【真题】15年山西省忻州一中高三(上)数学期中试卷含答案(文科)

合集下载

山西省忻州一中2015届高三上期中考试英语试题及答案

山西省忻州一中2015届高三上期中考试英语试题及答案

忻州一中高三年级(2014-2015)第一学期期中考试英语试题(考试时间120分钟试卷满分150分)本试卷分第Ⅰ卷(选择题,含听力测试)与第Ⅱ卷(非选择题)两部分,共150分。

考试时间120分钟。

第Ⅰ卷的答案涂在机读卡上,第Ⅱ卷的答案写在答题纸上。

听力不计分。

第Ⅰ卷(共100分)第一部分听力(共两节,满分30分)第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。

每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。

听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。

每段对话仅读一遍。

1. What‟s the weather like now?A. Rainy.B. Cloudy.C. Fine.2. What do we know about the man?A. He has poor eyesight.B. He didn‟t see the notice.C. He is stepping on the grass on purpose.3. How does the woman feel about the TV programs?A. She doesn‟t like watching TV at all.B. She thinks they are too bad.C. She thinks they are good on the whole.4. How long does it take the woman to drive home when it isn't rush hour?A. Twenty minutes.B. Twenty-five minutes.C. Fifty minutes.5. Where is the woman‟s MP5 player?A. In the bedroom.B. In the kitchen.C. In the sitting room.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。

山西省忻州一中2015届高三第一次四校联考数学(文) Word版含答案

山西省忻州一中2015届高三第一次四校联考数学(文) Word版含答案

山西省忻州一中2015届高三第一次四校联考数学试题(文)【满分150分,考试时间120分】第Ⅰ卷 客观卷 共60分一、选择题:(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,选出符合题目要求的一项. 请将正确选项用2B 铅笔涂黑答题纸上对应题目的答案标号) 1. 已知集合{}12≥=x x M ,{}2≤=x x N ,则=N MA. [1,2]B. [0,2]C. [-1,1]D. (0,2) 2. 若i 为虚数单位 ,则=+-+-iii 11 A. i 2- B. 0 C.i 21D. i 2 3. 集合{}{}3,2,1,3,2==B A ,从集合B A ,中各任意取一个数,则这两个数的和等于4的 概率是 A. 23 B. 12 C. 13 D. 164. 已知双曲线)0,0(12222>>=-b a by a x 的离心率为26,则此双曲线的渐近线方程为A.y=±2xB. y=±2xC. y=±22xD. y=±12x 5. 已知等差数列{}n a 的前13项之和为39,则=++876a a a A. 6 B. 9 C. 12 D. 18 6. 下列说法正确的是A. 命题“∃x 0∈R ,x 02+x 0+1<0”的否定是:“∀x ∈R ,x 2+xB. “x =-1”是“x 2-5x -6=0”的必要不充分条件;C. 命题“若x 2=1,则x =1”的否命题是:若x 2=1,则x ≠1;D. 命题“若x =y ,则sin x =sin y ”的逆否命题为真命题. 7. 执行如图所示的程序框图,当输出值为4时, 输入x 的值为A .2B .2±C .-2或-3D .2或-38. 函数2()21log f x x x =-+的零点所在的一个区间是A. (18,14)B. (14,12)C. (12,1) D. (1,2)9. 在平面直角坐标系xoy 中,抛物线2:2(0)C y px p =>的焦点为F ,M 为抛物线C 上一点,若△OFM 的外接圆与抛物线C 的准线相切,且外接圆的面积为π9,则=p A. 2 B. 4 C.6 D. 8 10. 已知一个棱长为2的正方体,被一个平面截后所得几何体的三视图如图所示,则该截面的面积为 A.29B. 3C. 4D.2103 11. 已知函数⎩⎨⎧>≤+-=1,log 1,)(5.02x x x x x x f , 若对于任意R x ∈,不等式14)(2+-≤t t x f 恒成立,则实数t 的取值范围是A. (][)+∞∞-,21,B. (][)+∞∞-,31,C.[]3,1D. (][)+∞∞-,32,12. 在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且BC 边上的高为a 63,则cbb c + 的最大值是A. 8B. 6C. 23D. 4第Ⅱ卷 主观卷 共90分二、填空题(本大题共4小题,每小题5分,共20分,把答案填在答题纸的相应位置上) 13. 若实数,x y 满足102x y x y -+≤⎧⎪>⎨⎪≤⎩,则目标函数y x z +=的最大值是 14. 已知,m n 是夹角为120的单位向量,向量(1)a tm t n =+-,若n a ⊥,则实数t = 15. 三棱锥P ABC -的四个顶点均在同一球面上,其中△ABC 为等边三角形,PA ABC ⊥平面,22PA AB a ==,则该球的体积是16.已知函数2()2sin cos f x x x x =+-,将()y f x =的图像向左平移6π个单位,再向上平移1个单位,得到函数()y g x =的图象,若函数()y g x =在[,]a b 上至少含有1012个零点,则b a -的最小值为三、解答题(本大题6小题,共70分,解答应写出文字说明、证明过程或演算步骤,并把解答写在答卷纸的相应位置上) 17.