的水位变化自动调整水泵的供水流量。
通过该系统,可
以确保水箱的水位在合适的范围内,避免供水过度或不足的情况发生。
该系统适用于各种水箱供水系统的场合。
上水箱液位与进水口流量串级控制实验实验报告

《控制工程实验》实验报告实验题目:上水箱液位与进水口流量串级控制实验课程名称:《控制工程实验》姓名:学号:专业:年级:院、所:日期: 2019.04.18实验三上水箱液位与进水口流量串级控制实验一、实验目的1.通过实验了解水箱液位串级控制系统组成原理。
2.掌握水箱液位串级控制系统调节器参数的整定与投运方法。
3.了解阶跃扰动分别作用于副对象和主对象时对系统主控制量的影响。
4.掌握液位串级控制系统的实现过程。
二、实验设备1. 实验装置对象及控制柜 1套2. 装有Step7、WinCC等软件的计算机 1台3. CP5621专用网卡及MPI通讯线各1个三、实验原理本实验为水箱液位的串级控制系统,它是由主控、副控两个回路组成。
主控回路中的调节器称主调节器,控制对象为下水箱,下水箱的液位为系统的主控制量。
副控回路中的调节器称副调节器,控制对象为中水箱,又称副对象,中水箱的液位为系统的副控制量。
主调节器的输出作为副调节器的给定,因而副控回路是一个随动控制系统。
副调节器的的输出直接驱动电动调节阀,从而达到控制下水箱液位的目的。
为了实现系统在阶跃给定和阶跃扰动作用下的无静差控制,系统的主调节器应为PI或PID控制。
由于副控回路的输出要求能快速、准确地复现主调节器输出信号的变化规律,对副参数的动态性能和余差无特殊的要求,因而副调节器可采用P调节器。
本实验系统结构图和方框图如图1所示。
四、实验内容与步骤本实验选择选择上水箱和中水箱串联作为被控对象。
实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-7全开,将中水箱出水阀门F1-10开度开到70%左右、下水箱出水阀门F1-11开度50%左右(要求阀F1-10稍大于阀F1-11),其余阀门均关闭。
图1 双容水箱液位串级控制系统(a)结构图 (b)方框图1.用 MPI 通讯电缆线将 S7-300PLC 连接到计算机 CP5621 专用网卡,并按照控制柜接线图连接实验系统。
实验三上水箱下水箱液位串级控制实验

实验三上水箱下水箱液位串级控制实验一.实验目的1.掌握串级控制系统的基本概念和组成。
2.掌握串级控制系统的投运与参数整定方法。
3.研究阶跃扰动分别作用在副对象和主对象时对系统主被控量的影响。
二.实验原理上水箱液位作为副调节器调节对象,下水箱液位做为主调节器调节对象。
控制框图如图3-1所示:3-1、上水箱下水箱液位串级控制框图三.实验设备AE2000A型过程控制实验装置:上位机软件、计算机、RS232-485转换器1只、串口线1根、万用表一只四.实验内容和步骤1、设备的连接和检查:(1)、关闭阀1、阀22将AE2000A 实验对象的储水箱灌满水(至最高高度)。
(2)、打开以丹麦泵、电动调节阀、涡轮流量计组成的动力支路至上水箱的出水阀门:阀1、阀4、阀6,关闭动力支路上通往其他对象的切换阀门:阀2、阀10、阀17、阀20。
(3)、打开上水箱的出水阀:阀8至适当开度。
(4)、检查电源开关是否关闭2、系统连线图:图3-2、实验接线1)、如图5-2所示:将I/O信号接口板上的下水箱液位的钮子开关打到OFF位置,上水箱液位的钮子开关打到ON位置。
2)、将下水箱液位+(正极)接到任意一个智能调节仪的1端(即RSV的+极),下水箱液位-(负端)接到智能调节仪的2端(即RSV的-极)。
智能仪表的地址设为1,软件定义调节仪地址为1的调节器为主调节器,调节仪地址为2的调节器为副调节器。
3)、将主调节仪的4~20mA输出接至I/O信号面板的温度变送器转换电阻上转换成1~5V 电压信号,再将此转换信号接至另一调节仪(副调节器)的1端和2端作为外部给定,上水箱液位信号转换为0.2~1V的信号后接入副调节器的3、2两端。
调节器输出的4~20mA接电动调节阀的4~20mA控制信号两端。
4)、电源控制板上的三相电源、单相Ⅰ的空气开关、单相泵电源开关打在关的位置。
