初三相似三角形的判定培优同步讲义

合集下载

《相似三角形》最全讲义(完整版)

《相似三角形》最全讲义(完整版)

相似三角形基本知识知识点一:放缩与相似形1. 图形的放大或缩小,称为图形的放缩运动。

2. 把形状相同的两个图形说成是相似的图形,或者就说是相似性注意:⑴相似图形强调图形形状相同,与它们的位置、颜色、大小无关。

⑵相似图形不仅仅指平面图形,也包括立体图形相似的情况。

⑶我们可以这样理解相似两个图形相似,其中一个图形可以看作是由另一个图形放大或缩到的.⑷若两个图形形状与大小都相同,这时是相似图形的一种特例——全等形.3. 相似多边形的性质:如果两个多边形是相似形,那么这两个多边形的对应角相等,对应边的长度成比例。

注意:当两个相似的多边形是全等形时,他们的对应边的长度的比值是 1.知识点二:比例线段有关概念及性质(1)有关概念1、比:选用同一长度单位量得两条线段。

a、 b 的长度分别是m、n,那么就说这两条线段am 的比是a:b=m:n(或 b n )2、比的前项,比的后项:两条线段的比a:b中。

a叫做比的前项,b叫做比的后项。

说明:求两条线段的比时,对这两条线段要用同一单位长度。

ac3、比例:两个比相等的式子叫做比例,如 b dac4、比例外项:在比例 b d(或a:b=c:d)中a、d叫做比例外项。

ac5、比例内项:在比例 b d(或a:b=c:d)中b、c 叫做比例内项。

ac6、第四比例项:在比例 b d(或a:b=c:d)中, d 叫a、b、 c 的第四比例项。

ab7、比例中项:如果比例中两个比例内项相等,即比例为 b a(或a:b =b:c 时,我们把b叫做 a 和 d 的比例中项。

8. 比例线段:对于四条线段a、b、c、d,如果其中两条线段的长度的比与另两条线段的长度的比相等,即 a c(或a:b=c:d),那么,这四条线段叫做成比例线段,简称比例线bd 段。

(注意:在求线段比时,线段单位要统一,单位不统一应先化成同一单位)2)比例性质acad bc1. 基本性质 :bd(两外项的积等于两内项积)a cb d2. 反比性b d a c ( 把比的前项、后项交换 )3.更比性质 (交换比例的内项或外项 ) :a b,(交换内项 ) cdcd c,(交换外项 ) db a d b.(同时交换内外项 ) ca4.合比性质 :a c abc d(分子加(减)分母 ,分母不变) b d b d注意 :实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间注意:(1) 此性质的证明运用了“设 k 法” ,这种方法是有关比例计算,变形中一种常用方法. (2) 应用等比性质时,要考虑到分母是否为零.(3) 可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成 立.AC1)定义:在线段 AB 上,点 C 把线段 AB 分成两条线段 AC 和BC (AC>BC ),如果AB2)黄金分割的几何作图 :已知:线段 AB.求作:点 C 使 C 是线段 AB 的黄金分割点发生同样和差变化比例仍成立.如:acbd5. 等比性质: 如果badc a ab c cd abcd分子分母分别相加,比值不变.)e m(b d f fnn 0) ,那么知识点三: 黄金分割BC ,AC,AB 被点 C 黄金分割,点 C 叫做线段 AB 的黄金分割2即 AC 2=AB ×BC ,那么称线段点,AC 与 AB 的比叫做黄金比。

最新初三上数学培优专题讲义九AB------相似三角形

最新初三上数学培优专题讲义九AB------相似三角形

初三上数学培优专题讲义九AB 相似三角形提高训练一.相似三角形中的几个基本图形:两个三角形相似,一般说来必须具备下列六种图形之一:二、典例分析:考点(一)-------有关三角形的内接矩形或正方形的计算问题例题1、已知:如图,正方形DEFG 内接于△ABC ,AM ⊥BC 于M 交DG 于N ,BC=18,AM=12。