(本小题满分12分)在公差不为零的等差数列{n a }中,32=a ,731,,a a a 成等比数列. (1)求数列{n a }的通项公式;(2)设数列{n a }的前n 项和为n S ,记nn S b 31=. 求数列}{n b 的前n 项和n T . 18.(本小题满分12分)如图五面体中,四边形11C CBB 为矩形,N ABB C B 111平面⊥,四边形N ABB 1为梯形, 且1BB AB ⊥,4211====BB AN AB BC . (1)求证:BN 11C B N ⊥平面; (2)求此五面体的体积. 19.(本小题满分12分)近几年出现各种食品问题,食品添加剂会引起血脂增高、血压增高、血糖增高等疾病.为了解三高疾病是否与性别有关,医院随机对入院的60人进行了问卷调查,得到了如下的列联表: (1)请将如图的列联表补充完整;若用分层抽样的方法在患三高疾病的人群中抽9人,其中女性抽多少人?(2)为了研究三高疾病是否与性别有关, 请计算出统计量2K ,并说明你有多大的把握认为三高疾病与性别有关? 下面的临界值表供参考:(参考公式22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++)20.(本小题满分12分) 已知函数xax x x f --=ln )(,其中a 为常数,且0>a .(1)若曲线()y f x =在点())1(,1f 处的切线与直线1+=x y 垂直,求函数)(x f 的单调递减区间;(2)若函数()f x 在区间[]3,1上的最小值为31,求a 的值.21.(本小题满分12分)已知椭圆2222:1(0)x y C a b a b +=>>,离心率为23,两焦点分别为1F 、2F ,过1F 的直线交椭圆C 于N M ,两点,且△MN F 2的周长为8. (1)求椭圆C 的方程;(2)过点P ()0,m 作圆221x y +=的切线l 交椭圆C 于B A ,两点,求弦长AB 的最大值.22. (本小题满分10分)选修4-1:几何证明选讲如图,ABC ∆内接于直径为BC 的圆O ,过点A 作圆O 的切线交CB 的延长线于点P ,BAC ∠的平分线分别交BC 和圆O 为点D ,E ,若102==PB PA . (1)求证:AB AC 2=; (2)求DE AD ⋅的值.23.(本小题满分10分)选修4—4:坐标系与参数方程选讲 已知直线l :⎩⎨⎧=+-=ααsin cos 1t y t x (t 为参数,α为l 的倾斜角),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为05cos 62=+-θρρ. (1)若直线l 与曲线C 相切,求α的值;(2)设曲线C 上任意一点的直角坐标为),(y x ,求y x +的取值范围.24.(本小题满分10分)选修4—5:不等式选讲 已知正实数b a ,满足:ab b a 222=+.PE22题图MB 1C 1NCBA(1)求ba 11+的最小值m ; (2)设函数)0(1)(≠++-=t tx t x x f ,对于(1)中求得的m ,是否存在实数x ,使2)(m x f =成立,说明理由.2015届高三年级第一次四校联考数学试题(文)答案一、1-6.BACCBD 7-12. DCBABD 二、13.3 14.323a 16. 15163π 三、17.解:①设{n a }的公差为d ,依题意得⎪⎩⎪⎨⎧≠+=+=+0)6()2(311211d d a a d a d a ,………3分解得 21=a ,1=d …………………5分 ∴ 1)1(2⨯-+=n a n 即 1+=n a n . …………………6分 ② .2)1(92)132(32)(3313+=++=+=n n n n a a n S n n)111(92)1(9213+-=+==n n n n S b n n ………………9分 )1(92)]111()3121()211[(9221+=+-++-+-=+++=n nn n b b b T n n 故 T n =)1(92+n n. ……………………12分18.解:(1)证明:连BN ,过N 作1BB NM ⊥,垂足为M , ∵N ABB C B 111平面⊥,N ABB BN 1平面⊂, ∴BN C B ⊥11, ………………………2分 又,BC=4,AB=4,BM=AN=4,AN BA ⊥, ∴ 244422=+=BN ,22212144+=+=M B NM N B =24,∵643232,64822121=+=+==BN N B BB ,∴N B BN 1⊥,……………… 4分∵N C B N B N C B C B 1111111,平面平面⊂⊂,1111B C B N B =⋂∴BN 11C B N ⊥平面 ………………………………… 6分(2)连接CN ,332442143131=⨯⨯⨯⨯=⋅⨯=∆-ABN ABN C S BC V , ……………… 8分又N ABB C B 111平面⊥,所以平面⊥11C CBB 平面N ABB 1,且平面11C CBB 11BB N ABB =,1BB NM ⊥,CB C B NM 11平面⊂,∴ CB C B NM 11平面⊥, ……………………9分312884431311111=⨯⨯⨯=⋅⨯=-CB C B CB C B N S NM V 矩形 …………………11分 此几何体的体积3160312833211=+=+=--CB C B N ABN C V V V ……………………12分 19.……………3分在患三高疾病人群中抽9人,则抽取比例为41369= ∴女性应该抽取34112=⨯人. …………………6分 (2)∵24363030)1261824(6022⨯⨯⨯⨯-⨯=K ……………8分879.710>=, ……………10分那么,我们有99.5%的把握认为是否患三高疾病与性别有关系.……………12分 20.解:22)(1)(xa x x a x x x x f -=---=' (0x >) …………………2分 (1)因为曲线()y f x =在点(1,(1)f )处的切线与直线1+=x y 垂直,,所以1)1(-='f ,即11-=-a 解得2=a ……………………4分 当2=a 时,x x x x f 2ln )(--=,22)(xx x f -='。

