高二文科数学期中试卷及答案
高二下期期中考试文科数学试题(选修1-2)(含答案)

集合集合的概念 集合的表示集合的运算基本运算基本关系高二下期期中考试 数学(文科)试题第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下列各数72+,i 72,0,85+i ,)31(-i ,618.0中,纯虚数的个数有A .0个B .1个C .2个D .3个2.复数i z +=31,i z -=12,则复数21z z ⋅在复平面内的对应点位于A .第一象限B .第二象限C .第三象限D .第四象限3.右图是《集合》的知识结构图,如果要加入 “子集”,则应该放在A .“集合的概念”的下位B .“集合的表示”的下位C .“基本关系”的下位D .“基本运算”的下位4.在两个变量y 与x 的回归模型中,分别选择了4个不同的模型,它们的相关指数2R 如下,其中拟合效果最好的模型是A .模型1的相关指数2R 为98.0 B .模型2的相关指数2R 为80.0 C .模型3的相关指数2R 为56.0 D .模型4的相关指数2R 为25.0 5.设复数i 2321+-=ω,则=+ω1 A .ω- B .ω1-C .2ω D .21ω6.下列结构图中,体现要素之间是逻辑先后关系的是A .B .C .D .7些复数是实数,c 是复数,则c 是实数”,则A .大前提错误B .小前提错误C .推理形式错误D .推理正确 8.下列推理正确的是A .把)(c b a +与)(log y x a +类比,则有:y x y x a a a log log )(log +=+B .把)(c b a +与)sin(y x +类比,则有:y x y x sin sin )sin(+=+C .把nab )(与nb a )(+类比,则有:nnny x y x +=+)( D .把c b a ++)(与z xy )(类比,则有:)()(yz x z xy = 9.甲乙两个班级进行计算机考试,按照学生考试成绩优秀和不优秀统计后,得到如下的列联表.利用独立性检验估计,你认为成绩与班级 A .有%95的把握有关 B .无关 C .有%99的把握有关 D .无法确定 10.用反证法证明:“a ,b 至少有一个为0”,应假设A .a ,b 没有一个为0B .a ,b 只有一个为0。
人教A版必修2高二数学期中考试题(文科)及答案

高二级数学中考试题(文科)本试题卷共4页,三大题20小题,全卷满分150分,考试用时120分钟。
注意事项:1. 答题前,考生务必将自己的姓名、座位号填在答题卡上;2. 选择题每小题选出答案后,填写在答题卡上对应题目;3. 填空题和解答题填写在答题卡上每题对应的答题区域内,答在试题卷上无效。
4. 考试结束后,只将答题卡上交。
参考公式:圆锥的表面积公式)(l r r S +=π,r 是底面半径,l 是母线锥体的体积公式V=13Sh ,其中S 是锥体的底面积,h 是锥体的高。
一、选择题:本大题共10小题,每小题5分,满分50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.用任意一个平面截一个几何体,各个截面都是圆,则这个几何体一定是( ) A .圆柱 B .圆锥 C .球 D .圆台2、右图的正方体ABCD-A ’B ’C ’D ’中,异面直线AA ’与BC 所成的角是( )A.300B.450C.600D.9003、直线5x-2y-10=0在x 轴上的截距为a, 在y 轴上的截距为b,则( )A.a=2,b=5;B.a=2,b=-5;C.a=-2,b=5D.a=-2,b=-54、直线2x-y=7与直线3x+2y-7=0的交点是( )A.(3,-1)B.(-1,3)C.(-3,-1)D.(3,1)5、过点P(4,-1)且与直线3x-4y+6=0垂直的直线方程是( )A.4x+3y-13=0B.4x-3y-19=0C.3x-4y-16=0D.3x+4y-8=06、点M(4,m )关于点N (n,-3)的对称点为P (6,-9),则( )A.m =-3,n =10 B.m =3,n =10 C.m =-3,n =5 D.m =3,n =57、下列命题中错误的是:( )A. 如果α⊥β,那么α内一定存在直线平行于平面β;B. 如果α⊥β,那么α内所有直线都垂直于平面β;C. 如果平面α不垂直平面β,那么α内一定不存在直线垂直于平面β;D. 如果α⊥γ,β⊥γ,α∩β=l,那么l ⊥γ.8、已知水平放置的ABC ∆的直观图如图所示,其中23,1=''=''=''O A O C O B ,那么原ABC ∆的面积是 ( ) A. 23; B. 43;C.3; D. 22.9、某人用如图所示的纸片,沿折痕折后粘成一个四棱锥形的“走马灯”,正方形做底,且有一个三角形面上写上了“年”字。
高二数学上学期期中文科试题

高二数学上学期期中文科试题可能对于很多文科生来说数学是很难的,大家不要放弃哦,今天小编就给大家分享一下高二数学,就给阅读哦高二数学上期中文科试题第I卷共60分一、选择题:本大题有12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求.1. 已知是等比数列, ( )A.4B.16C.32D. 642.若a>b>0,下列不等式成立的是( )A.a23. 在中,,则一定是( )A.钝角三角形B.锐角三角形C.直角三角形D.等腰三角形4.在△ABC内角A,B, C的对边分别是a,b,c,已知a= ,c= ,∠A= ,则∠C的大小为( )A. 或B. 或C.D.5.原点和点(1,1)在直线x+y﹣a=0两侧,则a的取值范围是( )A.0≤a≤2B.026.在中,已知 ,则角A等于( )A. B. C. D.7.若数列为等差数列且,则sin 的值为( )A. B. C. D.8.在中,分别是角的对边,且 , ,则的面积等于( )A. B. C. D.109.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女子善织,日益功,疾,初日织五尺,今一月织九匹三丈(1匹=40尺,一丈=10尺),问日益几何?”其意思为:“有一女子擅长织布,每天比前一天更加用功,织布的速度也越来越快,从第二天起,每天比前一天多织相同量的布,第一天织5尺,一月织了九匹三丈,问每天增加多少尺布?”若一个月按30天算,则每天增加量为( )A. 尺B. 尺C. 尺D. 尺10.若不等式组表示的平面区域是一个三角形,则的取值范围是( )A. 或B.C. 或D.11.等比数列的前n项的和分别为, ,则 ( )A. B. C. D.12.已知单调递增数列{an}满足an=3n﹣λ•2n(其中λ为常数,n∈N+),则实数λ的取值范围是( )A.λ≤3B.λ<3C.λ≥3D.λ>3第Ⅱ卷共90分二、填空题:本大题有4小题,每小题5分,共20分,把答案填在答卷的相应位置.13.已知关于x的不等式ax2﹣(a+1)x+b<0的解集是{x|114.设且 ,则的最小值为15.若数列的前n项的和为,且,则的通项公式为_________.16.若数列为等差数列,首项,则使前项和的最大自然数n是_________________.三、解答题:本大题有6题,共70分,解答应写出文字说明、证明过程或演算步骤.17、(本题满分10分)(1)设数列满足,写出这个数列的前四项;(2)若数列为等比数列,且求数列的通项公式18.(本题满分12分)已知函数 .(1)当时,解不等式 ;(2)若不等式的解集为,求实数的取值范围.19.(本题满分12分)的内角的对边分别为 ,已知 .(1)求(2)若 , 面积为2,求20.(本题满分12分)在中,角所对的边分别为,设为的面积,满足(I)求角的大小;(II)若边长,求的周长的最大值.21.(本小题满分12分)已知实数满足不等式组 .(1)求目标函数的取值范围;(2)求目标函数的最大值.22.(本小题满分12分)已知等比数列满足 , ,公比(1)求数列的通项公式与前n项和 ;(2)设,求数列的前n项和 ;(3)若对于任意的正整数,都有成立,求实数m的取值范围. 高二数学(文科)参考答案一、选择题:本大题有12小题,每小题5分,共60分1-12:C C C D B C B C C A B B二、填空题:本大题有4小题,每小题5分,共20分13. 14.8 15. 16. 4034三、解答题:17.(本小题满分10分)(1) …………5分,(2)由已知得,联立方程组解得得,即…………10分18.(本小题满分12分).……4分(2)若不等式的解集为,则①当m=0时,-12<0恒成立,适合题意; ……6分②当时,应满足由上可知,……12分19. (1)由题设及得,故上式两边平方,整理得解得……………6分(2)由,故又,由余弦定理及得所以b=2……………12分20.解:(1)由题意可知,……………2分12absinC=34•2abcosC,所以tanC=3. 5分因为0所以,所以,当时,最大值为4,所以△ABC的周长的最大值为6其他方法请分步酌情给分21.(本小题满分12分)解:(1)画出可行域如图所示,直线平移到点B时纵截距最大,此时z取最小值;平移到点C时纵截距最小,此时z取最大值.由得由得∴C(3,4);当x=3,y=4时,z最大值2.………………………8分(2) 表示点到原点距离的平方,当点M在C点时,取得最大值,且………………12分22. 解:(1)由题设知,,又因为, ,解得:,故an=3 = ,前n项和Sn= - .……4分(2)bn= = = ,所以 = ,所以== < ,………8分(3)要使恒成立,只需,即解得或m≥1. ………………12分高二文科数学上学期期中试卷一、选择题:(本大题共12小题,每小题5分;在每小题给出的四个选项中,只有一项是符合题目要求的.)1.命题“若,则”的逆否命题是 ( )A. 若,则B. 若,则C. 若,则D. 若,则2 .