求正方形边长.变式:如图,在△ABC 中,∠ACB=90°,AC=3,BC=4,试比较图中正方形CDEF 和正方形PQRS 的面积的大小考点(二)------ 两个三角形相似的判定 例题2.如图,四边形ABCD 是平行四边形,AE ⊥BC 于E ,AF ⊥CD 于F.(1)ΔABE 与ΔADF 相似吗?说明理由.(2)ΔAEF 与ΔABC 相似吗?说说你的理由.变式:如图,⊿ABC 是等边三角形,点D,E 分别在BC,AC 上,且BD=CE,AD 与BE 相交于点F.(1)试说明⊿ABD≌⊿BCE。

(2)⊿AEF 与⊿ABE 相似吗?说说你的理由。

(3)BD 2=AD·DF 吗?请说明理由。

考点(三)------相似三角形中的面积问题EF AFFC FD +例题3. 如图,在□ABCD 中,E 为CD 中点,AE 与BD 相交于点O ,S △DOE =12cm 2,求S △AOD 、 S △AOB .变式:(2011•丹东,16,3分)已知:如图,DE 是△ABC 的中位线,点P 是DE 的中点,CP 的延长线交AB 于点Q ,求S △DPQ :S △ABC .考点(四)------作平行线构造相似三角形例题4.如图,E 是ABC ∆中线AD 上的一点,CE 交AB 于F ,已知AE :ED=1:2,求AF :BF 的值。

变式:如图,已知△ABC 中,AE:EB=1:4,BD:DC=2:1,AD 与CE 相交于F.求: 的值.考点(5)------利用相似三角形测高例5. 某测量工作人员眼睛A 与标杆顶端F 、电视塔顶端E 在同一直线上,已知此人眼睛距地面1.5米,标杆为3米,且BC=1米,CD=6米,求电视塔的高ED 。