2015届高三上学期期中考试数学试题(含答案解析)

2015届高三上学期期中考试数学试题(含答案解析)

2015届高三上学期期中考试数学试题(含答案解析) 一.选择(每题5分,共60分 ) 1.下列说法中,正确的是( ) A.任何一个集合必有两个子集; B.若,A B φ=则,A B 中至少有一个为φC.任何集合必有一个真子集;D.若S 为全集,且,AB S =则,A B S ==2.设集合U={1,2,3,4,5},A={1,3,5},B={2,3,5},则()U C A B 等于( )A .{1,2,4}B .{4}C .{3,5}D .∅3.已知命题p :lnx >0,命题q :ex >1则命题p 是命题q 的( )条件 A .充分不必要 B .必要不充分 C .充要 D .既不充分也不必要4.函数1)4(cos 22--=πx y 是A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为2π的奇函数D .最小正周期为2π的偶函数5 )A .y 轴对称B .直线1=x 对称C .点(1,0)对称D .原点对称 6.已知定义在R 上的奇函数()f x 和偶函数()g x 满足()()2(0,x x f x g x a a a -+=-+>且1)a ≠,若(2)g a=,则(2)f =( )A.2D.2a7 )A.(,1]-∞B .C .D . [1,2) 8A .B. C. (1,2) D. (2,3)9.若02log <a )1,0(≠>a a 且,则函数()log (1)a f x x =+的图像大致是10.函数y =的图象可由函数y=sin2x 的图象经过平移而得到,这一平移过程可以是 ( )(A)(B) (C)(D)11.已知函数f(x)=2x +1(1≤x≤3),则 ( )A.f(x -1)=2x +2(0≤ x≤2)B.f(x -1)=-2x +1(2≤x≤4)C.f(x -1)=2x -2(0≤x≤2)D.f(x -1)=2x -1(2≤x≤4)12.定义新运算⊕:当a b ≥时,a b a ⊕=;当a b <时, 2a b b ⊕=,则函数()(1)(2)f x x x x =⊕-⊕, []2,2x ∈-的最大值等于( )A .-1B .1C .6D .12高三数学上学期期中测试题选择题答案:1---6________________ 7---12________________ 二.填空(每题6分,共36分)1314.设)(x f 是定义在R 上的偶函数,且)()2(x f x f -=+,当]2,0(∈x ,1)(2-=x x f 则=)7(f ____________A .48 B.24C. 8D.015.若函数52++=x mx y 在[2,)-+∞上是增函数,则m 的取值范围是____________. 16.函数1)(2-+=x x x f 的最小值是_________________。