命题“ ”的否定是 ( )A. B. C. D.3.若中心在原点的椭圆C的右焦点为F(1,0),离心率等于12,则C的方程是 ( )A. x23+y24=1B. x24+y23=1C. x24+y22=1D. x24+y23=14. 表示的曲线方程为 ( )[A. B.C. D.5.抛物线的准线方程是 ( )A. B. C. D.6.若k∈R则“k>5”是“方程x2k-5-y2k+2=1表示双曲线”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.已知是椭圆的两焦点,过点的直线交椭圆于点,若 ,则 ( )A.9B.10C.11D.128.已知双曲线的离心率为3,焦点到渐近线的距离为,则此双曲线的焦距等于 ( )A. B. C. D.9.双曲线的一个焦点为,椭圆的焦距为4,则A.8B.6C.4D.210.已知双曲线的两个顶点分别为,,点为双曲线上除,外任意一点,且点与点,连线的斜率分别为、,若,则双曲线的离心率为 ( )A. B. C. D.11.如果是抛物线的点,它们的横坐标依次为,是抛物线的焦点,若 ,则 ( )A. B. C. D.12.已知点,是椭圆上的动点,且,则的取值范围是 ( )A. B. C. D.二、填空题:(本大题共4小题,每小题5分)13.若命题“ ”是假命题,则实数的取值范围是 .14.已知直线和双曲线的左右两支各交于一点,则的取值范围是 .15.已知过抛物线的焦点,且斜率为的直线与抛物线交于两点,则 .16.已知是抛物线上的动点,点是圆上的动点,点是点在轴上的射影,则的最小值是 .三、解答题(本大题共6小题,共70分,解答题应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)设命题函数在单调递增;命题方程表示焦点在轴上的椭圆.命题“ ”为真命题,“ ”为假命题,求实数的取值范围.18.(本小题满分12分)(Ⅰ)已知某椭圆过点,求该椭圆的标准方程.(Ⅱ)求与双曲线有共同的渐近线,经过点的双曲线的标准方程.19.(本小题满分12分)已知抛物线的顶点在原点,焦点在轴的正半轴且焦点到准线的距离为2.(Ⅰ)求抛物线的标准方程;(Ⅱ)若直线与抛物线相交于两点,求弦长 .20.(本小题满分12分)已知双曲线的离心率为,虚轴长为 .(Ⅰ)求双曲线的标准方程;(Ⅱ)过点,倾斜角为的直线与双曲线相交于、两点,为坐标原点,求的面积.21.(本小题满分12分)已知椭圆,过点,的直线倾斜角为,原点到该直线的距离为 .(Ⅰ)求椭圆的标准方程;(Ⅱ)斜率大于零的直线过与椭圆交于E,F两点,若,求直线EF的方程.22.(本小题满分12分)已知分别为椭圆C:的左、右焦点,点在椭圆上,且轴,的周长为6.(Ⅰ)求椭圆的标准方程;(Ⅱ)E,F是椭圆C上异于点的两个动点,如果直线PE与直线PF的倾斜角互补,证明:直线EF的斜率为定值,并求出这个定值.数学(文科)学科参考答案第Ⅰ 卷 (选择题共60分)一、选择题:(本大题共12小题,每小题5分;在每小题给出的四个选项中,只有一项是符合题目要求的.)题号 1 2 3 4 5 6 7 8 9 10 11 12答案 B D D C A A C D C B B A第Ⅱ 卷 (非选择题共90分)二、填空题:(本大题共4小题,每小题5分. )(13) ; (14) ; (15) ; (16) .三、解答题:(解答应写出必要的文字说明,证明过程或演算步骤.)(17)(本小题满分10分)解:命题p:函数在单调递增命题q:方程表示焦点在轴上的椭圆……4分“ ”为真命题,“ ”为假命题,命题一真一假……6 分① 当真假时:② 当假真时:综上所述:的取值范围为……10分(18)(本小题满分12分)解:(Ⅰ)设椭圆方程为,解得,所以椭圆方程为. ……6分(Ⅱ)设双曲线方程为,代入点,解得即双曲线方程为. ……12分(19)(本小题满分12分)解:(Ⅰ) 抛物线的方程为:……5分(Ⅱ)直线过抛物线的焦点,设,联立,消得,……9分或……12分(20)(本小题满分12分)解:(Ⅰ)依题意可得,解得双曲线的标准方程为. ……4分(Ⅱ)直线的方程为联立,消得,设,,由韦达定理可得 , ,……7分则……9分原点到直线的距离为……10分的面积为……12分(21)(本小题满分12分)解:(Ⅰ)由题意,,,解得,所以椭圆方程是:……4分(Ⅱ)设直线:联立,消得,设,,则 ,……① ……② ……6分,即……③ ……9分由①③得由②得……11分解得或 (舍)直线的方程为:,即……12分(22)(本小题满分12分)解:(Ⅰ)由题意,,,的周长为,,椭圆的标准方程为. ……4分(Ⅱ)由(Ⅰ)知,设直线方程:,联立,消得……5分设,点在椭圆上,……7分又直线的斜率与的斜率互为相反数,在上式中以代,,……9分……10分即直线的斜率为定值,其值为. ……12分高二数学上期中文科联考试题第Ⅰ卷(共100分)一、选择题(本大题共11个小题,每小题5分,共55分)1.已知sin α=25,则cos 2α=A.725B.-725C.1725D.-17252.已知数列1,3,5,7,…,2n-1,…,则35是它的A.第22项B.第23项C.第24项D.第28项3.在△ABC中,角A,B,C的对边分别为a,b,c,若b=c=2a,则cos B=A.18B.14C.12D.14.△ABC中,角A,B,C所对的边分别为a,b,c,若cbA.钝角三角形B.直角三角形C.锐角三角形D.等边三角形5.已知点(a,b) a>0,b>0在函数y=-x+1的图象上,则1a+4b 的最小值是A.6B.7C.8D.96.《九章算术》中“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则从上往下数第6节的容积为A.3733B.6766C.1011D.23337.设Sn为等比数列{an}的前n项和, 27a4+a7=0,则S4S2=A.10B.9C.-8D.-58.已知数列{an}满足an+1+an=(-1)n•n,则数列{an}的前20项的和为A.-100B.100C.-110D.1109.若x,y满足约束条件x≥0,x+y-3≤0,x-2y≥0,则z=x+2y的最大值为A.3B.4C.5D.610.已知0A.13B.12C.23D.3411.已知等差数列{an}的公差d≠0,前n项和为Sn,若对所有的n(n∈N*),都有Sn≥S10,则A.an≥0B.a9•a10<0C.S2第Ⅰ卷选择题答题卡题号 1 2 3 4 5 6 7 8 9 10 11 得分答案二、填空题(本大题共3小题,每小题5分,共15分)12.在等比数列{an}中,a4•a6=2 018,则a3•a7= ________ .13.在△ABC中,a=3,b=1,∠A=π3,则cos B=________.14.对于实数a、b、c,有下列命题:①若a>b,则acbc2,则a>b;③若a ab>b2;④若c>a>b>0,则ac-a>bc-b;⑤若a>b,1a>1b,则a>0,b<0.其中正确的是________.(填写序号)三、解答题(本大题共3小题,共30分)15.(本小题满分8分)△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(acos B+bcos A)=c.(1)求角C;(2)若c=7,△ABC的面积为332,求△ABC的周长.16.(本小题满分10分)某厂拟生产甲、乙两种适销产品,每件销售收入分别为3 000元、2 000元. 甲、乙产品都需要在A、B两种设备上加工,在A、B设备上加工一件甲产品所需工时分别为1 h,2 h,加工一件乙产品所需工时分别为2 h,1 h,A、B两种设备每月有效使用台时数分别为400 h 和500 h,分别用x,y表示计划每月生产甲、乙产品的件数.(1)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;(2)问每月分别生产甲、乙两种产品各多少件,可使月收入最大?并求出最大收入.17.(本小题满分12分)已知公差不为零的等差数列{an}满足:a3+a8=20,且a5是a2与a14的等比中项.(1)求数列{an}的通项公式;(2)设数列{bn}满足bn=1anan+1,求数列{bn}的前n项和Sn.第Ⅱ卷(共50分)一、选择题18.(本小题满分6分)已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点.若FP→=4FQ→,则|QF|等于( )A.72B.52C.3D.2二、填空题19.(本小题满分6分)如图,F1,F2是椭圆C1:x24+y2=1与双曲线C2的公共焦点,A,B分别是C1,C2在第二、四象限的公共点.若四边形AF1BF2为矩形,则C2的离心率是__________.三、解答题20.(本小题满分12分)在等腰梯形ABCD中,E、F分别是CD、AB的中点,CD=2,AB=4,AD=BC=2.沿EF将梯形AFED折起,使得∠AFB=60°,如图.(1)若G为FB的中点,求证:AG⊥平面BCEF;(2)求二面角C-AB-F的正切值.21.(本小题满分13分)已知二次函数f(x)=x2-16x+q+3.(1)若函数f(x)在区间[-1,1]上存在零点,求实数q的取值范围;(2)是否存在常数t(t≥0),当x∈[t,10]时,f(x)的值域为区间D,且区间D的长度为12-t(视区间[a,b]的长度为b-a).22.(本小题满分13分)已知中心在坐标原点,焦点在x轴上的椭圆过点P(2,3),且它的离心率e=12.(1)求椭圆的标准方程;(2)与圆(x-1)2+y2=1相切的直线l:y=kx+t交椭圆于M,N两点,若椭圆上一点C满足OM→+ON→=λOC→,求实数λ的取值范围.参考答案第Ⅰ卷(共100分)一、选择题题号 1 2 3 4 5 6 7 8 9 10 11答案 C B B A D A A A B B D1.C 【解析】cos 2α=1-2sin2α=1-2×252=1725.