相似三角形判定讲课逐字稿

相似三角形判定讲课逐字稿

相似三角形判定讲课逐字稿同学们,今天我们要一起探讨一个非常有趣的几何学话题——相似三角形的判定。

相似三角形是几何学中一个重要的概念,它不仅在数学领域有着广泛的应用,而且在日常生活中也随处可见。

那么,我们如何判断两个三角形是否相似呢?这就是我们今天要学习的重点内容。

首先,让我们来看第一个判定相似三角形的方法——角角相似(AA)。

如果两个三角形有两个角相等,那么这两个三角形就是相似的。

这个判定方法的依据是三角形内角和定理,即任何一个三角形的内角和都是180度。

如果两个三角形有两个角相等,那么第三个角也必然相等,因为它们必须加起来等于180度。

这样,两个三角形的所有对应角都相等,所以它们是相似的。

接下来,我们来看第二个判定方法——边边边相似(SSS)。

如果两个三角形的三边对应成比例,那么这两个三角形就是相似的。

这个方法的依据是相似三角形的性质,即相似三角形的对应边是成比例的。

通过测量两个三角形的边长,我们可以判断它们是否相似。

第三个判定方法是边角边相似(SAS)。

如果两个三角形有两边对应成比例,并且这两边夹角相等,那么这两个三角形就是相似的。

这个方法结合了边的比例关系和角的相等关系,是一种非常实用的判定方法。

现在,让我们通过几个例子来加深对这些判定方法的理解。

我会在黑板上画出几个三角形,然后我们一起来分析它们是否相似。

(此处可以展示几个三角形的例子,让学生参与讨论和判断)通过这些例子,我们可以看到,相似三角形的判定并不是那么困难。

只要我们掌握了角角相似、边边边相似和边角边相似这三个方法,就能够轻松地判断两个三角形是否相似。

最后,我想强调的是,相似三角形的判定不仅仅是一个理论问题,它在实际生活中也有很多应用。

比如在建筑设计、地图制作、甚至在艺术创作中,都需要用到相似三角形的知识。

所以,希望大家能够认真学习这部分内容,将来在实际应用中能够得心应手。

好了,今天的课就到这里,希望大家能够有所收获。

下课。

学生 第1讲 相似三角形培优课件讲义1!.doc

学生  第1讲   相似三角形培优课件讲义1!.doc

第1讲相似三角形讲义学习目标解三角形相似的判定方法学习重点:能够运用三角形相似判定方法解决数学问题及实际问题.学习难点:运用三角形相似判定方法解决数学问题的思路学习过程一、证明三角形相似例1:已知,如图,D为△ABC内一点连结ED、AD,以BC为边在△ABC外作∠CBE=∠ABD,∠BCE=∠BAD 求证:△DBE∽△ABC例2、矩形ABCD中,BC=3AB,E、F,是BC边的三等分点,连结AE、AF、AC,问图中是否存在非全等的相似三角形?请证明你的结论。

下面我们来看一看相似三角形的几种基本图形:(1)如图:称为“平行线型”的相似三角形EC(2)如图:其中∠1=∠2,则△ADE∽△ABC称为“相交线型”的相似三角形。

ABCDE12AABB C CDDEE12412(3)如图:∠1=∠2,∠B=∠D,则△ADE∽△ABC,称为“旋转型”的相似三角形。

观察本题的图形,如果存在相似三角形只可能是“相交线型”的相似三角形,及△EAF与△ECA二、相似三角形证明比例式和乘积式例3、△ABC中,在AC上截取AD,在CB延长线上截取BE,使AD=BE,求证:DF∙AC=BC∙FEAB CDE FAB CDEFK例4:已知:如图,在△ABC 中,∠BAC=900,M 是BC 的中点,DM ⊥BC 于点E ,交BA 的延长线于点D 。

求证:(1)MA 2=MD ∙ME ;(2)MD MEADAE =22三、相似三角形证明两角相等、两线平行和线段相等。

例5:已知:如图E 、F 分别是正方形ABCD 的边AB 和AD 上的点,且31==AD AF AB EB 。