山西省忻州一中2015届高三上学期1月月考文科数学试题

山西省忻州一中2015届高三上学期1月月考文科数学试题

班级 姓名 准考证号忻州一中2014-2015学年高三月考题高三数学(文科)康德胜 张艳春注意事项:1.答题前,考生务必用0.5mm 黑色中性笔,将姓名、班级、考号填写在试题和答题卡上;2.请把答案做在答题卡上,交卷时只交答题卡,不交试题,答案写在试题上无效;3.满分150分,考试时间120分钟。

一、选择题(本大题共12小题,每小题5分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1. 设全集{x N x U *∈=<}6,集合{}{}5,3,3,1==B A ,则()B A C U ⋃等于 A.{}4,1B.{}5,1C.{}02,4,D.{}4,22.i 为虚数单位,复数1+i i在复平面内对应的点到原点的距离为A .21 B.22C. 1D.23.阅读程序框图,若输入4,6m n ==,则输出,a i 分别是 A .2,12==i a B .2,24==i a C .4,24==i a D .3,12==i a4.已知向量()2,8a b +=-,()8,16a b -=-,则a 与b 夹角的余弦值为 A.6365 B.6365- C.6365± D.5135.下列说法正确的是 A .要得到函数sin 23y x π⎛⎫=+⎪⎝⎭的图象,只要将sin 2y x =的图象向左平移3π单位 B .“2a =”是“函数()log a f x x =在区间(0,)+∞上为增函数”的必要不充分条件C .若定义在()∞+∞,- 上的函数满足)()1(x f x f -=+,则)(x f 是周期函数 D .命题“(,0),23xxx ∃∈-∞< ”是真命题6.现有四个函数:①sin y x x =⋅;②cos y x x =⋅;③|cos |y x x =⋅;④2xy x =⋅的图象(部分)如下:则按照从左到右图象对应的函数序号安排正确的一组是 A .①④③② B .①④②③ C .④①②③ D .③④②① 7.若[]3,3-∈k ,则k 的值使得过)1,1(A 可以做两条直线与圆2)(22=+-y k x 相 切的概率等于 A .21 B .31 C .32 D .438. 已知数列}{n a 中满足151=a ,21=-+na a nn ,则n a n 的最小值为A. 7B. 1152-C.9D. 4279.某三棱锥的三视图如图,则该几何体的表面积是A .5628+B .5630+C .51256+D .51260+10. ax x x f +=ln )(存在与直线02=-y x 平行的切线,则实数a 的取值范围是 A .]2,(-∞ B .)2,(-∞ C . ),2(+∞ D .),0(+∞11.以双曲线x 2a 2-y 2b 2=1(a >0,b >0)中心O (坐标原点)为圆心,焦距为直径的圆与双曲线交于M点(第一象限),F 1、F 2分别为双曲线的左、右焦点,过点M 作x 轴垂线,垂足恰为OF 2的中点,则双曲线的离心率为A1BC1D .212.定义在R 上的奇函数()f x ,当x ≥0时, ))12log (1),0,1,()1|3|,1,,x x f x x x ⎧+∈⎡⎣⎪=⎨⎪--∈+∞⎡⎣⎩则关于x 的函数()()F x f x a =-(0<a <1)的所有零点之和为 A .1-2aB .21a -C .12a--D .21a--二、填空题(本大题共4小题,每小题5分,共20分,把答案填在答题卡的应位置上)13.抛物线ay x =2的准线方程是2=y ,则实数a 的值为 ▲ .14.若42ππθ⎡⎤∈⎢⎥⎣⎦,,sin 2θ,则θcos = ▲ .15.已知三棱柱111ABC A B C -的侧棱垂直底面,所有顶点都在球面上,1,21===AC AA AB ,o BAC 60=∠,则球的体积为 ▲ .16.古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,…,第n 个三角形数为12n 2+12n .记第n 个k 边形数为N (n ,k )(k ≥3),以下列出了部分k 边形数中第n 个数的表达式:三角形数 N (n,3)=12n 2+12n ,正方形数 N (n,4)=n 2, 五边形数 N (n,5)=32n 2-12n ,六边形数 N (n,6)=2n 2-n , ……可以推测N (n ,k )的表达式,由此计算N (20,24)= ▲ .三、解答题(本大题6小题,共70分,解答应写出文字说明、证明过程或演算步骤,并把解答写在答卷纸的相应位置上) 17.(本题满分12分)在△ABC 中,角A 、B 、C 的对边长分别是a 、b 、c ,且满足(2)cos cos 0.b c A a C --= (Ⅰ)求角A 的大小;(Ⅱ)若a =△ABC的面积4ABC S =△试判断△ABC 的形状,并说明理由. 18. (本题满分12分)如图,在四棱锥中ABCD P -中,底面ABCD 为菱形,060BAD ∠=,2===AD PD PA ,点M 在线段PC 上,且MC PM 2=,N 为AD 的中点. (Ⅰ)求证:BC ⊥平面PNB ;(Ⅱ)若平面⊥PAD 平面ABCD ,求三棱锥P NBM -的体积.19. (本题满分12分)某研究机构为了研究人的脚的大小与身高之间的关系,随机抽测20人,得如下数据:(Ⅰ);“脚CP长大于42码”的为“大脚”,“脚长小于等于42码”的为“非大脚”.请根据上表数据完成下面的22⨯联列表:(Ⅱ)根据题(1)中表格数据,若按99%的可靠性要求,能否认为脚的大小与身高之间有关系? (Ⅲ)若按下面的方法从这20人中抽取1人来核查测量数据的误差:将一个标有数字1,2,3,4,5,6的正六面体骰子连续投掷两次,记朝上的两个数字的乘积为被抽取人的序号.试求:抽到12号的概率.附: 22()()()()()n ad bc K a b c d a c b d -=++++20.(本题满分12分)给定椭圆C :)0(12222>>=+b a by a x ,称圆心在原点O ,半径为22b a +的圆是椭圆C 的“准圆”. 若椭圆C 一个焦点为)0,2(F ,其短轴上一个端点到F 的距离为3. (Ⅰ)求椭圆C 的离心率和其“准圆”方程;(Ⅱ)点P 是椭圆C 的“准圆”上的一个动点,过动点P 作直线21,l l ,使得21,l l 与椭圆C 都只有一个公共点,当P 为“准圆”与y 轴正半轴的交点时,求直线21,l l 的方程. 21.(本题满分12分) 已知函数()1xaf x x e =-+(a R ∈,e 为自然对数的底数). (Ⅰ)若曲线()y f x =在点(1,(1))f 处的切线平行于x 轴,求a 的值;(Ⅱ)当1=a 的值时,若直线)1(1:≠-=k kx y l 与曲线()y f x =没有公共点,求k 的取值范围. 请考生在22、23、24中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做第一个题目计分,作答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑. 22. (本题满分10分)选修4-1:几何证明选讲如图,直线AB 为圆的切线,切点为B ,点C 在圆上, ∠ABC 的角平分线BE 交圆于点E ,DB 垂直BE 交圆于D 。