故选C.2.B 【解析】由数列前几项可知an=2n-1,令an=2n-1=35得n=23.故选B.3.B4.A 【解析】由正弦定理可得sin C5.D 【解析】a+b=1,∴1a+4b=1a+4b(a+b)=5+ba+4ab≥9,当且仅当b=2a=23时取等号.故选D.6.A 【解析】根据题意,设该竹子自上而下各节的容积为等差数列{an},设其公差为d,且d>0,由题意可得:a1+a2+a3+a4=3,a7+a8+a9=4,则4a1+6d=3,3a1+21d=4,解可得a1=1322,d=766,则第6节的容积a6=a1+5d=7466=3733.故答案为A.7.A 【解析】由27a4+a7=0,得q=-3,故S4S2=1-q41-q2=1+q2=10.故选A.8.A 【解析】由an+1+an=(-1)n•n,得a2+a1=-1,a3+a4=-3,a5+a6=-5,…,a19+a20=-19.∴an的前20项的和为a1+a2+…+a19+a20=-1-3-…-19=-1+192×10=-100,故选A.9.B 【解析】由x,y满足约束条件x≥0,x+y-3≤0,x-2y≥0.作出可行域如图,由z=x+2y,得y=-12x+z2.要使z最大,则直线y=-12x+z2的截距最大,由图可知,当直线y=-12x+z2过点A时截距最大.联立x=2y,x+y=3解得A(2,1),∴z=x+2y的最大值为2+2×1=4.故答案为B.10.B 【解析】∵0∴x(3-3x)=3x(1-x)≤3•x+1-x22=34,当且仅当x=12时取等号.∴x(3-3x)取最大值34时x的值为12.故选B.11.D 【解析】由?n∈N*,都有Sn≥S10,∴a10≤0,a11≥0,∴a1+a19=2a10≤0,∴S19=19(a1+a19)2≤0,故选D.二、填空题12.2 01813.32 【解析】∵a=3,b=1,∠A=π3,∴由正弦定理可得:sin B=bsin Aa=1×323=12,∵b14.②③④⑤【解析】当c=0时,若a>b,则ac=bc,故①为假命题;若ac2>bc2,则c≠0,c2>0,故a>b,故②为真命题;若a ab且ab>b2,即a2>ab>b2,故③为真命题;若c>a>b>0,则cabc-b,故④为真命题;若a>b,1a>1b,即bab>aab,故a•b<0,则a>0,b<0,故⑤为真命题.故答案为②③④⑤.三、解答题15.【解析】(1)∵在△ABC中,0已知等式利用正弦定理化简得:2cos C(sin AcosB+sin Bcos A)=sin C,整理得:2cos Csin(A+B)=sin C,即2cos Csin(π-(A+B))=sin C,2cos Csin C=sin C,∴cos C=12,∴C=π3.4分(2)由余弦定理得7=a2+b2-2ab•12,∴(a+b)2-3ab=7,∵S=12absin C=34ab=332,∴ab=6,∴(a+b)2-18=7,∴a+b=5,∴△ABC的周长为5+7.8分16.【解析】(1)设甲、乙两种产品月产量分别为x,y件,约束条件是2x+y≤500,x+2y≤400,x≥0,y≥0,由约束条件画出可行域,如图所示的阴影部分.5分(2)设每月收入为z千元,目标函数是z=3x+2y,由z=3x+2y可得y=-32x+12z,截距最大时z最大.结合图象可知,直线z=3x+2y经过A处取得最大值由2x+y=500,x+2y=400可得A(200,100),此时z=800.故安排生产甲、乙两种产品的月产量分别为200,100件可使月收入最大,最大为80万元.10分17.【解析】(1)设等差数列{an}的公差为d,∵a3+a8=20,且a5是a2与a14的等比中项,∴2a1+9d=20,(a1+4d)2=(a1+d)(a1+13d),解得a1=1,d=2,∴an=1+2(n-1)=2n-1.6分(2)bn=1(2n-1)(2n+1)=1212n-1-12n+1,∴Sn=b1+b2+b3+…+bn=121-13+13-15+…+12n-1-12n+1=121-12n+1=n2n+1.12分第Ⅱ卷(共50分)一、选择题18.C 【解析】∵FP→=4FQ→,∴|FP→|=4|FQ→|,∴|PQ||PF|=34.如图,过Q作QQ′⊥l,垂足为Q′,设l与x轴的交点为A,则|AF|=4,∴|QQ′||AF|=|PQ||PF|=34,∴|QQ′|=3,根据抛物线定义可知|QF|=|QQ′|=3,故选C.二、填空题19.62 【解析】|F1F2|=23.设双曲线的方程为x2a2-y2b2=1.∵|AF2|+|AF1|=4,|AF2|-|AF1|=2a,∴|AF2|=2+a,|AF1|=2-a.在Rt△F1AF2中,∠F1AF2=90°,∴|AF1|2+|AF2|2=|F1F2|2,即(2-a)2+(2+a)2=(23)2,∴a=2,∴e=ca=32=62.三、解答题20.【解析】(1)因为AF=BF,∠AFB=60°,△AFB为等边三角形.又G为FB的中点,所以AG⊥FB.2分在等腰梯形ABCD中,因为E、F分别是CD、AB的中点,所以EF⊥AB.于是EF⊥AF,EF⊥BF,则EF⊥平面ABF,所以AG⊥EF.又EF与FB交于一点F,所以AG⊥平面BCEF.5分(2)连接CG,因为在等腰梯形ABCD中,CD=2,AB=4,E、F分别是CD、AB中点,G为FB的中点,所以EC=FG=BG=1,从而CG∥EF.因为EF⊥平面ABF,所以CG⊥平面ABF.过点G作GH⊥AB于H,连结CH,据三垂线定理有CH⊥AB,所以∠CHG为二面角C-AB-F的平面角.8分因为Rt△BHG中,BG=1,∠GBH=60°,所以GH=32.在Rt△CGB中,CG⊥BG,BG=1,BC=2,所以CG=1.在Rt△CGH中,tan∠CHG=233,故二面角C-AB-F的正切值为233.12分21.【解析】(1)∵函数f(x)=x2-16x+q+3的对称轴是x=8,∴f(x)在区间[-1,1]上是减函数.∵函数在区间[-1,1]上存在零点,则必有f(1)≤0,f(-1)≥0,即1-16+q+3≤0,1+16+q+3≥0,∴-20≤q≤12.6分(2)∵0≤t<10,f(x)在区间[0,8]上是减函数,在区间[8,10]上是增函数,且对称轴是x=8.①当0≤t≤6时,在区间[t,10]上,f(t)最大,f(8)最小,∴f(t)-f(8)=12-t,即t2-15t+52=0,解得t=15±172,∴t=15-172;9分②当6∴f(10)-f(8)=12-t,解得t=8;11分③当8∴f(10)-f(t)=12-t,即t2-17t+72=0,解得t=8,9,∴t=9.综上可知,存在常数t=15-172,8,9满足条件.13分22.【解析】(1)设椭圆的标准方程为x2a2+y2b2=1(a>b>0),由已知得:4a2+3b2=1,ca=12,c2=a2-b2,解得a2=8,b2=6,所以椭圆的标准方程为x28+y26=1.4分(2)因为直线l:y=kx+t与圆(x-1)2+y2=1相切,所以|t+k|1+k2=1?2k=1-t2t(t≠0),6分把y=kx+t代入x28+y26=1并整理得:(3+4k2)x2+8ktx+4t2-24=0,设M(x1,y1),N(x2,y2),则有x1+x2=-8kt3+4k2,y1+y2=kx1+t+kx2+t=k(x1+x2)+2t=6t3+4k2, 8分因为λOC→=(x1+x2,y1+y2),所以C-8kt(3+4k2)λ,6t(3+4k2)λ,又因为点C在椭圆上,所以,8k2t2(3+4k2)2λ2+6t2(3+4k2)2λ2=1?λ2=2t23+4k2=21t22+ 1t2+1,11分因为t2>0,所以1t22+1t2+1>1,所以0<λ2<2,所以λ的取值范围为(-2,0)∪(0,2).13分。
高二数学选修1-2期中考试(文科)复习题

高二数学选修1-2期中考试(文科)复习题第Ⅰ卷(共70分)一、选择题(每题5分,共50分)1、在回归直线方程表示回归系数中b bx a y,ˆ+=: A .当0x =时,y 的平均值 B . 当x 变动一个单位时,y 的实际变动量C .当y 变动一个单位时,x 的平均变动量D . 当x 变动一个单位时,y 的平均变动量 2、复数534+i的共轭复数是:A .34-iB .3545+i C .34+i D .3545-i3、为研究变量x 和y 的线性相关性,甲、乙二人分别作了研究,利用线性回归方法得到回归直线方程1l 和2l ,两人计算知x 相同,y 也相同,下列正确的是:A . 1l 与2l 重合B . 1l 与2l 一定平行C .1l 与2l 相交于点),(y xD . 无法判断1l 和2l 是否相交 4、.若z C ∈且221z i +-=,则12z i --的最小值是: A 2 B 3C 4D 55、下列说法正确的个数是①若()()213x i y y i -+=--,其中,,I x R y C R I ∈∈为复数集。