5)、电动调节阀的~220V电源开关打在关的位置。
6)、智能调节仪的~220V电源开关打在关的位置。
过程控制实验报告5(上水箱液位和流量串级系统)

过程控制实验报告5(上水箱液位和流量串
级系统)
班级:082班座号:姓名成绩:
课程名称:过程控制工程实验项目:上水箱液位和流量串级系统
一、实验目的:
通过实验掌握串级控制系统的基本概念,掌握串级控制系统的组成结构,即主被控参数、
三、实验步骤:
1、打开计算机组态王软件的工程管理器,选中“串级实验”,点击运行,进入串级实验界面。
2、点击“自动/手动”按钮,使系统在自动状态,点击“PID设定按钮”,调出PID设定界面。
PID设定1框图是副回路流量参数,PID设定2框图是主回路液位参数。
3、投入参数,观察液位和流量的曲线,调整参数观察计算机控制的效果。
待系统稳定后,给定加个阶跃信号,观察其液位的变化曲线。
4、再等系统稳定后,给系统下水箱加干扰信号,观察下水箱液位变化的曲线。
四、计算机控制的参数设置:
五、实验报告:
1、根据试验结果编写实验报告。
2、按5-2衰减曲线调节器参数计算表填写表格中的数据
3、整理并附上记录仪的下列过渡过程曲线:
(1)整定副调节器时得到的4:1衰减曲线。
(2)整定主调节器时得到的4:1衰减曲线。
(3)主副调节器参数整定后,干扰作用于上水箱中,主变量H1的过渡过程曲线。
(4)主副调节器参数整定后,干扰作用于流量中,主变量H1的过渡过程曲线。
4、列表比较控制质量:
-全文完-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要随着现代工业生产过程向着大型、连续方向发展,对控制系统的控制品质提出了日益增长的要求。
在这种情况下,传统的单回路液位控制已经难以满足一些复杂的控制要求,水箱液位控制系统由于控制过程特性呈现大滞后、外界环境的扰动较大,要保持水箱液位最后都保持设定值,用简单的单闭环反馈控制不能实现很好的控制效果,所以采用串级闭环反馈系统。
本设计采用水箱液位和注水流量串级控制,设计系统主要由水箱、管道、三相磁力泵、水压传感器、涡轮流量计、变频器、可编程控制器及其输入输出通道电路等构成。
系统中由液位PID控制器的设定值端口设置液位给定值,水压力传感器检测液位。
涡轮流量计测流量,变频器调节水泵的转速,采用PID算法得出变频器输出值,实现流量的控制。
流量控制是内环,液位控制是外环。
系统电源由接触器和按钮控制,系统电源接通后PLC进行必要的自检和初始化,控制器接收到系统启动按钮动作信号后,通过接触器接通电机电源,启动动力系统工作,开始两个闭环系统的调节控制。
关键词:PLC控制;变频器;PID控制;Wincc组件;上位机目录1 过程控制系统简介 (1)1.1 过程控制介绍 (1)1.2 串级控制系统的组成 (1)1.2.1 硬件介绍 (1)1.3 电源控制台 (3)1.4 总线控制柜 (3)1.5 软件介绍 (4)1.6 系统总貌图 (4)2 串级控制系统简介 (5)2.1 液位串级控制系统介绍 (5)2.2 串级控制系统的概述 (5)2.3 串级控制系统的工作过程 (5)2.4 系统特点及分析 (6)2.5 串级控制系统的整定方法 (6)2.6 主、副回路中包含的扰动数量、时间常数的匹配 (7)2.7 PID控制工作原理 (7)3 上水箱液位与进水流量串级控制系统 (9)3.1 实验设备 (9)3.2 液位-流量串级控制系统的结构框图 (9)3.3 系统工作原理 (9)3.4 控制系统流程图 (10)3.5 实验过程 (11)3.6 实验结果分析 (13)3.6.1 整定过程分析 (13)3.6.2 扰动下的响应分析 (14)3.6.3 主、副调节器采用不同调节器时对系统动态性能的影响 (14)4 总结 (18)5 参考文献 (19)1 过程控制系统简介1.1 过程控制介绍现代化过程工业向着大型化和连续化的方向发展,生产过程也随之日趋复杂,而对生产质量﹑经济效益的要求,对生产的安全、可靠性要求以及对生态环境保护的要求却越来越高。
不仅如此,生产的安全性和可靠性,生产企业的经济效益都成为衡量当今自动控制水平的重要指标。