山西省忻州市第一中学2015_2016学年高一数学上学期期中试题

山西省忻州市第一中学2015_2016学年高一数学上学期期中试题

2015-2016学年度第一学期期中考试试题高 一 数 学注意事项:1.考生务必用0.5mm 黑色中性笔答题.2.请把答案做在答题卡上,交卷时只交答题卡,不交试题,答案写在试题上无效。

3.满分150分,考试时间120分钟.一.选择题(本大题共12个小题,每小题5分,共60分,在每个小题给出的四个选项中,只有一项是符合题目要求的)1.设集合∪=R ,M={x||x|<2},N={y|y=2x -1},则(C U M)∪(C U N)= ( )A .(-1,2)B .(-∞,-1]∪2.已知集合A 满足条件{1,2}⊆A ⊂≠{1,2,3,4,5},则集合A 的个数有 ( )A .8B .7C .4D .33.下列函数与||y x =表示同一函数的是 ( )A.2y =B.y =C.y =D.2xy x =4.如果函数f(x)的定义域为,那么函数f(x 2-1)的定义域是 ( )A .B .C .D .5.若1a >,10b -<<,则函数x y a b =+的图象一定不过.... ( )A .第一象限B .第二象限C .第三象限D .第四象限6.已知函数⎩⎨⎧≤>=)0(3)0(log )(2x x x x f x ,则1[()]4f f 的值为 ( )A .91B .9C .-9D .91-7.已知a=log 20.3,b=20.1,c=0.21.3,则,,a b c 的大小关系是 ( )A .a b c <<B .b c a <<C .c a b <<D .a c b <<8.若log a 45<1,则a 的取值范围是 ( )A .(45,1)B .(45,+∞)C .(0,45)∪(1,+∞)D .(0,45)∪(45,+∞)9.已知不等式03222>++-a ax ax 的解集为R ,则a 的取值范围是 ( )A .a ≥0 `B .a >0C .a ≥-3D .a >-3 10.若函数y=ax 与y= b x在(0,+∞)上都是减函数,则y=ax 2+bx 在(0,+∞)上是( ) A.增函数B.减函数C.先增后减D.先减后增 11.已知a>0,且a≠1,函数y=a x 与y=log a (-x)的图像只能是下图中的 ( )12.函数2)2(log )(2-+-=x a x f x ,当]21,0[∈x 时,0)(≤x f 恒成立,则实数a 的取值范围是( )A .]4,(-∞B .]4,2(C .]23,(-∞D .]23,2( 二、填空题:(本大题共4小题,每小题5分,共20分)13.已知函数f (x )=(log 41x)2-(log 41x )+5,x ∈[14 ,4],则f (x )的最小值是 . 14.函数y=log 2(-x 2-4x+5)的单调递增区间是 .15.已知函数f(x)=ax 5+bx 3+cx -18,且f(-3)=32,那么f(3)= .16.已知函数f(x)是定义在R 上的奇函数,当x>0时,f(x)=x 3+x 2-2x -8,则当x <0时,函数f(x)的解析式为 .A B C D三.解答题:共6小题,共70分,解答应写出文字说明、证明过程或演算步骤,并把解答写在答题卡的相应位置上.17.(本小题满分10分)已知集合A={x|-2≤x≤17},B={x|2m+3≤x≤3m-1},若A∪B⊆A,求实数m的取值范围.18.(本小题满分12分)(1)计算:log535+2log0.52-log5150-log514.(2)化简:(0.027)-13-(-16)-2+2560.75-|-3|-1+(-5.55)0-10(2-3)-1.19.(本小题满分12分)已知函数f(x)=x2+(2a-1)x-3,(1)当a=2,x∈时,求函数f(x)的值域.(2)若函数f(x)在上的最大值为1,求实数a的值.20.(本小题满分12分)设0≤x≤2,求函数y=9(x-12)-3(x+1) +314的最大值、最小值,并求取得最值时的x的值.21.(本小题满分12分)已知函数f(x)=log 2x 1 x. (1)解不等式f(x)≤1;(2)根据函数单调性的定义,证明函数)(x f 在定义域内是增函数.22.(本小题满分12分)商场销售某一品牌的羊毛衫,购买人数是羊毛衫标价的一次函数,标价越高,购买人数越少.把购买人数为零时的最低标价称为无效价格,已知无效价格为每件300元.现在这种羊毛衫的成本价是100元/件,商场以高于成本价的价格(标价)出售.问:(1)商场要获取最大利润,羊毛衫的标价应定为每件多少元?(2)通常情况下,获取最大利润只是一种“理想结果”,如果商场要获得最大利润的75%,那么羊毛衫的标价为每件多少元?附加题(每小题5分,共15分)1.用min{a ,b ,c }表示a ,b ,c 三个数中的最小值,设f (x )=min{2x ,x +2,10-x }(x ≥0),则f (x )最大值为=________.2.已知函数f (x )是(-∞,+∞)上的奇函数,且f (x )的图象关于直线x =1对称,当x ∈时,f (x )=-x ,则f (1)+f (2)+ f (3)+…+f (2015)=________.3.函数叫做取整函数(也称高斯函数),表示不超过x 的最大整数,例如=2,=3,=-3,设函数f (x )=2x1+2x -12,则函数y =+的值域为________. 2015-2016学年度第一学期期中考试试题高 一 数 学(参考答案)一.选择题(本大题共12个小题,每小题5分,共60分,在每个小题给出的四个选项中,只有一项是符合题目要求的)1-6 BBCDDA 7-12 DCACBD二、填空题:(本大题共4小题,每小题5分,共20分)13. 19414. (-2,1)答案写成时,求函数f (x )的值域.(2)若函数f (x )在上的最大值为1,求实数a 的值.19.【解】:(1)当a =2时,f(x)=x 2+3x -3,x ∈,对称轴x =-32∈, …(2分) ∴f(x)min =f(-32)=94-92-3=-214, …(4分) f(x)max =f(3)=15,∴值域为⎣⎢⎡⎦⎥⎤-214,15. …(6分) (2)对称轴为x =-2a -12. ①当-2a -12≤1,即a≥-12时,f(x)max =f(3)=6a +3, ∴6a +3=1,即a =-13满足题意; …(9分) ②当-2a -12>1,即a <-12时, f(x)max =f(-1)=-2a -1,∴-2a -1=1,即a =-1满足题意.综上可知a =-13或-1. …(12分) 20.(本小题12分)设0≤x ≤2,求函数y=9(x - 12)-3(x+1) +314的最大值、最小值,并求取得最值时的x 的值. 20.解:令t=3x ,0≤x ≤2,则1≤t ≤9 …2分∴g(t) =13(t -92)2+1 …6分当t=92 时g(t)取得最小值1,此时3x =92,x=2-log 32,y min =1 …9分 当t=9时g(t)取得最大值314,此时3x =9,x=2,y max =314∴x=2-log 32,y min =1;x=2,y max =314…12分 21.(本小题12分)已知函数f(x)=log 2x 1-x . (1)解不等式f(x)≤1;(2)根据函数单调性的定义,证明函数)(x f 在定义域内是增函数.21.(1)解:由01x x>-,得(1)0x x ->,解得01x <<, ∴函数的定义域为(0,1) …2分f(x)≤1得log 2x 1-x ≤1,则x ≤23或x>1 …5分 ∴不等式f(x)≤1的解为0<x ≤23…6分 (2)证明:任取1x 、2(0,1)x ∈且12x x <, 则12122212()()log log 11x x f x f x x x -=--- 121222122111log ()log ()11x x x x x x x x --=⋅=⋅-- 1201x x <<<,210111x x ∴<-<-< 1201x x ∴<<,且211011x x -<<-,即12211011x x x x -<⋅<- 12()()0f x f x ∴-<,即12()()f x f x <.故函数()f x 是增函数. …12分22.商场销售某一品牌的羊毛衫,购买人数是羊毛衫标价的一次函数,标价越高,购买人数越少.把购买人数为零时的最低标价称为无效价格,已知无效价格为每件300元.现在这种羊毛衫的成本价是100元/件,商场以高于成本价的价格(标价)出售.问:(1)商场要获取最大利润,羊毛衫的标价应定为每件多少元?(2)通常情况下,获取最大利润只是一种“理想结果”,如果商场要获得最大利润的75%,那么羊毛衫的标价为每件多少元?22.解:(1)设购买人数为n 人,羊毛衫的标价为每件x 元,利润为y 元,则x∈(100,300] n=kx+b (k <0),∵0=300k+b,即b= -300k,…3分∴n=k(x-300)y=(x-100)k(x-300)=k(x-200)2-10000k(x∈(100,300])…5分∵k<0,∴x=200时,y max= -10000k,…7分即商场要获取最大利润,羊毛衫的标价应定为每件200元.…8分(2)解:由题意得,k(x-100)( x-300)= -10000k•75%…10分x2-400x+37500=0解得x=250或x=150 …11分所以,商场要获取最大利润的75%,每件标价为250元或150元…12分附加题1.用min{a,b,c}表示a,b,c三个数中的最小值,设f(x)=min{2x,x+2,10-x}(x≥0),则f(x)最大值为=________. 62.已知函数f(x)是(-∞,+∞)上的奇函数,且f(x)的图象关于直线x=1对称,当x∈时,f(x)=-x,则f(1)+f(2)+ f(3)+…+f(2015)=________. 03.函数叫做取整函数(也称高斯函数),表示不超过x的最大整数,例如=2,=3,=-3,设函数f (x)=2x1+2-12,则函数y=+的值域为________. {-1,0}。