则必有()2113x yy -=⎧⎪⎨=--⎪⎩②21i i +>+ ③虚轴上的点表示的数都是纯虚数④若一个数是实数,则其虚部不存在A .0B . 1C .2D .36.在回归分析中,代表了数据点和它在回归直线上相应位置的差异的是:A .总偏差平方和B .残差平方和C .回归平方和D .相关指数R 27、复数()1cos sin 23z i θθπθπ=-+<<的模为 A .2cos 2θB .2cos2θ- C .2sin2θD .2sin2θ-8、当213m <<时,复数()()32m i i +-+在复平面内对应的点位于:A.第一象限B.第二象限C.第三象限D.第四象限9、在如右图的程序图中,输出结果是A. 5B. 10C. 20 D .1510、把正整数按下图所示的规律排序,则从2003到2005 的箭头方向依次为二、填空题(每题5分,共20分)11、右图是选修1-2中《推理与证明》一章 的知识结构图, 请把“①合情推理”, “② 类比推理”,“③综合法”, “④反证法”填入适当的方框内.(填序号即可)12、已知函数221)(xxx f +=,那么)4()31()3()21()2()1(f f f f f f +++++)41(f +=______________13、某同学在证明命题“37-<26-”时作了如下分析,请你补充完整.要证明37-<26-,只需证明________________,只需证明_________________,展开得18291429+<+, 即1814<, 只需证明1814<, 因为1814<成立, 所以原不等式:37-<26-成立.14、试求12345678,,,,,,,i i i i i i i i 的值,由此推测4ni=_____, 41n i +=______,42n i+=______, 43n i+=______, 12342000......i i i i i=___________输出s否是s s a =⨯a=5,s=14?a ≥a=a-1推理与证明推理 证明演绎推理 直接证明 间接证明分析法归纳推理三、解答题(共80分)15、(12分)若2,0,0,,>+>>∈y x y x R y x 且。
高二下学期期中联考数学(文科)试题级答案(Word版)

高二(下)年级期中考试文科数学试题一.选择题:(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.命题“”的否定是()A.,假命题B.,真命题C.,假命题D.,真命题2.已知为虚数单位,为实数,复数在复平面内对应的点为,则“”是“点在第四象限”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.函数的定义域为开区间导函数在内的图象如图所示,则函数在内的极大值点有()A.1个B.2个C.3个D.4个4.已知,若的必要条件是,则之间的关系是()A.B.C.D.5.若,且函数在处有极值,则的最大值等于()A.2B.3C.6D.96.已知集合,,则等于()A.B.C.D.7.已知命题,命题恒成立.若为假命题,则实数的取值范围是()A.B.C.D.8.设函数的图象关于直线对称,则的值为()A.-1B.2C.1D.39.若函数在区间上不是单调函数,则实数的取值范围是()A.B.C.D.不存在这样的实数10已知为抛物线上一个动点,为圆上一个动点,那么点到点的距离与点到抛物线的准线距离之和的最小值是()A.5B.8 C.17-1 D.5+2二、填空题(本大题共7小题,每小题5分,共35分.把答案填在答题卡相应位置上.) 11.已知复数(i为虚数单位),则=_____.12.在实数范围内,不等式的解集为________.13.若不等式对恒成立,则实数的取值范围是______. 14.已知,且,则的最小值是________.15.若双曲线的离心率是2,则的最小值为________.16.若双曲线的两个焦点为;为双曲线上一点,且,则该双曲线离心率的取值范围是________.17.已知函数在上是减函数,在上是增函数,函数在上有三个零点,且是其中一个零点.(1)的值为________;(2)的取值范围是________.三、解答题(本大题共5小题,共65分.解答应写出文字说明,证明过程或演算步骤.)18.(本小题满分12分)已知命题方程有两个不等的负实根,命题函数的定义域为,若为真,求实数的取值范围。
河南名校联盟2021-2022学年高二下学期期中考试文科数学试题(解析版)

A. 都小于 1 4
C. 都大于 1 4
【答案】B
B. 至少有一个不小于 1 4
D. 至少有一个不大于 1 4
【解析】
【分析】先求出 x y z 3 ,通过反证法证得 x, y, z 都小于 1 不成立,即可得出结果.
4
4
【详解】
x
y
z
a2
b
b2
c
c2
a
a
1 2
2
b
1 2
2
质:过圆
C 上一点 M (x0,
y0 ) 的圆的切线方程是 x0x
y0 y
r2 .类比上述结论,过椭圆 E : x2 12
y2 4
1 的点
P 3, 1 的切线方程为______.
【答案】 x y 4 0
【解析】
【分析】通过类比可得类似结论:过椭圆 E :
x2 a2
y2 b2
1上一点 P(x0,
【详解】∵ f x 2 a ln x ax ,
x
∴
f
x
2 x2
a x
a
,
∵曲线 y f x 在 x 1处的切线与直线 y 2 平行,
∴ f 1 0 2 a a 0 a 1.
故选:A﹒
5. 已知 a,b, c R ,且 x a2 b , y b2 c , z c2 a ,则 x, y, z 三个数( )
由不等式得性质,D 正确. 故选:D.
2. 已知 k R ,则“ 2 k 3 ”是“方程 x2 y2 1表示双曲线”的( ) 6k k2
A. 充分不必要条件
B. 必要不充分条件
C. 充要条件
D. 既不充分也不必要条件
【答案】A
2023—2024学年陕西省咸阳市高二下学期期中数学(文科)试题(含答案)

2023-2024学年陕西省咸阳市高二下册期中数学(文)试题一、单选题1.复数23i z =-的虚部为()A .3B .3-C .3iD .i3-【正确答案】B【分析】直接求出虚部即可.【详解】虚部为3-.故选:B.2.为了调查中学生近视情况,某校160名男生中有90名近视,150名女生中有75名近视,在检验这些中学生眼睛近视是否与性别有关时用什么方法最有说服力()A .平均数B .方差C .回归分析D .独立性检验【正确答案】D【分析】近视与性别时两类变量,根据分类变量的研究方法即可确定答案.【详解】解:近视与性别时两类变量,在检验两个随机事件是否相关时,最有说服力的方法时独立性检验.故选:D.3.对四组数据进行统计,获得如图所示的散点图,关于其相关系数的比较,正确的是()A .14320r r r r <<<<B .41320r r r r <<<<C .42310r r r r <<<<D .24130r r r r <<<<【正确答案】A【分析】根据题中给出的散点图,先判断是正相关还是负相关,然后根据散点图的集中程度分析相关系数的大小【详解】解:由图可知,图2和图3是正相关,图1和图4是负相关,囷1和图2的点相对更加集中,所以相关性更强,所以1r 接近于1-,2r 接近1,所以14320r r r r <<<<,故选:A4.下列的三句话,若按照演绎推理的“三段论”模式,排列顺序正确的应是()①()cos y x x R =∈是周期函数;②()cos y x x R =∈是三角函数;③三角函数是周期函数;A .①②③B .②①③C .②③①D .③②①【正确答案】D【分析】本题可根据“三段论”的相关性质得出结果.【详解】由“三段论”易知:三角函数是周期函数,()cos y x x R =∈是三角函数,()cos y x x R =∈是周期函数,故选:D.5.用反证法证明命题“a ,b ,R c ∈,若0a b c ++>,则a ,b ,c 中至少有一个正数”时,假设应为()A .a ,b ,c 均为负数B .a ,b ,c 中至多一个是正数C .a ,b ,c 均为正数D .a ,b ,c 中没有正数【正确答案】D【分析】由反证法的概念判断即可.【详解】由题,“至少有一个”相对的情况就是“一个都没有”,故应假设a ,b ,c 中没有正数,故选:D6.已知x ,y 的取值如下表所示:x234y546如果y 与x 呈线性相关,且线性回归方程为72y bx =+,则b 等于()A .12-B .12C .110-D .110【正确答案】B【分析】求出x 、y 的值,将点(),x y 的坐标代入回归直线方程,即可求得实数b 的值.【详解】由表格中的数据可得23433x ++==,54653y ++==,将点(),x y 的坐标代入回归直线方程得7352b +=,解得12b =.故选:B.7.对标有不同编号的6件正品和4件次品的产品进行检测,不放回地依次摸出2件.在第一次摸到正品的条件下,第二次也摸到正品的概率是()A .35B .59C .15D .110【正确答案】B【分析】根据给定条件,以第一次摸到正品的事件为样本空间,利用古典概率公式计算作答.【详解】用A 表示事件“第一次摸到正品”,B 表示“第二次摸到正品”,在事件A 发生的条件下,事件B 发生的概率,相当于以A 为样本空间,事件B 就是积事件AB ,显然()9n A =,()5n AB =,所以在第一次摸到正品的条件下,第二次也摸到正品的概率是()5(|)()9n AB P B A n A ==.故选:B8.设,R a b ∈,“复数i a b +是纯虚数”是“0a =”的()A .充分而不必要条件;B .必要不充分条件;C .充分必要条件;D .既不充分也不必要条件.【正确答案】A【分析】根据纯虚数的定义,结合充分性、必要性的定义进行求解即可.【详解】当i a b +是纯虚数时,一定有0a =,但是当0a =时,只有当0b ≠时,i a b +才能是纯虚数,所以“复数i a b +是纯虚数”是“0a =”的充分而不必要条件,故选:A9.已知复数1z ,2z 在复平面内对应的点分别为()1,2A ,()1,3B -,则复数12z z 在复平面内对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限【正确答案】D【分析】由123,12i 1i =+=-+z z ,代入复数12z z ,利用复数的除法运算和几何意义可得答案.【详解】因为复数1z ,2z 在复平面内对应的点分别为()1,2A ,()1,3B -,所以123,12i 1i =+=-+z z ,则复数()()()()1212i 13i 12ii 3111213i 1i 23i +--+-+-+-=-==-z z ,在复平面内对应的点1122,⎛⎫- ⎪⎝⎭位于第四象限.故选:D.10.