求证:∠AEF=∠FBD例6、直角三角形ABC 中,∠ACB=90°,BCDE 是正方形,AE 交BC 于F ,FG ∥AC 交AB 于G ,求证:FC=FG例7、Rt △ABC 锐角C 的平分线交AB 于E ,交斜边上的高AD 于O ,过O 引BC 的平行线交AB 于F ,求证:AE=BFABCDEM12A B CD E F GA B C D F G E AB C DE F O123E 图2目标训练 一、填空题1、 两个相似三角形的面积比S 1:S 2与它们对应高之比h 1:h 2之间的关系为 .2、 如图2,平行四边形ABCD 中,E 是边BC 上的点,AE 交BD 于点F ,如果23BE BC =,那么BF FD= .233、如图,点1234A A A A ,,,在射线OA 上,点123B B B ,,在射线OB 上,且112233A B A B A B ∥∥,213243A B A B A B ∥∥.若212A B B △,323A B B △的面积分别为1,4,则图中三个阴影三角形面积之和为 .4. △ABC 中,DE ∥FG ∥BC ,且AD :1,则S △ADE :S 四边形DFGE :S 四边形FBCG =二、选择题1.已知△ABC∽△DEF,且AB :DE=1:2,则△ABC 的面积与△DEF 的面积之比为( )(A)1:2 (B)1:4 (C)2:1 (D)4:12.如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x ,那么x 的值( )A .只有1个B .可以有2个C .有2个以上但有限D .有无数个3.美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.如图,某女士身高165cm ,下半身长x与身高l 的比值是0.60,为尽可能达到好的效果,她应穿的高跟鞋的高度大约为( ) A .4cm B .6cm C .8cm D .10cm4、如图,△ABC 是等边三角形,被一平行于BC 的矩形所截,AB 被截成三等分,则图中阴影部分的面积是△ABC的面积的 ( ) A.91 B.92 C.31D.94(第3题图)1 2 345、 如图,直角梯形ABCD 中,∠BCD =90°,AD ∥BC ,BC =CD ,E 为梯形内一点,且∠BEC =90°,将△BEC 绕C 点旋转90°使BC 与DC 重合,得到△DCF ,连EF 交CD 于M .已知BC =5,CF =3,则DM:MC 的值为 ( ) A.5:3 B.3:5 C.4:3 D.3:46、 如图,在Rt △ABC 内有边长分别为,,a b c 的三个正方形,则,,a b c 满足的关系式是( ) A 、b a c =+ B 、b ac = C 、222b ac =+ D 、22b a c ==7、如图,Rt △ABAC 中,AB ⊥AC ,AB =3,AC =4,P 是BC 边上一点,作PE ⊥AB 于E,PD ⊥AC 于 D ,设BP =x ,则PD+PE =( ) A.35x + B.45x -C.72D.21212525x x -三、解答题1、如图5,在△ABC 中,BC>AC , 点D 在BC 上,且DC =AC,∠ACB 的平分线CF 交AD 于F ,点E 是AB 的中点,连结EF.(1)求证:EF ∥BC.(2)若四边形BDFE 的面积为6,求△ABD 的面积.2、 (本小题满分10分)如图:在等腰△ABC 中,CH 是底边上的高线,点P 是线段CH 上不与端点重合的任意一点,连接AP 交BC 于点E,连接BP 交AC 于点F. (1) 证明:∠CAE=∠CBF; (2) 证明:AE=BF;(3) 以线段AE ,BF 和AB 为边构成一个新的三角形ABG (点E 与点F 重合于点G ),记△ABC 和△ABG 的面积分别ABCDE P为S △ABC 和S △ABG ,如果存在点P,能使得S △ABC =S △ABG ,求∠C 的取之范围。