山西省忻州市第一中学2015届高三上学期期末考试数学(文)试题(含答案)

山西省忻州市第一中学2015届高三上学期期末考试数学(文)试题(含答案)

忻州市第一中学2015届高三上学期期末考试数学(文)试题一、选择题(每小题5分,共60分)1.已知集合{}{}222|,|2M y R y x N x R x y =∈==∈+=,则M ∩N =( )A .{(-1,1),(1,1)}B .{1}C .[0,1]D .[0,2]2.复数2+ i 的实部与复数1-2i 的虚部的和为 ( )A .0B .2-2iC .3-iD. 1+3i3.右面程序框图表示的算法是:求1+2+3+4+…+n>20时n 的最小值,则输出框中应填 ( )A .iB .i+1C .i-1D .n4.已知x 与y 之间的一组数据: 得关于y 与x 的线性回归方程为y^=2.1x +0.85,已求则m 的值为 ( )A .1B .0.85C .0.7D .0.55.已知对于正项数列{}n a 满足(),m n m n a a a m n N *+=⋅∈,若29a =,则3132312log log log a a a ++⋅⋅⋅⋅⋅⋅+= ( )A .40B .66C .78D .1566.函数y=sin (2x+φ)的图象沿x 轴向左平移π8个单位后,得到一个偶函数的图象,则φ的一个可能的值为 ( )A .3π4B .π4C .0D .-π47.设0,1a b >>,若2a b +=,则211a b +-的最小值为 ( ) A.3+ B .6 C. D.8.函数f(x)=sinxcosxx 2+1的图像大致为 ( )9.△ABC 的外接圆的圆心为O ,半径为2,OA →+AB →+AC →=0→且,则向量CA →在CB →方向上的投影为 ( )A . 3B .3C .- 3D .-310.已知点P (x ,y )在直线x+2y=3上移动,当2x +4y 取最小值时,过P 点(x ,y )引圆C :(x-12)2+(y+54)2=1的切线,则此切线长等于 ( )A .1B . 2C . 3D .211.已知2F 、1F 是双曲线()222210,0y x a b a b-=>>的上、下焦点,点2F 关于渐近线的对称点恰好落在以1F 为圆心,1OF 为半径的圆上,则双曲线的离心率为 ( )A .3 BC .2 D12.已知函数()2log ,02,0xx a x f x a x +>⎧=⎨+≤⎩,若函数()y f x x =+有且只有一个零点,则实数a 的取值范围是 ( )A .-1]-∞(, B .-1)-∞(, C .)∞(-1,+ D .)∞[-1,+ 二、填空题(每小题5分,共20分)13.已知x ,y 满足条件220240330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则目标函数34z x y =+的最大值为________.14.已知tanα=13,tanβ= -17,且0<α<π2,π2<β<π,则2α-β的值________.15.已知下图是一个空间几何体的三视图,则该几何体的外接球的表面积为________.16.已知函数f(x)=x 3+sinx ,对任意的m ∈[-2,2],f(mx -2)+f(x)<0恒成立,则x 的取值范围为________.三、解答题(共70分)17.(本小题满分12分)已知A B 、分别在射线CM、23π,在ABC ∆中,角A 、B 、C 所对的边分别是a 、 (1)若a 、b 、c 依次成等差数列,且公差为2 (2)若c =ABC ∠=θ,试用θ表示ABC ∆并求周长的最大值.18.(本小题满分12分)在一次对某班42名学生参加课外篮球、排球兴趣小组(每人参加且只参加一个兴趣小组)情况调查中,经统计得到如下2×2列联表:(单位:人)(Ⅱ)在统计结果中,如果不考虑性别因素,按分层抽样的方法从两个兴趣小组中随机抽取7名同学进行座谈.①求从“排球小组”中抽取几人?②已知甲、乙两人都是从“排球小组”中抽取出来的.从抽取出的7人中任意再选2人参加校排球队,求甲、乙两人至少有一人参加校排球队的概率是多少? 下面临界值表供参考:2222正视图侧视图俯视图AEFGCBMD参考公式:22()()()()()n ad bc K a b c d a c b d -=++++19.(本小题满分12分)如图几何体中,四边形ABCD为矩形,AB=3BC=6,BF=CF=DE=2,EF=4,EF //AB, ,G 为FC 的中点,M 为线段CD 上的一点,且CM=2. (I )证明:AF//面BDG ; (II )证明:面BGM ⊥面BFC ; (III )求三棱锥F -BMC 的体积V .20.(本小题满分12分)已知椭圆C :x 2a 2+y 2b 2=1(a>b>0)的右焦点为F (1,0),且点(-1,22)在椭圆C 上. (1)求椭圆C 的标准方程;(2)已知动直线l 过点F ,且与椭圆C 交于A ,B 两点,试问x 轴上是否存在定点Q ,使得QA →·QB →= -716恒成立?若存在,求出点Q 的坐标,若不存在,请说明理由. 21.(本小题满分12分)已知函数)1,0(1ln )1()(≠>-+=x x x xx x f 且(Ⅰ)讨论函数)(x f 的单调性; (Ⅱ)证明:2)(>x f .22.选修4-1:几何证明选讲(本小题满分10分)如图AB 是⊙O 的弦, C 、F 是⊙O 上的点,OC 垂直于弦AB ,过F 点作⊙O 的切线交AB 的延长线于D ,连结CF 交AB 于E 点. (I )求证:DE 2=DB ⋅DA ;(II )若BE=1,DE=2AE ,求DF 的长.23.选修4-4:坐标系与参数方程(本小题满分10分)与曲线C 1交于极点O 外的三点A,B,C.(I)求证:||2||||OA OC OB =+;24.选修45-:不等式选讲(本小题满分10分)设()||,.f x x a a =-∈R(I )当13,()3x f x -≤≤≤时,求a 的取值范围;(II )若对任意x ∈R ,()()12f x a f x a a -++≥-恒成立,求实数a 的最小值.忻州一中2014−2015学年度第一学期期末考试高三 数学试题(文科)命题人:李德亭 侯毅一、选择题二、填空题(每小题5分,共20分)13.18 14. -3π4 15.6π 16.22,3⎛⎫- ⎪⎝⎭三、解答题(共70分)恒等变形得 29140c c -+=,解得7c =或2c =.又∵4c >,∴7c =. ……(6分)(2)在ABC ∆中,sin sin sin AC BC ABABC BAC ACB==∠∠∠,∴2sin sin sin 33ACBC ===πθ⎛⎫-θ ⎪⎝⎭,2sin AC =θ,2sin 3BC π⎛⎫=-θ ⎪⎝⎭. ……(8分)∴ABC ∆的周长()f θAB BC AC ++=2sin 2sin 3π⎛⎫=θ+-θ ⎪⎝⎭12sin 2⎡⎤=θ+θ+⎢⎥⎣⎦2sin 3π⎛⎫=θ++ ⎪⎝⎭ ……(10分)又∵0,3π⎛⎫θ∈ ⎪⎝⎭,∴2333πππθ<+<,∴当32ππθ+=即6πθ=时,()f θ取得最大值2+. ……(12分) 18.【解析】(Ⅰ)由表中数据得K 2的观测值k =42×(16×12-8×6)224×18×20×22=25255≈4.582>3.841. ……3分所以,据此统计有95%的把握认为参加“篮球小组”或“排球小组”与性别有关.…6分 (Ⅱ)①从“排球小组”的18位同学中,要选取3位同学. ……8分②由题知从7人中任意选出2人的方法数为21种,甲、乙两人至少有一人参加校排球队有11种方法.所以甲、乙两人至少有一人参加校排球队的概率是1121……12分//EF AB ,ABCD 为矩形, ………………7分 //EF DM ∴,又4EF =,EFMD ∴为平行四边形, ………………8分2FM ED ∴==,FCM ∴∆为正三角形 MG CF ∴⊥,MG BG G =CF ∴⊥面BGM ,CF ⊂面BFC ,∴面BGM ⊥面BFC . …………………………10分(Ⅲ)11233F BMC F BMG C BMG BMG BMG V V V S FC S ---=+=⨯⨯=⨯⨯,因为GM BG ==BM =,所以112BMG S =⨯=,所以23F BMC BMC V S -=⨯=…………………………12分20. 【解析】(1)由题意,c=1∵点(-1,22)在椭圆C 上,∴根据椭圆的定义可得:2a=,∴a=2∴b 2=a 2-c 2=1,∴椭圆C 的标准方程为x 22+y 2=1; ……4分(2)假设x 轴上存在点Q (m ,0),使得QA →•QB →=-716恒成立当直线l 的斜率为0时,A(2,0),B (-2,0),则(2-m ,0)•(-2-m ,0)= -716,∴m 2=2516,∴m=±54 ① …6分当直线l 的斜率不存在时,A(1,22),B(1,-22) 则(1-m ,22)•(1-m ,-22)= -716,∴(1-m)2=116 ∴m=54或m=34② 由①②可得m=54. ……8分下面证明m=54时,QA →•QB →= -716成立当直线l 的斜率为0时,结论成立;当直线l 的斜率不为0时,设直线l 的方程为x=ty+1,A (x 1,y 1),B (x 2,y 2) 直线方程代入椭圆方程,整理可得(t 2+2)y 2+2ty ﹣1=0,∴y 1+y 2= -2t t 2+2,y 1y 2= -1t 2+2∴,QA →•QB →=(x 1-54,y 1)• (x 2-54,y 2) =(ty 1-14)(ty 2-14)+y 1y 2=(t 2+1)y 1y 2-14t(y 1+y 2)+116= -2t 2-2+t 22(t 2+2)+116=﹣716综上,x 轴上存在点Q (54,0),使得QA →·QB →= - 716恒成立. ……12分(2)原不等式就是021ln )1(>--+x xx即()0112ln 11>⎥⎦⎤⎢⎣⎡+---+x x x x x , 令()(),112ln +--=x x x x h 则()()()011)(,0122≥+-='=x x x x h h)(x h 在()+∞,0上单调递增。