若实数,a b满足12a b+=ab 的最小值为AB .2C.D .4【正确答案】C【详解】121200a b ab a b a b +=∴=+≥=∴≥ >,>,(当且仅当2b a =时取等号),所以ab的最小值为 C.基本不等式【名师点睛】基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,因此可以用在一些不等式的证明中,还可以用于求代数式的最值或取值范围.如果条件等式中,同时含有两个变量的和与积的形式,就可以直接利用基本不等式对两个正数的和与积进行转化,然后通过解不等式进行求解.11.如图所示的是某小朋友在用火柴拼图时呈现的图形,其中第1个图形用了3根火柴,第2个图形用了9根火柴,第3个图形用了18根火柴, ,按此规律,则第2022个图形用的火柴根数为()A .20192022⨯B .20192023⨯C .30332021⨯D .30332023⨯【正确答案】D【分析】根据已知条件,进行归纳推理即可求解.【详解】由图可知第1个图形用了31(11)32⨯⨯+=根火柴第2个图形用了32(21)92⨯⨯+=根火柴,第3个图形用了33(31)182⨯⨯+=根火柴,……归纳得,第n 个图形用了3(1)3(123)2n n n +++++= 根火柴,当2022n =时,3(1)303320232n n +=⨯.故选:D.12.学校开设了多种体有类的校本选修课程,以更好的满足学生加强体有锻炼的需要.该校学生小明选择确定后,有三位同学根据小明的兴趣爱好,对他选择的体育类的校本课程进行猜测.甲说“小明选的不是游泳,选的是武术”,乙说“小明选的不是武术,选的是体操”,丙说“小明选的不是武术,也不是排球”,已知这三人中有两个人说的全对,有一个人只说对了一半,则由此推断小明选择的体育类的校本课程是()A .游泳B .武术C .体操D .排球【正确答案】C【分析】根据题意,分别分析甲乙说的全对,甲丙全对,乙丙全对三种情况,分析即可得答案.【详解】若甲说的全对,则小明选的是武术,若乙说的全对,则小明选的是体操,矛盾,若甲说的全对,则小明选的是武术,若丙说的全对,则小明选的不是武术,矛盾,若乙说的全对,则小明选的是体操,若丙说的全对,不是武术也不是排球,满足题意,此时甲说的不是游泳正确,是武术错误,所以甲说的半对,满足题意,所以小明选择的是体操,故选:C 二、填空题13.若复数21iz =+,z 是其共轭复数,则z =_______.【正确答案】1i +/1i +【分析】根据复数的四则运算法则化简计算z ,再由共轭复数的概念写出z .【详解】化简()()()21i 222i 1i 1i 1i 1i 2z --====-++-,所以1i z =+.故1i+14.在等差数列{}n a 中,若50a =,则有1290a a a +++= 成立.类比上述性质,在等比数列{}n b 中,若91b =,则存在的等式为______.【正确答案】12171b b b = 【分析】由29117n n b b b +-=⋅,利用类比推理即可得出.【详解】利用类比推理,借助等比数列的性质可知29117n n b b b +-=⋅,即291172168101b b b b b b b ===== ,可知存在的等式为12171b b b = .故12171b b b = 15.执行下面的程序框图,若输入的0k =,0a =,则输出的k 为_______.【正确答案】4【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出k 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,即可求得答案.【详解】输入0k =,0a =,则第一次循环:1a =,1k =,不符合判断框条件,继续循环;第二次循环:3a =,2k =,不符合判断框条件,继续循环;第三次循环:7a =,3k =,不符合判断框条件,继续循环;第四次循环:15a =,4k =,此时满足判断框条件10a >,退出循环,输出4k =.故416.在复平面内,平行四边形ABCD 的三个顶点A 、B 、C 对应的复数分别是1+3i,-i,2+i,则点D 对应的复数为_________【正确答案】3+5i【详解】试题分析:,,A B C 三点对应的复数分别是13,,2i i i +-+,(1,3),(0,1),(2,1)A B C ∴-,设(,)D x y ,则:(1,4),(2,1)AB DC x y =--=--,在平行四边形ABCD 中,有AB DC =,即(1,4)(2,1)x y --=--,213{{145x x y y -=-=∴⇒-=-=,即(3,5)D 对应的复数为.35i +故答案应填:35i +.复的几何意义.三、解答题17.计算:(1)(1)(1)(1)i i i +-+-+;(2)2020121()341i i i i+++--【正确答案】(1)1i +(2)4255i +【分析】(1)根据复数的运算法则可得结果;(2)根据复数的除法运算和乘法运算可得结果.【详解】(1)原式2111111i i i i =--+=+-+=+.(2)原式()()()()()()()2020212341343411i i i i i i i ⎛⎫+++ ⎪=+ ⎪-+-+⎝⎭()505451025ii -+=+12155i =-++4255i =+.18.当实数m 取何值时,在复平面内复数()()222334i z m m m m =--+--对应的点满足下列条件:(1)在实轴上;(2)z 是纯虚数.【正确答案】(1)1m =-或4m =(2)3m =【分析】(1)由虚部为0得出m 的值;(2)由纯虚数的定义得出m 的值.【详解】(1)复数z 在复平面内的坐标为22(23,34)m m m m ----因为复数z 对应的点在实轴上,所以2340m m --=,解得1m =-或4m =即1m =-或4m =(2)因为z 是纯虚数,所以2230m m --=且2340m m --≠,解得1m =-(舍)或3m =故3m =19.某机械厂制造一种汽车零件,已知甲机床的正品率是0.9,乙机床的次品率是0.2,现从它们制造的产品中各任意抽取一件.(1)求两件产品都是正品的概率;(2)求恰好有一件是正品的概率;(3)求至少有一件是正品的概率.【正确答案】(1)0.72(2)0.26(3)0.98【分析】(1)根据相互独立事件概率计算公式,计算出所求概率.(2)根据相互独立事件、互斥事件概率计算公式,计算出所求概率.(3)由(1)(2)求得至少有一件是正品的概率.【详解】(1)两件产品都是正品的概率为()0.910.20.72⨯-=.(2)恰好有一件是正品的概率为()()0.90.210.910.20.26⨯+-⨯-=.(3)由(1)(2)得至少有一件是正品的概率为0.720.260.98+=20.证明:(1)>(2)如果0,0,a b >>则ln ln ln22a b a b++≥.【正确答案】(1)证明见解析(2)证明见解析【分析】(1)由不等式的性质结合分析法证明即可;(2)由基本不等式结合ln y x =的单调性证明即可.【详解】(1>只需证22>即证1414+>+即证即证126>因为126>(2)当0,0a b >>时,a b +≥2a b+≥a b =时,等号成立ln y x = 在(0,)+∞上单调递增ln2a b+∴≥即11ln ln (ln ln )222a b ab a b +≥=+ln ln ln22a b a b ++∴≥21.甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别抽查了两台机床生产的产品,产品的质量情况统计如下表:一级品二级品合计甲机床30乙机床40合计90200(1)请将上述22⨯列联表补充完整;(2)能否有99.9%的把握认为甲机床的产品质量与乙机床的产品质量有差异?附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.()20P K k ≥0.100.050.0100.0050.001k 2.706 3.841 6.6357.87910.828【正确答案】(1)列联表见解析(2)有99.9%的把握认为甲机床的产品质量与乙机床的产品质量有差异【分析】(1)直接计算补充列联表即可;(2)先计算2K ,再和10.828比较作出判断即可.【详解】(1)补充完整的22⨯列联表如下:一级品二级品合计甲机床3070100乙机床6040100合计90110200(2)∵()222003040706018.1810.82890110100100K ⨯⨯-⨯=≈>⨯⨯⨯,∴有99.9%的把握认为甲机床的产品质量与乙机床的产品质量有差异.22.“俯卧撑”是日常体能训练的一项基本训练,坚持做可以锻炼上肢、腰部及腹部的肌肉.某同学对其“俯卧撑”情况作了记录,得到如表数据.分析发现他能完成“俯卧撑”的个数y (个)与坚持的时间x (周)线性相关.x1245y5152535(1)求y 关于x 的线性回归方程y b x a ∧∧∧=+;(2)预测该同学坚持10周后能完成的“俯卧撑”个数.参考公式:121()()()niii nii x x y y b x x ∧==--=-∑∑,a y b x ∧∧=-,其中x ,y 表示样本平均值.【正确答案】(1)71y x ∧=-;(2)69个.【分析】(1)根据数据求得均值,代入公式求得回归方程;(2)令10x =代入预测出函数值.【详解】(1)由所给数据计算得1(1245)34x =⨯+++=,1(5152535)204y =⨯+++=,44211()()70,()10,i i i i i x x yy x x ==--=-=∑∑所以,41421()()70710()i i i i i x x y y b x x ∧==--===-∑∑1a yb x ∧∧=-=-故y 关于x 的线性回归方程是71y x ∧=-(2)令10x =,得710169,y ∧=⨯-=故预测该同学坚持10周后能完成69个“俯卧撑”.23.