九年级数学相似三角形的判定及证明技巧讲义

九年级数学相似三角形的判定及证明技巧讲义

相似三角形是中学数学中的一个重要内容,对于九年级学生来说,掌握相似三角形的判定及证明技巧是必不可少的。

本文将详细讲解相似三角形的判定及证明技巧,帮助学生更好地理解和运用这一知识点。

一、相似三角形的判定:1.AAA相似判定法:如果两个三角形的对应角度相等,则这两个三角形是相似的。

例如,在△ABC和△DEF中,∠A=∠D,∠B=∠E,∠C=∠F,那么这两个三角形相似。

2.AA相似判定法:如果两个三角形的一个角对等于另一个角,且两个角的对边成比例,则这两个三角形是相似的。

例如,在△ABC和△DEF 中,∠A=∠D,∠C=∠F,且AB/DE=BC/EF,那么这两个三角形相似。

3.SSS相似判定法:如果两个三角形的对应边成比例,则这两个三角形是相似的。

例如,在△ABC和△DEF中,AB/DE=BC/EF=AC/DF,那么这两个三角形相似。

4.平行线判定法:如果两个三角形的对应边平行,则这两个三角形是相似的。

例如,在△ABC和△DEF中,AB∥DE,BC∥EF,AC∥DF,那么这两个三角形相似。

二、相似三角形的证明技巧:1.用平行线证明相似:如果两个三角形的对应边平行,则这两个三角形是相似的。

证明时,可以使用平行线的性质,如同位角相等、内错角互补等。

2.用角度证明相似:如果两个三角形的对应角度相等,则这两个三角形是相似的。

证明时,可以根据已知信息,使用角度的性质进行推导。

3.用边长比证明相似:如果两个三角形的对应边长比相等,则这两个三角形是相似的。

证明时,可以根据已知的边长比,通过等式推导得出结论。

4.用等腰三角形证明相似:如果两个三角形分别为等腰三角形,且对应的顶角相等,则这两个三角形是相似的。

以上是常用的相似三角形的判定及证明技巧,希望对九年级的数学学习有所帮助。

在学习过程中,要多加练习,掌握不同方法的应用,提高解题能力。

同时,要注重理论与实践相结合,灵活运用知识,培养自己的思维能力和推理能力。

祝每位同学在数学学习中取得优异成绩!。

相似三角形讲义人教版数学九年级下册

相似三角形讲义人教版数学九年级下册

第二十七章 相似(二)相似三角形知识点一 相似三角形 要点1.相似三角形的概念三个角分别相等,三条边成比例的两个三角形叫做相似三角形.若△ABC 和△A'B'C'相似,则记作△ABC △△A'B'C'.相似三角形对应边的比叫做相似比,通常用“k ”表示.要点2.全等三角形与相似三角形的比较全等三角形相似三角形定义 能够完全重合的两个三角形叫做全等三角形 三个角分别相等、三条边对应成比例的两个三角形叫做相似三角形特征 形状相同且大小相等形状相同但大小不一定相等图 形 表 示对应边 相等 成比例 对应角 相等 相等相似比 1 可以是1,也可以是其他正实数注意:△相似三角形的对应性:在记两个三角形相似时,表示对应顶点的字母需写在对应位置. △相似三角形的传递性:若△ABC △△A 1B 1C 1,△A 1B 1C 1△△A 2B 2C 2,则△ABC △△A 2B 2C 2.△相似比的顺序性:相似比与两多边形前后顺序有关,若四边形ABCD 与四边形A 1B 1C 1D 1的相似比为2,则四边形A 1B 1C 1D 1与四边形ABCD 的相似比为21.知识点二 平行线分线段成比例 要点1.平行线分线段成比例(1)基本事实:两条直线被一组平行线所截,所得的对应线段成比例由l 3//l 4//l 5,得EF DE BC AB =,DF DE AC AB =,DFEFAC BC =,(2)常见基本图形(3)应用:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.由DE //BC , 得ACAEAB AD =课堂练习1.如图,直线a //b //c ,它们依次交直线AE 和BF 于点A 、C 、E 和 B 、D 、F ,已知AC =4, CE =6,BD =3,那么DF = .2.如图,直线a //b //c ,它们依次交直线AE 和BF 于点A 、C 、E 和 B 、D 、F ,已知AC =5, CE =6,DF =4,那么BD = .3.如图,直线l 1//l 1//l 1,它们依次交直线AC 和DF 于点A 、B 、C 和 D 、E 、F ,已知DE =5, EF =6,AB =2,那么AC = .4.如图,AC 、BD 交于O 点,AD //BC //EO ,则下列结论一定正确的是( ) A.BC AD EB AE = B.AD EO OC AO = C.BC EO EB AE = D.OBDOAB AE =知识点三 相似三角形的判定方法 要点1.相似三角形的判定方法—平行定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似类别“A ”型 “X ”型DE 与AB ,AC 相交 DE 与AB ,AC 的延长线相交DE 与AB ,AC 的反向延长线相交课堂练习1.如图,E 是▱ABCD 的边CD 延长线上一点,连接BE ,交AC 于点O ,交AD 于F .图中的相似三角形共有 对.2.如图,E 是▱ABCD 的边BC 延长线上一点,AE 和CD 交于点G ,AC 是▱ABCD的对角线,则图中的相似三角形共有 对.要点2.相似三角形的判定方法—三边定理三边成比例的两个三角形相似∵''''''A C CAC B BC B A AB == ∴△ABC △△A'B'C'课堂练习1.如图,小正方形的边长均为1,则△ABC 与△DEF是否相似? (填“是”或“否”)2.如图,下列三个三角形中相似的是 .3.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是( )A. B. C. D.判断两个三角形的三边是否成比例的一般步骤: △排:分别将两三角形边的长度按大小顺序排列; △算:分别计算三边的比;△判:由比是否相等来判断两个三角形的三边是否成比例.要点3.相似三角形的判定方法—两边夹角定理 两边成比例且夹角相等的两个三角形相似 ∵'''''A A C A AC B A AB ∠=∠=, ∴△ABC △△A'B'C'练:如图,在△ABC 中,AB =4,BC =8,D 为BC 边上一点,BD =2.求证:△ABD ∽△CBA.要点4.相似三角形的判定方法—两角定理两角分别相等的两个三角形相似 ∵''B B A A ∠=∠∠=∠,∴△ABC △△A'B'C'练.如图,在△ABC 中,AB =AC ,点D 、E 分别在BC 、AB 上,且△BDE=△CAD. (1)求证:△BDE ∽△CAD. (2)求证:△ADE ∽△ABD.注意:利用该判定定理时,相等的角必须是两组成比例边的夹角,否则两个三角形不一定相似. 注意:用两角分别相等来判定三角形相似是常用方法,应掌握好寻找等角的方法。