因此继续采用常规的调节仪表(模拟式与数字式)已经不能满足对现代化过程工业的控制要求。
由于计算机具有运算速度快﹑精度高﹑存储量大﹑编程灵活以及具有很强的通信能力等特点,目前以微处理器﹑单片微处理器为核心的工业控制几与数字调节器—过程计算机设备,正逐步取代模拟调节器,在过程控制中得到十分广泛的作用。
在控制系统中引入计算机,可以充分利用计算机的运算﹑逻辑判断和记忆等功能完成多种控制任务和实现复杂控制规律。
在系统中,由于计算机只能处理数字信号,因而给定值和反馈量要先经过A/D转换器将其转换为数字量,才能输入计算机。
当计算机接受了给定值和反馈量后,依照偏差值,按某种控制规律(PID)进行运算,计算结果再经D/A转换器,将数字信号转换成模拟信号输出到执行机构,从而完成对系统的控制作用。
1.2 串级控制系统的组成实验装置由被控对象和上位控制系统两部分组成。
实验装置主要包含水箱、压力变送器、流量变送器、西门子S7-300PLC控制系统、SA01电源控制屏、变频器、软件为西门子S7系列PLC编程软件、西门子WinCC监控组态软件。
系统应用的是西门子S7-300系列的PLC,其结构简单,使用灵活且易于维护。
它采用模块化设计,本系统主要包括CPU模块、模拟量输入模块、模拟量输出模块和电源模块。
1.2.1 硬件介绍1.被控对象:水箱:供水系统有两路:一路由三相(380V恒压供水)磁力驱动泵、电动调节阀、直流电磁阀、涡轮流量计及手动调节阀组成;另一路由变频器、三相磁力驱动泵(220V 变频调速)、涡轮流量计及手动调节阀组成。
模拟锅炉:此锅炉采用不锈钢制成,由加热层(内胆)和冷却层(夹套)组成。
做温度实验时,冷却层的循环水可以使加热层的热量快速散发,使加热层的温度快速下降。
冷却层和加热层都装有温度传感器检测其温度。
盘管:长37米(43圈),可做温度纯滞后实验,在盘管上有两个不同的温度检测点,因而有两个不同的滞后时间。
管道:整个系统管道采用敷塑不锈钢管组成,所有的水阀采用优质球阀,彻底避免了管道系统生锈的可能性。
2.检测装置:压力传感器、变送器:采用SIEMENS带PROFIBUS-PA通讯协议的压力传感器和工业用的扩散硅压力变送器,扩散硅压力变送器含不锈钢隔离膜片,同时采用信号隔离技术,对传感器温度漂移跟随补偿。
温度传感器:本装置采用六个Pt100传感器,分别用来检测上水箱出口、锅炉内胆、锅炉夹套以及盘管的水温。
六个Pt100传感器的检测信号中检测锅炉内胆温度的一路到SIEMENS带PROFIBUS-PA通讯协议的温度变送器,直接转化成数字信号;另外五路经过常规温度变送器,可将温度信号转换成4~ 20mADC电流信号。
流量传感器、转换器:流量传感器分别用来对调节阀支路、变频支路及盘管出口支路的流量进行测量。
本装置采用两套流量传感器、变送器分别对变频支路及盘管出口支路的流量进行测量,调节阀支路的流量检测采用SIEMENS带PROFIBUS-PA通讯接口的检测和变送一体的电磁式流量计。
3. 执行机构:调节阀:采用SIEMENS带PROFIBUS-PA通讯协议的气动调节阀,用来进行控制回路流量的调节。
它具有精度高、体积小、重量轻、推动力大、耗气量少、可靠性高、操作方便等优点。
变频器:本装置采用SIEMENS带PROFIBUS-DP通讯接口模块的变频器,其输入电压为单相AC220V,输出为三相AC220V。
水泵:本装置采用磁力驱动泵,型号为16CQ-8P,流量为32升/分,扬程为8米,功率为180W。
可移相SCR调压装置:采用可控硅移相触发装置,输入控制信号为4~20mA标准电流信号。
输出电压用来控制加热器加热,从而控制锅炉的温度。
电磁阀:在本装置中作为气动调节阀的旁路,起到阶跃干扰的作用。
电磁阀型号为:2W-160-25 ;工作压力:最小压力为0Kg/㎝2,最大压力为7Kg/㎝ 2 ;工作温度:-5~80℃。
4、控制器:控制器采用SIEMENS公司的S7-300 CPU,型号为315-2DP,西门子S7-300是采用模块化结构的中小型PLC,包括一个CPU313主机模块、一个SM331模拟量输入模块和一个SM332模拟量输出模块,以及一块西门子CP5611专用网卡和一根MPI网线。