已知函数()ln 3f x a x x =+-.(1)若1a =,求曲线()y f x =在点()()1,1f 处的切线方程;(2)若()f x 的最小值为2-,求a 的值.【正确答案】(1)240x y --=(2)1a =-【分析】(1)求出函数的导数,根据导数的几何意义即可求得答案.(2)利用函数的导数判断函数的单调性,求得函数的最小值并令其等于-2,得到()1ln 10a a---=,构造函数()1ln 1x g x x =+-,利用导数确定a 的值.【详解】(1)∵()ln 3f x a x x =+-,∴()1a x a f x x x +'=+=,∴当1a =时,()12f =-,()12f '=,∴()221y x +=-,∴所求切线方程为240x y --=.(2)由(1)知,()x a f x x+'=,0x >.当0a ≥时,()0f x ¢>,()f x 在()0,∞+上单调递增,此时无最小值;当a<0时,令()0f x '=,得x a =-,当()0,x a ∈-时,()0f x '<;当(),x a ∈-+∞时,()0f x ¢>,∴()f x 在()0,a -上单调递减,在(),a -+∞上单调递增,∴()f x 的最小值为()()ln 32f a a a a -=---=-,则()1ln 10a a---=.令()1ln 1x g x x =+-,则()21x g x x -'=,∴当()0,1x ∈时,()0g x '<;当()1,x ∈+∞时,()0g x '>.∴()g x 在()0,1上单调递减,在()1,+∞上单调递增,∵()10g =,∴()0g x =有一个根1x =,∴1a -=,即1a =-.。
2021-2022学年河南省新乡市高二(上)期中数学试卷(文科)(附详解)

2021-2022学年河南省新乡市高二(上)期中数学试卷(文科)一、单选题(本大题共12小题,共60.0分) 1. 数列23,45,69,817,1033,⋯的一个通项公式为( )A. a n =2n2n +1B. a n =2n+22n +1C. a n =n+12n+1−1D. a n =2n+22n+1+22. 在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,已知b =4,A =π6,sinB =23,则a =( )A. 3B. 4C. 5D. 63. 已知M =a 2+a ,N =3a −1,则( )A. M <NB. M >NC. M ≤ND. M ≥N4. 设数列{a n }为等比数列,且a 2a 18=6a 7,则必有( )A. a 7=√6B. a 7=6C. a 12=6D. a 13=65. 在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,已知sin2A <0,则△ABC 的形状是( )A. 钝角三角形B. 直角三角形C. 锐角三角形D. 不确定6. 若各项均不为零的等差数列{a n }满足a 2=3a 1,则a5a 3=( )A. 95B. 53C. 75D. 737. 若△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,则下列选项中能使△ABC 有两解的是( )A. a =8,b =4,c =3B. A =40°,B =80°,c =6C. a =10,b =6,sinA =14D. b =8,c =4,C =30°8. 设数列{a n +n}是等比数列,且a 1=3,a 2=6,则a 8=( )A. 246B. 504C. 512D. 10149. 已知a =√c +1+√c +4,b =√c +2+√c +3,则( )A. a >b >1B. b >a >1C. a >1>bD. b >1>a10. 已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且bcosC =4sinA −2√3cosB ,c =2√3,a =4,则B =( )A. π6B. π4C. π3D. π211.2021年9月10日,小王开始读小学一年级,小王父母决定给他开一张银行卡,每月的16号存钱至该银行卡(假设当天存钱当天到账).用于小王今后的教育开支.2021年9月16日小王父母往卡上存入500元.以后每月存的钱数比上个月多100元,则他这张银行卡账上存钱总额(不含银行利息)首次达到100000元的时间为()A. 2024年11月16日B. 2024年12月16日C. 2025年1月16日D. 2025年2月16日12.已知正实数x,y满足2xy−2x−y=0.则12x−1+2y−1的最小值为()A. 2B. 2√2C. 4D. 4√2二、单空题(本大题共4小题,共20.0分)13.已知x,y满足约束条件{x−y≥0x+y≤1y+1≥0,则z=2x−y的最小值为______.14.已知a>1,则4a+9a−1的最小值是______.15.在等差数列{a n}中.已知a1+a2+a3=16,a14+a15+a16=53,则{a n}的前16项和为______.16.雾灵山,位于河北承德市兴隆县内.雾灵山历史上曾称伏凌山、孟广硎山、五龙山,明代始称雾灵山.雾灵山主峰的海拔超过1000米,为了测量主峰的海拔,甲和乙分别在海拔都为1000米的A,B两点观测主峰的最高点P(PO与海拔1000米所在平面垂直,O为垂足,且A,B都在O的正东方向),从A点和B点观测到P点的仰角分别为60°,50°,且AB=286米,则雾灵山主峰的海拔约为______米.(结果精确到整数,取√3=1.732,tan50°=1.2,286×√3×1.2=594.4)三、解答题(本大题共6小题,共70.0分)17.△ABC的内角A,B,C的对边分别为a,b,c.已知(b−c)(sinB+sinC)=sinA(a−2csinB).(1)求B;(2)若b=2,A=2B,求△ABC的周长.18.等差数列{a n}的前n项和为S n,已知a3+a5=26,S5=45.(1)求{a n}的通项公式;(2)若S n>240,求n的最小值.19.已知函数f(x)=x2+ax−3.(1)当a=2时,求不等式f(x)<0的解集;(2)若关于x的不等式f(x)<3的解集为(−3,2),求关于x的不等式ax2+(a+b)x+b>0的解集.20.已知某种大型气垫船的最大航速是68海里/小时,该船每小时使用的燃料费用和船速的平方成正比,若船速为40海里/小时,则船每小时的燃料费用为1800元,其余费用(不论船速为多少)都是每小时800元,甲、乙两地相距80海里,船从甲地匀速航行到乙地.记该船从甲地到乙地所需的总费用为y(元),船速为x(海里/小时).(1)试把y表示为x的函数;(2)当船速(海里/小时)为多少时,船从甲地到乙地所需的总费用最少?最少费用为多少元?21.如图,在△ABC中,∠ACB=π2,BC=√2,延长AB至D,使得∠ADC=π6.(1)若BD=2,求△ABC的面积;(2)求△BCD面积的取值范围.22.在数列{a n}中,a1=1,a n−a n−1=2n−1−1(n≥2).(1)求{a n}的通项公式;(2)设b n=a n+n−1a n a n+1,记数列{b n}的前n项和为S n,证明:S n<1.答案和解析1.【答案】A【解析】解:分子为偶数,即为2n ,分母为2n +1, 则数列23,45,69,817,1033,⋯的一个通项公式为a n =2n2n +1. 故选:A .由题意,根据分子,分母的变化规律,求出该数列的通项公式. 本题主要考查数列的通项公式的求法,属于基础题.2.【答案】A【解析】解:在△ABC 中,由正弦定理有a sinA =bsinB , 所asin π6=423,解得a =3.故选:A .由正弦定理可求解.本题考查正弦定理,属基础题.3.【答案】D【解析】解:∵M =a 2+a ,N =3a −1, ∴M −N =a 2+a −3a +1=(a −1)2≥0, 故选:D .作差即可比较大小关系.本题考查了作差法、不等式的性质,考查了推理能力与计算能力,属于基础题.4.【答案】D【解析】解:因为数列{a n }为等比数列,且a 2a 18=6a 7,所以a 12q 18=6a 1q 6,因为q ≠0,所以a1q12=6,即a13=6.故选:D.由已知结合等比数列的通项公式即可直接求解.本题主要考查了等比数列的通项公式的应用,属于基础题.5.【答案】A【解析】解:在△ABC,∵A∈(0,π),∴sinA>0,又sin2A=2sinAcosA<0,∴cosA<0,∴A为钝角,∴△ABC为钝角三角形,故选:A.在△ABC,由sin2A=2sinAcosA<0,可得A为钝角,从而得到答案.本题考查三角形的形状判断,考查二倍角的正弦的应用,属于基础题.6.【答案】A【解析】解:设等差数列{a n}的公差为d,∵a2=3a1,∴a1+d=3a1≠0,化为:d=2a1,∴a5a3=a1+4da1+2d=9d15a1=95,故选:A.利用等差数列的通项公式即可得出.本题考查了等差数列的通项公式,考查了推理能力与计算能力,属于基础题.7.【答案】C【解析】解:对于A,∵a=8,b=4,c=3,∴△ABC有一解;对于B,A=40°,B=80°,则C=60°,又c=6,故△ABC有一解;对于C,△ABC中,a=10>6=b,由大边对大角,可知,B<A,且B为锐角,∵sinA=1,∴A为锐角或钝角,因此△ABC有两解;4=1⇒B=90°,对于D,△ABC中,b=8>4=c,C=30°,由正弦定理可得sinB=bsinCc可知,△ABC有一解;故选:C.由已知结合正弦定理及三角形中的结论:“大边对大角”分别检验各选项即可判断.本题主要考查了正弦定理及三角形中的“大边对大角”结论在三角形中解的个数的应用,属于中档题.8.