初三相似三角形讲义(同名530)

初三相似三角形讲义(同名530)

初三相似三角形讲义(同名530)ABC知识点5:相似三角形的判定:①两角对应相等,两个三角形相似 ②两边对应成比例且夹角相等,两三角形相似③三边对应成比例,两三角形相似 ④如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角形相似⑤平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似⑥直角三角形被斜边上的高分成的两个直角三角形和原三角形相似如果两个三角形的两角分别于另一个三角形的两角对应相等,那么这两个三角形相似。

点拨:在三角形中,若已知两个角,由三角形内角和定理可求出第三个角。

注意公共角的运用,公共角也就是两个三角形都有的角,公共角是隐含的相等的角,我们应注意公共角的运用。

两边对应成比例并且它们的夹角也相等的两个三角形相似。

注意:这个角必须是两边的夹角,而不能是其他的角,其他的角则不可以识别两个三角形相似,此法类似于判定三角形全等的条件“SAS ”三边对应成比例的两个三角形相似。

知识点六:摄影定理AD 2=B D ·CD AB 2=BD ·AC 2=CD ·BC特殊图形(双垂直模型) ∵∠BAC=90°∴AD 2=B D ·CD AB 2=BD ·BC AC 2=CD ·BC知识点七:相似三角形的周长和面积(1)相似三角形的对应高相等,对应边的比相等。

(2)相似三角形对应高的比、对应中线的比、对应角平分线的比等于相似比。

(3)相似三角形的周长比等于相似比; (4)相似三角形的面积比等于相似比的平方补充:相似三角形的识别方法(1)定义法:三角对应相等,三边对应成比例的两个三角形相似。