山西省忻州一中、康杰中学、临汾一中、长治二中四校2015届高三第一次联考数学文试题含解析

山西省忻州一中等四校2015届高三第一次联考数学试题(文)【试卷综析】本试卷是高三理科试卷,以基础知识和基本技能为载体,以能力测试为主导,在注重考查学科核心知识的同时,突出考查考纲要求的基本能力,重视学生科学素养运算能力的考查.知识考查注重基础、突出主干知识,兼顾覆盖面.试题重点考查:集合、不等式、复数、向量、三视图、导数、简单的线性规划、直线与圆、圆锥曲线、立体几何、数列、、三角函数的性质、三角恒等变换与解三角形、概率等;考查学生分析问题解决问题的综合能力,是份较好的试卷.第Ⅰ卷 客观卷 共60分一、选择题:(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,选出符合题目要求的一项. 请将正确选项用2B 铅笔涂黑答题纸上对应题目的答案标号)【题文】1. 已知集合{}12≥=xx M ,{}2≤=x x N ,则=N MA. [1,2]B. [0,2]C. [-1,1]D. (0,2) 【知识点】集合运算A1【答案解析】B 由题意得M= [)0,+∞ N= []2,2- ∴=N M [0,2]故选B 【思路点拨】先算出两个集合再求交集。

【题文】2. 若为虚数单位 ,则=+-+-iii 11 A. i 2- B. 0 C. i 21D. i 2 【知识点】复数的基本概念与运算L4 【答案解析】A =+-+-i i i 11-i-22i -=-i-i=-2i 故选A【思路点拨】先化简分式子分子分母同时乘以1-i 得到结果【题文】3. 集合{}{}3,2,1,3,2==B A ,从集合B A ,中各任意取一个数,则这两个数的和等于4的概率是 A. 23 B. 12 C. 13 D. 16【知识点】古典概型 K2【题文】4. 已知双曲线)0,0(12222>>=-b a by a x 的离心率为26,则此双曲线的渐近线方程为A.y=±2xB. y=±2xC. y=±22xD. y=±12x 【知识点】双曲线及其几何性质 H6 【答案解析】C ∵e =c a ==2k ,c =,则得b =,∴渐近线方程为 y =±b a x =±2x ,故选C . 【思路点拨】由离心率的值,可设a =2k ,c =,则得b =而得到渐近线方程.【题文】5. 已知等差数列{}n a 的前13项之和为39,则=++876a a a A. 6 B. 9 C. 12 D. 18 【知识点】等差数列的钱n 项和D2【思路点拨】根据等差数列的前n 项和的公式列得s 13=39,化简得到一个关系式,然后利用等差数列的通项公式表示出所求的式子,整体代入可得值。

山西省忻州第一中学2015届高三上学期期中考试化学试卷.pdf

可能用到的相对原子质量:H 1 C 12 O 16 Na 23 Al 27 Si 28 S 32 Cl 35.5 Ca 40Ba 137 注意事项: 1.本试题满分100分,考试时间90分钟。

2.交卷时只交答题卡,不交试题,答案写在试题上的无效。

一、选择题:每小题只有一个选项符合题意。

每小题3分,共48分。

1.下列说法正确的是 A.SO2、SiO2、NO2均为酸性氧化物 B.稀豆浆、硅酸、氯化铁溶液均为胶体 C.“玉兔”月球车太阳能电池帆板的材料是二氧化硅 D.常温下pH=4的NaHC2O4溶液中:c(H2C2O4)Y>Z B.氢化物的稳定性:X>Y C.化合物YR2能使品红溶液褪色 D.X、Y、Z三种元素最高价氧化物的水化物的酸性最强的是Z 5.设NA为阿伏加德罗常数的值,下列叙述中正确的是 A.标准状况下,1.8 g H2O所含有的质子数为 B.1 L 1 mol/L的Na2CO3溶液中含有的CO32-数目为 C.25℃时,1 L pH=13的 Ba(OH)2溶液中含有的OH-数目为0.2 D.标准状况下,2.24 L 氯气与过量的氢氧化钠溶液完全反应转移的电子数为0.2 6、下列各组离子在碱性条件下能大量共存,而在强酸性条件下能发生氧化还原反应的是A. Mg2+、Na+、SO42-、Cl—B. K+、CO32-、Cl—、NO3—C. NH4+、Na+、SO42-、NO3—D. Na+、K+、NO3—、SO32— 7.下列实验操作能达到预期实验目的的是 实验目的实验操作A鉴别CO32-和 SO42-分别加入饱和CaCl2溶液B比较Al和Fe的金属活动性分别加入浓NaOH溶液C比较苯酚和乙酸的酸性分别加入NOH溶液D比较AgCl和AgI的溶解度向AgCl的饱和液中加少量KI溶液8.强酸性溶液X中可能含有Na+、K+、NH4+、Fe2+、A13+、CO32-、SO32-、SO42-、C1-中的若干种,某同学为了确认其成分,取X溶液进行连续实验,实验过程及产物如下: 下列结论正确的是 A.X中不能确定的离子是 A13+、Na+、K+和C1- B.气体F经催化氧化可直接生成气体D C.沉淀C一定是BaSO4、 沉淀G一定是Fe(OH)3 、沉淀I一定是Al(OH )3 D.X中肯定存在Na+、Fe2+、A13+、NH4+、SO42- 9.被称为万能还原剂的NaBH4溶于水并和水发生反应: NaBH4+2H2O=NaBO2+4H2↑,下列说法中正确的是(NaBH4中H为-1价) A.NaBH4是氧化剂,H2O是还原剂 B.被氧化的元素与被还原的元素质量比为11 C.硼元素被氧化,氢元素被还原 D. NaBH4既是氧化剂又是还原剂 10 .科学家从化肥厂生产的(NH4)2SO4中检出化学式为N4H4(SO4)2的物质,该物质的晶体中含有SO42-和N4H44+两种离子,当N4H44+遇到碱性溶液时,会生成N4分子。