【答案】B【解析】解:因为数列{a n+n}是等比数列,且1+a1=4,2+a2=8,故公比q=2,则8+a8=4⋅27=512,所以a8=504.故选:B.由已知结合等比数列的性质先求出公比,然后结合通项公式可求.本题主要考查了等比数列的通项公式,属于基础题.9.【答案】B【解析】解:∵c+1≥0,∴c+4≥3,c+3≥2,∴a=√ c+1+√c+4>1,b=√c+2+√c+3>1,∵a2=2c+5+2√ c2+5c+4,b2=2c+5+2√c2+5c+6,又c2+5c+4−(c2+5c+6)=−2<0,∴√ c2+5c+4<√c2+5c+6,∴a<b,∴b>a>1.故选:B.利用作差法和平方法即可求出.本题考查了不等式的大小比较,考查了转化与运算能力,属于基础题.10.【答案】A【解析】解:由bcosC=4sinA−2√3cosB,c=2,a=4,得bcosC=asinA−ccosB,由正弦定理和两角和公式,可得sinBcosC=sinAsinA−sinCcosB,所以sinBcosC+sinCcosB=sinAsinA,所以sin(B+C)=sinAsinA,所以sinA=sinAsinA,又sinA≠0,所以sinA=1,所以A=π2,所以b=√a2−c2=2,所以sinB=24=12,又0<B<π2,所以B=π6.故选:A.由bcosC=4sinA−2√3cosB,c=2,a=4,得bcosC=asinA−ccosB,再运正弦定理边化角可求得A=π2,从而可求B.本题考查正弦定理边化角各三角恒等变换,属中档题.11.【答案】C【解析】解:由题可知,小王父母从2021年9月开始,每月所存钱数依次成首项为500,公差为100的等差数列,其前n项和为500n+100n(n−1)2=50n2+450n,令50n2+450n≥100000,即n2+9n≥2000,∵402+9×40<2000,412+9×41>2000,∴第41个月的16号存完钱后,他这张银行卡账上存钱总额(不含银行利息)首次达到100000元,故2025年1月16日他这张银行卡账上存钱总额(不含银行利息)首次达到100000元.故选:C.根据已知条件,结合等差数列的前n项和公式,即可求解.本题主要考查函数的实际应用,掌握等差数列的前n 项和公式是解本题的关键,属于基础题.12.【答案】B【解析】解:∵2xy −2x −y =0, ∴12x−1+2y−1=4x+y−32xy−2x−y+1=4x +y −3,由2xy −2x −y =0,可得2−2y −1x =0,即1x +2y =2, ∴4x +y =12(4x +y)(1x+2y)=12(6+yx+8x y)≥12(6+2√8)=3+2√2,当且仅当y x=8x y时,等号成立, ∴最小值为2√2. 故选:B .首先通分化简,再利用巧用“1”的方法求解基本不等式即可. 本题主要考查了基本不等式的运用,属于基础题.13.【答案】−1【解析】解:由约束条件件{x −y ≥0x +y ≤1y +1≥0,作出可行域如图,联立{y =−1x +y =0,解得A(−1,−1),化目标函数z =2x −y 为y =2x −z ,由图可知,当直线y =2x −z 过A 时,直线在y 轴上的截距最大, z 有最小值为−1.故答案为:−1.由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.本题考查线性规划,考查数形结合的解题思想方法,是中档题.14.【答案】16【解析】解:∵a>1,∴4a+9a−1=4a−4+9a−1+4≥2√4×9+4=16,当且仅当4a−4=9a−1时,等号成立,∴最小值为16,故答案为;16.把原式构造成4a−4+9a−1+4,在运用基本不等式即可求解.本题主要考查了基本不等式的运用,属于基础题.15.【答案】184【解析】解:因为等差数列{a n}中,a1+a2+a3=16,a14+a15+a16=53,所以a1+a2+a3+a14+a15+a16=3(a1+a16)=69,所以a1+a16=23,则{a n}的前16项和为S=8(a1+a16)=184.故答案为:184.由已知结合等差数列的性质可求a1+a16,然后结合等差数列的求和公式可求.本题主要考查了等差数列的性质及求和公式的应用,属于基础题.16.【答案】2117【解析】【分析】先根据题意作出图形如图所示,设PO=x,表示出OA,OB,根据题意得√3x−1.2x=√3×1.2×286=594.4,求解即可.本题考查解三角形,属基础题. 【解答】解:根据题意作出图形如图所示,PO ⊥OB ,∠PAO =60°,∠PBO =50°, 设PO =x ,在△POA 中,可得OA =xtan∠PAO =xtan60∘=√3, △POB 中,可得OB =xtan∠PBO =xtan50∘=x 1.2,所以x1.2√3=286,所以√3x −1.2x =√3×1.2×286=594.4, 所以1.732x −1.2x =594.4,所以x ≈1117,所以雾灵山主峰的海拔约为1117+1000=2117. 故答案为:2117.17.【答案】解:(1)因为(b −c)(sinB +sinC)=sinA(a −2csinB),所以由正弦定理可得(b −c)(b +c)=a(a −2csinB),整理可得a 2+c 2−b 2=2acsinB , 又由余弦定理可得a 2+c 2−b 2=2accosB , 所以sinB =cosB ,可得tanB =1, 又B ∈(0,π), 所以B =π4.(2)因为B =π4,b =2,A =2B =π2,C =π−A −B =π4, 所以c =b =2,a =√b 2+c 2=√4+4=2√2, 所以△ABC 的周长a +b +c =2+2+2√2=2√2+4.【解析】(1)由正弦定理化简已知等式可得a 2+c 2−b 2=2acsinB ,根据余弦定理,同角三角函数基本关系式可求得tanB =1,结合范围B ∈(0,π),可求B 的值. (2)由已知可求A ,利用三角形的内角和定理可求C 的值,利用勾股定理可求a 的值,即可得解△ABC 的周长的值.本题主要考查了正弦定理,余弦定理,同角三角函数基本关系式,三角形的内角和定理,勾股定理在解三角形中的应用,考查了转化思想,属于基础题.18.【答案】解:(1)设{a n }的公差为d ,则{2a 1+6d =26,5a 1+10d =45,解得{a 1=1,d =4,故a n =a 1+(n −1)d =4n −3.(2)由(1)可知,S n =na 1+n(n−1)d2=2n 2−n ,由二次函数的性质知S n 单调递增, 因为S 11=231,S 12=276,所以当n ≥12时,S n >240,故n 的最小值为12.【解析】(1)利用等差数列通项公式和前n 项和公式列出方程组,求出首项和公差,由此能求出{a n }的通项公式.(2)由等差数列的首项和公差,求出前n 项和公式,由此能求出结果.本题考查等差数列的运算,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.19.【答案】解:(1)a =2时,求不等式f(x)<0即为x 2+2x −3<0,解得x ∈(−3,1);(2)∵关于x 的不等式x 2+ax −3<3即x 2+ax −6<0的解集为(−3,2)可知方程x 2+ax −6=0的解集为{−3,2},∴−3+2=−a ,解得a =1,∴关于x 的不等式ax 2+(a +b)x +b >0即为x 2+(1+b)x +b >0,可化为(x +1)(x +b)>0, 当b =1时,解集为{x|x ≠−1},当b >1时,解集为{x|x <−b 或x >−1}, 当b <1时,解集为{x|x <−1或x >−b}.【解析】(1)a =2时,求不等式f(x)<0即为x 2+2x −3<0,解得x ∈(−3,1); (2)由关于x 的不等式f(x)<3的解集为(−3,2)求得a 值,然后可求得关于x 的不等式ax 2+(a +b)x +b >0的解集.本题考查一元二次不等式解法,考查数学运算能力,属于中档题.20.【答案】解:(1)设每小时的燃料费用为E ,则E =ax 2,∵船速为40海里/小时,则船每小时的燃料费用为1800元, ∴1800=402×a ,解得a =98,即E =98x 2, ∵从甲地到乙地所需的时间为80x 小时, ∴y =98x 2⋅80x+800⋅80x=90x +64000x,∵该船的最大航速是68海里/小时, ∴0<x ≤68, 故y =90x +64000x(0<x ≤68).(2)由(1)可知,y =90x +64000x(0<x ≤68),90x +64000x≥2√90x ⋅64000x=4800,当且仅当90x =64000x,即x =803时,等号成立,故当船速为803海里/小时时,船从甲地到乙地所需的总费用最少,最少费用为4800元.【解析】(1)设每小时的燃料费用为E ,则E =ax 2,结合船速为40海里/小时,则船每小时的燃料费用为1800元,解得a =98,即E =98x 2,再根据甲地到乙地所需的时间为80x 小时,即可求解.(2)根据已知条件,结合基本不等式的公式,即可求解.本题主要考查函数的实际应用,掌握基本不等式公式是解本题的关键,属于中档题.21.