其中SM331为8路模拟量输入模块,SM332为4路模拟量输出模块。
本CPU既具有能进行多点通讯功能的MPI接口,又具有PROFIBUS-DP通讯功能的DP通讯接口。
5、空气压缩机1.3 电源控制台电源控制屏面板:充分考虑人身安全保护,带有漏电保护空气开关、电压型漏电保护器、电流型漏电保护器。
仪表综合控制台包含了原有的常规控制系统,由于它预留了升级接口,因此它在总线控制系统中的作用就是为上位控制系统提供信号。
SA-01电源控制屏面板:合上总电源空气开关及钥匙开关,此时三只电压表均指示380V左右,定时器兼报警记录仪数显亮,停止按钮灯亮。
此时打开照明开关、变频器开关及24V开关电源即可提供照明灯,变频器和24V电。
按下启动按钮,停止按钮灯熄,启动按钮灯亮,此时合上三相电源、单相Ⅰ、单相Ⅱ、单相Ⅲ空气开关即可提供相应电源输出,作为其他设备的供电电源。
1.4 总线控制柜总线控制柜有以下几部分构成:(1) 控制系统供电板:该板的主要作用是把工频AC220V转换为DC24V,给主控单元和DP从站供电。
(2) 控制站:控制站主要包含CPU、以太网通讯模块、DP链路、分布式I/O DP从站和变频器DP从站构成。
(3) 温度变送器:PA温度变送器把PT100的检测信号转化为数字量后传送给DP链路。
1.5 软件介绍西门子S7系列PLC编程软件:本装置中PLC控制方案采用了德国西门子公司的S7-300PLC,而西门子S7-300PLC采用的是Step 7编程软件。
西门子WinCC监控组态软件:S7-300PLC控制方案采用WinCC软件作为上位机监控组态软件,WinCC是结合西门子在过程自动化领域中的先进技术和Microsoft的强大功能的产物。
WinCC提供了适用于工业的图形显示、消息、归档以及报表的功能模板;并具有高性能的过程耦合、快速的画面更新、以及可靠的数据;WinCC还为用户解决方案提供了开放的界面,使得将WinCC集成入复杂、广泛的自动化项目成为可能。
1.6 系统总貌图图1.1 实验室高级过程控制系统实物仿真2 串级控制系统简介2.1 液位串级控制系统介绍在工业实际生产中,液位是过程控制系统的重要被控量,在石油﹑化工﹑环保﹑水处理﹑冶金等行业尤为重要。
在工业生产过程自动化中,常常需要对某些设备和容器的液位进行测量和控制。
通过液位的检测与控制,了解容器中的原料﹑半成品或成品的数量,以便调节容器内的输入输出物料的平衡,保证生产过程中各环节的物料搭配得当。
通过控制计算机可以不断监控生产的运行过程,即时地监视或控制容器液位,保证产品的质量和数量。
如果控制系统设计欠妥,会造成生产中对液位控制的不合理,导致原料的浪费﹑产品的不合格,甚至造成生产事故,所以设计一个良好的液位控制系统在工业生产中有着重要的实际意义。
2.2 串级控制系统的概述图2.1是串级控制系统的方框图。
该系统有主、副两个控制回路,主、副调节器相串联工作,其中主调节器有自己独立的给定值R,它的输出m1作为副调节器的给定值,副调节器的输出m2控制执行器,以改变主参数C1。
图2.1 串级控制系统方框图2.3 串级控制系统的工作过程当扰动发生时,破坏了稳定状态,调节器进行工作。
根据扰动施加点的位置不同,分种情况进行分析:1)扰动作用于副回路2)扰动作用于主过程3)扰动同时作用于副回路和主过程分析可以看到:在串级控制系统中,由于引入了一个副回路,不仅能及早克服进入副回路的扰动,而且又能改善过程特性。
副调节器具有“粗调”的作用,主调节器具有“细调”的作用,从而使其控制品质得到进一步提高。
2.4 系统特点及分析1)改善了过程的动态特性,提高了系统控制质量。
2)能迅速克服进入副回路的二次扰动。
3) 提高了系统的工作频率。
4) 对负荷变化的适应性较强2.5 串级控制系统的整定方法在工程实践中,串级控制系统常用的整定方法有以下三种:1、逐步逼近法:在主回路断开的情况下,按照单回路的整定方法求取副调节器的整定参数,把副调节器的参数设置在所求的数值上,然后使主回路闭合,仍按单回路整定方法求取主调节器的整定参数。