(2)平行线法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似。

注意:适用此方法的基本图形,(简记为A 型,X 型) (3)三边对应成比例的两个三角形相似。

九年级数学上册相似三角形的判定-讲义

九年级数学上册相似三角形的判定-讲义

作品编号:8567941235890031445888659学校:量印超jgj市收高眉镇页设小学*教师:谢德刚*班级:字文叁班*学科:数学专题:相似三角形的判定重难点易错点解析判断三角形是否相似,要注意思维的完整性.题一题面:如图所示,△ABC的高AD,BE交于点F,则图中的相似三角形共有______对.金题精讲题一题面:如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,想一想,(1)求证:AC2=AD·AB;BC2=BD·BA;(2)求证:CD2=AD·AD;(3)求证:AC·BC=AB·CD.三角形相似题二题面:如图,在梯形ABCD中,AB∥CD,∠B=90°,以AD为直径的半圆与BC相切于E点.求证:AB·CD=BE·EC.圆周角定理、相似三角形满分冲刺题一题面:如下图甲所示,在矩形ABCD中,AB=2AD.如图乙所示,线段EF=10,在EF上取一点M,分别以EM,MF为一边作矩形EMNH、矩形MFGN,使矩形MFGN∽矩形ABCD,设MN=x,当x为何值时,矩形EMNH的面积S有最大值?最大值是多少?相似多边形、二次函数题二题面:已知D是BC边延长线上的一点,BC=3CD,DF交AC边于E点,且AE=2EC.试求AF与FB的比.利用平行线构造相似三角形题三题面:如图13-2,点P是边长为4的正方形ABCD内一点,PB=3,BF⊥BP于点B,试在射线BF上找一点M,使得以点B,M,C为顶点的三角形与△ABP相似,作图并指出相似比k的值.图13-2相似三角形的判定讲义参考答案重难点易错点解析题一答案:6对.金题精讲题一答案:利用三角形相似证明.题二答案:提示:连结AE 、ED ,证△ABE ∽△ECD . 满分冲刺题一 答案:25=x 时,S 的最大值为252. 题二答案:12AF FB =. 题三答案:如图13-3.图13-3∵AB ⊥BC ,PB ⊥BF ,∴∠ABP =∠CBF .当AB BC BP BM =1,即=31BM 44,BM 1=3时,△CBM 1∽△ABP .相似比k =1. 当BP BC AB BM =2即316,34422==BM BM 时,△CBM 2∽△PBA .相似比43k =. ∴当BM =3或316=BM 时,以点B ,M ,C 为顶点的三角形与△ABP 相似,相似比分别为1和43.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)求证:△ABE∽△DEF;(2)若正方形的边长为4,求BG的长.
8
9、已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:①BE=CD;②△AMN是等腰三角形;(2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.
A.4
B.3
C.2
D.1
5、如图,在平面直角坐标系中,A(0,4),B(2,0),点C在第一象限,若以A、B、C为顶点的三角形与△AOB相似(不包括全等),则点C的个数是(A.1 B.2 C.3 D.4)
6、如图,点C是线段AB上一点,△ACD和△BCE都是等边三角形,连结AE,BD,设AE交CD于点F.(1)求证:△ACE≌△DCB;(2)求证:△ADF∽△BAD.
5、下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC相似的三角形所在的网格图形是()
A.
B.
C.
D.
6、如图,在正五边形ABCDE中,对角线AD,AC与EB分别相交于点M,N.下列结论错误的是()B.四边形MNCD是等腰梯形D.△AEN与△EDM全等
A.四边形EDCN是菱形C.△AEM与△CBN相似
11
初三相似三角形的判定培优同步讲义
学科教师辅导讲义
体系搭建
一、知识角形的概念
对应角相等,对应边之比相等的三角形叫做相似三角形.
1、相似三角形是相似多边形中的一种;
2、应结合相似多边形的性质来理解相似三角形;
3、相似三角形应满足形状一样,但大小可以不同;
4、母子型:已知∠ACB=90°,AB ⊥CD ,则△CBD ∽△ABC ∽△ACD .
直击中考
1、【2015•海南】如图,点P是▱ABCD边AB上的一点,射线CP交DA的延长线于点E,则图中相似的三角形有(A.0对)B.1对C.2对D.3对
2、【2014•贵阳】如图,在方格纸中,△ABC和△EPD的顶点均在格点上,要使△ABC∽△EPD,则点P所在的格点为(A.P1 B.P2 C.P3)D.P4
2、如右图,ABCD是正方形,E是CD的中点,P是BC边上的一点,下列条件中,不能推出△ABP与△ECP相似的是(A. ∠APB=∠EPC)D. BP︰BC=2︰3
B. ∠APE=90° C. P是BC的中点
7
4、如图,在▱ABCD中,E、F分别是AD、CD边上的点,连接BE、AF,他们相交于G,延长BE交CD的延长线于点H,则图中的相似三角形共有(A.2对B.3对C.4对D.5对)
名师点拨
1、熟练掌握相似三角形三种判定方法的特征及条件是学好本部分内容的关键所在;2、本部分内容综合性较强,灵活度较高,是中考必考重点内容,具有不畏难、战胜困难的心态是前提;3、三角形相似是解答题压轴题必考知识点之一,也是选择题压轴题常考知识点之一,应引起足够重视。
10
学霸经验
本节课我学到了
我需要努力的地方是
7、如图,在Rt△ABC中,AB=AC,D、E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后,得到△AFB,连接EF,下列结论中正确的个数有(①∠EAF=45°;③AE平分∠CAF;A.1个B.2个②△ABE∽△ACD;④BE +DC =DE.C.3个D.4个
2 2 2