【答案】解:(1)在△BCD 中,∠BDC =∠ADC =π6,由正弦定理有BC sin∠BDC =BDsin∠BCD ,又BC =√2,BD =2,所以sin∠BCD =BDsin∠BDCBC=√22, 因为∠BCD 为锐角,所以∠BCD =π4,所以∠ABC =∠BCD +∠BDC =5π12,在Rt △ABC 中,BC =√2,∠ABC =5π12,则AC =BCtan∠ABC =2√2+√6, 故S △ABC =12AC ⋅BC =2+√3;(2)在Rt △ABC 中,设∠ABC =θ,则∠CBD =π−θ,∠BCD =θ−π6, 在△BCD 中,由正弦定理有BCsin∠BDC =BDsin∠BCD ,得BD =2√2sin(θ−π6),所以S △BCD =12BC ⋅BDsin∠CBD =12×√2×2√2sin(θ−π6)sinθ=2sinθsin(θ−π6), =2sinθ(√32sinθ−12cosθ)=√3sin 2θ−sinθcosθ=√32−(12sin2θ+√32cos2θ)=√32−sin(2θ+π3),由∠BCD =θ−π6,得θ>π6,又θ为锐角, 所以θ∈(π6,π2),2θ+π3∈(2π3,4π3),所以sin(2θ+π3)∈(−√32,√32),故△BCD面积的取值范围为(0,√3).【解析】(1)由正弦定理有BCsin∠BDC =BDsin∠BCD,可得sin∠BCD=√22,得∠BCD=π4,从而求得AC=BCtan∠ABC=2√2+√6,可求面积;(2)设∠ABC=θ,正弦定理可求得BD=2√2sin(θ−π6),从而S△BCD=12BC⋅BDsin∠CBD=√32−sin(2θ+π3),由θ的范围可求得面积的范围.本题考查解三角形在平面几何中的应用,熟练掌握正余弦定理、两角差的正弦公式和辅助角公式等是解题的关键,考查逻辑推理能力和运算能力,属于中档题.22.【答案】解:(1)∵a1=1,a n−a n−1=2n−1−1(n≥2),∴a1=1,a2−a1=21−1,a3−a2=22−1,......a n−a n−1=2n−1−1(n≥2).累加得:a n=1+2+22+...+2n−1−(n−1)=1×(1−2n)1−2−n+1=2n−n,验证a1=1成立,则a n=2n−n;证明:(2)b n=a n+n−1a n a n+1=2n−n+n−1(2n−n)(2n+1−n−1)=12n−n−12n+1−n−1,∴S n=b1+b2+b3+...+b n=(121−1−122−2)+(122−2−123−3)+...+(12n−n−12n+1−n−1)=121−1−12n+1−n−1=1−12n+1−n−1.∵n≥1时,2n+1>n+1,∴12n+1−n−1>0,则S n=1−12n+1−n−1<1.【解析】(1)由已知数列递推式,利用累加法求数列的通项公式;(2)利用裂项相消法求和,即可证明S n<1.本题考查数列不等式的证明,训练了利用累加法求数列的通项公式,考查裂项相消法求数列的前n项和,是中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
姜堰市2008~2009学年度第一学期期中考试
高 二 数 学 试 题(文)
2008.11
(总分:160分 考试时间:120分钟) 命题人:周国权 刘晓明 审核人:窦如强
一、填空题(每小题5分,共70分)
1.命题“若b a >,则b a 22>”的否命题为 ▲ 。
2.椭圆12432
2
=+y x 的焦点坐标为 ▲ 。
3.如果5个数54321,,,,x x x x x 的方差为7,那么,3,3,3,34321x x x x 53x ,这5个数的方差是
▲ 。
4.袋子中有6只大小型号完全一样的小球,其中红的有3只,黄的有2只,白的1只,现随机从中摸出1只小球,则摸不到黄球的概率为 ▲ 。
5.如图所示是甲、乙两名运动员某赛季一些场次得分的茎叶图,则平均得分高的是 ▲ 运动员。
第5题 6.一个容量为20的样本,已知某组的频率为 7.已知0)3)(2(:,44:<--<<-x x q x p “充分不必要”“必要不充分”“充要”8.命题“01,2>++∈∀x x R x 9.焦点在x 轴上的椭圆经过点(0,-4),且焦距为6,则其标准方程为 ▲ 。
10.若方程
11
922=-+-k y k x 表示椭圆,则k 的取值范围是 ▲ 。
11.根据如图所示的伪代码,可知循环结束后b 的值为 ▲ 。
12.如图给出的是计算12
1
31211++++
的值的一个流程图,其中判断框内应该填入的条件为 ▲ 。
13.有下列命题
①若命题p :所有有理数都是实数,命题q :正数的对数都是负数,则命题“q p ∨”是
真命题;
②R x ∈∃使得022
<++x x ;;
③“直线a ,b 没有公共点”是“直线a ,b 为异面直线”的充分不必要条件;
甲 乙
0 8
50 1 247
32 2 199 875421 3 36
944 4
1 5 2
④“1-=a ”是“直线06=++ay x 和直线023)2(=++-a y x a 平行”的充要条件; 其中正确命题的序号是 ▲ 。
(把你认为正确的所有命题的序号都填上) 14.设点(a ,b )在平面区域D={}
1,1),(≤≤b a b a 中,按均匀分布出现,则满足椭圆
)0(12
2
22>>=+b a b
y a x 的离心率23<e 的点(a ,b )概率为 ▲ 。
二、简答题
15.(14分)如图所示,已知动圆C 与半径为2的圆F 1外切,与半径为8的圆F 2内切,且
F 1F 2=6,
(1)求证:动圆圆心C 的轨迹是椭圆;
(2)建立适当直角坐标系,求出该椭圆的方程。
16.(14分)为了让学生了解更多“奥运会”知识,某中学举行了一次“奥运知识竞赛”,共有800名学生参加了这次竞赛,为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计.请你根据表中信息,解答下列问题:
50的一个样本,则
) ,
(2)如果某天的气温是-5℃时,预测这天小卖部卖出热茶的杯数。
(求线性回归方程系数公式1
2
1
()()
()
n
i
i
i n
i
i x x y y b x x ==--=
-∑∑,a y bx =-)
18.(14分)设点A 为单位圆上一定点,求下列事件发生的概率: (1)在该圆上任取一点B ,使AB 间劣弧长不超过
4
π
; (2)在该圆上任取一点B ,使弦AB 的长度不超过3。
19.(16分)同时投掷两个骰子,计算下列事件的概率: (1)事件A :两个骰子点数相同;
(2)事件B :两个骰子点数之和是4的倍数; (3)事件C :两个骰子点数之差是2 。
20.(18分)已知椭圆的中心为坐标原点O ,焦点在x 轴上,过椭圆右焦点F 2且斜率为1
70.5~80.5 的直线交椭圆于A 、B 两点,弦AB 的中点为T ,OT 的斜率为3
1-, (1)求椭圆的离心率;
(2)设Q 是椭圆上任意一点,F 1为左焦点,求21cos QF F ∠的取值范围;
(3)若M 、N 是椭圆上关于原点对称的两个点,点P 是椭圆上任意一点,当直线PN 斜率
⎦
⎤
⎝⎛∈21,31PN k ,试求直线PM 的斜率PM k 的范围。
姜堰市2008~高二数学(文科)参考答案1591315.
1 ______________
2分)
(2)(11分)
(3)平均1.8328.05.9536.05.852.05.7516.05.65=⨯+⨯+⨯+⨯=x …………(14分) 17.(1)解:145
3
10131826=++++=
x ……………………………………………(1分)
34=y ………………………………………………………………………(2分)
149222
-
=b ……………………………………………………………………(6分) 1498174
=
a ……………………………………………………………………(8分) 1498174
149222+
-=∴x y ……………………………………………………(10分) (2)63149
8174
)5(149222≈+--=y …………………………………………………(14分)
18.(1)记“在该圆上任取一点B ”为事件C ,由于是随机取点所以可认为每一点被取到的
机会是均等的。
于是事件C 的概率应等于弧AB 的长度与周长的比
即4
1
224
)(=
⋅=π
π
C P ……………………………………………………………(6分) (2)记该事件为事件
D ,由于是随机取点所以圆周上每一点被取到的机会是均等的,于是事件D 的概率应等于弧的长度与圆周的长度之比。
即3
2
22
32)(=⋅=ππC P …………………………………………………………(13分)
答:事件C 发生的概率为41。
事件D 发生的概率为3
2。
……………………………………………………………(14分)
19.将骰子投掷1次它出现的点数有1、2、3、4、5、6这6种结果,同时抽掷两个骰子共有6×6=36种不同的结果。
………………………………………………………………(3分)
(1)点数相同的有6种可能,所以事件A 发生的概率为
6
1
366=……………………(7分)
(2)两个骰子点数之和是4的倍数有9种可能,所以事件发生的概率为41
369=…(11分)
(3)两个骰子点数之差是2的有8种可能,所以事件C 发生的概率为9
2
368=……(15分)
……………………………………………(7分)
答:事件A 发生的概率为61。
事件B 发生的概率为41。
事件C 发生的概率为9
2。
………………………………………………………(16分)
20.(1)根据题意设椭圆方程为)0(122
22>>=+b a b
y a x
点A 为),(11y x
B 点为),(22y x
T 点为),(00y x
则⎪⎪⎩⎪⎪⎨⎧=+=+1122
22
2222
1221b y a x b y a x 又
1,311
21
200=---=x x y y x y
223b a =∴ 即b a 3=
b c 2=∴ 3
6==
a c e ……………………………………………………(6分) (3)设P y x M ),,(11为),(y x ,则),(11y x N --
则⎪⎪⎩⎪⎪⎨⎧=+=+112
2
2222
1221b y a x b y a x
即
01
3122=⋅⋅+PN PM k k b
b 又)21,31(∈PN k ]3
2
,1(--∈∴PM k …………………………………(18分)。