8、如图,在正方形ABCD中,E、F分别是边AD、CD上的点,AE=ED,DF= DC,连接EF并延长交BC的延长线于点G.
例2、如图,下列条件不能判定△ADB ∽△ABC的是( ) A .∠ABD=∠ACB B .∠ADB=∠ABC
C .AB 2
=AD•AC
D .=
典例分析
A
B
C
D
A
B
C
D E
12
A
A
B
B
C
C D
D
E
E
124
1
2
E
C A
B
D E
A
B
C (
D )
E
A
D
C
B
例3、已知:在梯形ABCD中,AD∥BC,∠ABC=90°,BC=2AD,E是BC的中点,连接AE、AC.
7、如图:已知AB⊥DB于B点,CD⊥DB于D点,AB=6,CD=4,BD=14,在DB上取一点P,使以CDP为顶点的三角形与以PBA为顶点的三角形相似,则DP的长.
课后反击)
1、下列命题中,真命题是(
①同旁内角互补,两直线平行.②三角形任意两边之和不小于第三边;③两条对角线平分的四边形是平行四边形;④两边及其中一角对应相等的两个三角形全等;⑤两边对应成比例且夹角相等的两个三角形相似.A.①③⑤ B.①④⑤ C.②③④ D.①②③④⑤
5、斜交型:
如图:其中∠1=∠2,则△ADE ∽△ABC称为“斜交型”的相似三角形。(有“反A共角型”、“反A共角共边型”、“蝶型”)
6、垂直型:有“双垂直共角型”、“双垂直共角共边型(也称“射影定理型”)”“三垂直型”)
考点1:三角形相似判定方法的运用
例1、如图,在△ABC中,∠ACB=90°,CD ⊥AB于点D ,则图中相似三角形共有( ) A .1对B .2对C .3对D .4对
3、【2011•深圳】如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中△ABC相似的是()
A.
B.
C.
D.
9
4、【2016•河北】如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()
A.
B.
C.
D.
5、【2014•宿迁】如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=8,AD=3,BC=4,点P为AB边上一动点,若△PAD与△PBC是相似三角形,则满足条件的点P的个数是(A.1个B.2个)C.3个D.4个
(2)求∠ABD的度数.
考点2:网格图中相似三角形的判定
例1、下列四个三角形中,与图中的三角形相似的是()
A.B.C.D.
实战演练
课堂狙击
1、下列命题中,是真命题的为()
A.锐角三角形都相似
B.直角三角形都相似
C.等腰三角形都相似
D.等边三角形都相似
2、如图,平行四边形ABCD中,过点B的直线与对角线AC、边AD
(1)点F是DC上一点,连接EF,交AC于点O(如图1),求证:△AOE∽△COF;
(2)若点F是DC的中点,连接BD,交AE与点G(如图2),求证:四边形EFDG是菱形.
例4、如图,在△ABC中,AB=AC=1,BC=,在AC边上截取AD=BC,连接BD.
(1)通过计算,判断AD2与AC•CD的大小关系;
分别交于点E和F.过点E作EG∥BC,交AB于G,则图中相似三角形
有()
A.4对
B.5对
C.6对
D.7对
4、如图,已知AB=AC,∠A=36°,AB的中垂线MD交AC于点D、交AB于点M.下
列结论:①BD是∠ABC的平分线;②△BCD是等腰三角形;③△ABC∽△BCD;
④△AMD≌△BCD.正确的有()个.
6、【2013•贵阳】如图,M是Rt△ABC的斜边BC上异于B、C的一定点,过M点作直线截△ABC,使截得的三角形与△ABC相似,这样的直线共有(A.1条B.2条C.3条D.4条)
S(Summary-Embedded)——归纳总结
重点回顾
1、相似三角形的概念及三种判定方法;2、常见三角形相似的类型有:平行线型、相交线型、旋转型、母子型、斜交型、垂直型
相关文档
最新文档