高三数学月考试题及答案-忻州一中、康杰中学、长治二中、临汾一中2015届高三第三次四校联考(文)

2015年山西省四校联考高考三模(文科)一、选择题(在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项用2B铅笔涂黑答题纸上对应题目的答案标号)1.(5分)设全集为R,集合A={x∈R|x2<4},B={x|﹣1<x≤4},则A∩(∁R B)=()A.(﹣1,2)B.(﹣2,﹣1)C.(﹣2,﹣1] D.(﹣2,2)【考点】交、并、补集的混合运算.【专题】集合.【分析】根据集合的基本运算,进行计算即可.【解析】解:由A={x∈R|x2<4}={x|﹣2<x<2},∵B={x|﹣1<x≤4},∴∁R B={x|x>4或x≤﹣1},则A∩(∁R B)={x|﹣2<x≤﹣1},故选:C【点评】本题主要考查集合的基本运算,要求熟练掌握集合的交并补运算,比较基础.2.(5分)已知复数z=(i为虚数单位),则z的共轭复数是()A.i B.1+i C.﹣i D.1﹣i【考点】复数代数形式的乘除运算;复数的基本概念.【专题】数系的扩充和复数.【分析】利用复数的运算法则、共轭复数的定义即可得出.【解析】解:∵复数z====﹣i,则z的共轭复数i.故选:A.【点评】本题考查了复数的运算法则、共轭复数的定义,属于基础题.3.(5分)若等比数列{a n}满足a1+a3=20,a2+a4=40,则公比q=()A.1 B.2 C.﹣2 D.4【考点】等比数列的通项公式.【专题】等差数列与等比数列.【分析】直接利用等比数列的通项公式化简求解即可.【解析】解:等比数列{a n}满足a1+a3=20,a2+a4=40,可得==q==2.故选:B.【点评】本题考查等比数列的通项公式的应用,基本知识的考查.4.(5分)若椭圆+=1(a>b>0)的离心率为,则双曲线﹣=1的渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x【考点】双曲线的简单性质;椭圆的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】通过椭圆的离心率,得到ab的关系式,然后求解双曲线的渐近线方程.【解析】解:椭圆+=1(a>b>0)的离心率为,可得,可得,解得,∴双曲线﹣=1的渐近线方程为:y=±x.故选:A.【点评】本题考查双曲线的简单性质的应用,椭圆的基本性质,考查计算能力.5.(5分)已知命题p:∃x∈R,使2x>3x;命题q:∀x(0,),tanx>sinx下列是真命题的是()A.(﹣p)∧q B.(﹣p)∨(﹣q)C.p∧(﹣q)D.p∨(﹣q)【考点】复合命题的真假.【专题】简易逻辑.【分析】对于命题p,容易发现x=﹣1时,2x>3x成立,所以命题p是真命题;对于∀x∈,,所以便可得到tanx>sinx,所以命题q是真命题,然后根据¬p,p∧q,p∨q的真假和p,q真假的关系即可找出正确选项.【解析】解:x=﹣1时,2x>3x,∴命题p是真命题;,x;∴0<cosx<1,sinx>0;∴,;即tanx>sinx,∴命题q是真命题;∴¬p是假命题,(¬p)∧q是假命题,¬q是假命题,(¬p)∨(¬q)是假命题,p∧(¬q)是假命题,p∨(¬q)为真命题.故选D.【点评】考查指数函数的值域,指数函数的图象,正弦函数、余弦函数的值域,切化弦公式,以及真假命题的概念,¬p,p∧q,p∨q真假和p,q真假的关系.6.(5分)已知某几何体的三视图如图所示,则该几何体的体积为()A.B.C.8πD.【考点】由三视图求面积、体积.【专题】空间位置关系与距离.【分析】几何体是圆柱挖去等高的圆锥,根据三视图知圆锥的底面为圆柱的底面,圆柱和圆柱高相等,进而可得答案.【解析】解:由已知的三视图可得:该几何体是一个圆柱挖去同底同高的一个圆锥所得的组合体,根据三视图可得:圆柱和圆锥的底面半径r=2,高h=2,故组合体的体积V=πr2hπr2h=πr2h=,故选:B.【点评】本题考查的知识点是由三视图求体积和表面积,根据三视图分析出几何体的形状是解答的关键.7.(5分)在面积为S的△ABC内部任取一点P,则△PBC的面积大于的概率为()A.B.C.D.【考点】几何概型.【专题】概率与统计.【分析】在三角形ABC内部取一点P,要满足得到的三角形PBC的面积是原三角形面积的,P点应位于图中DE的下方,然后用阴影部分的面积除以原三角形的面积即可得到答案【解析】解:记事件A={△PBC的面积超过},基本事件是三角形ABC的面积,(如图)事件A的几何度量为图中阴影部分的面积(DE∥BC并且AD:AB=3:4),因为阴影部分的面积是整个三角形面积的()2=,所以P(A)=.故选:D.【点评】本题考查了几何概型,解答此题的关键在于明确测度比是面积比,是基础的计算题.8.(5分)如果执行如图的程序框图,那么输出的值是()A.2016 B.2 C.D.﹣1【考点】程序框图.【专题】算法和程序框图.【分析】执行程序框图,依次写出每次循环得到的S,k的值,当k=2016时,不满足条件k<2016,退出循环,输出S的值为2.【解析】解:执行程序框图,可得S=2,k=0满足条件k<2016,S=﹣1,k=1满足条件k<2016,S=,k=2满足条件k<2016,S=2,k=3满足条件k<2016,S=﹣1,k=4…观察可知S的取值周期为3,由2016=672×3满足条件k<2016,S=,k=2015满足条件k<2016,S=2,k=2016不满足条件k<2016,退出循环,输出S的值为2.故选:B.【点评】本题主要考察了程序框图和算法,观察取值规律得S的取值周期为3是解题的关键,属于基础题.9.(5分)已知函数f(x)=,则函数y=f(1﹣x)的大致图象()A.答案AB.答案BC.答案CD.答案D【考点】对数函数的图像与性质;指数函数的图像与性质.【专题】数形结合.【分析】排除法,观察选项,当x=0时y=3,故排除A,D;判断此函数在x>0时函数值的符号,可知排除B,从而得出正确选项.【解析】解:∵当x=0时y=3,故排除A,D;∵1﹣x≤1时,即x≥0时,∴f(1﹣x)=3 1﹣x>0,∴此函数在x>0时函数值为正,排除B,故选C.【点评】利用函数的性质分析本题,本题有助于使学生更好的掌握分析函数图象的一般方法.10.(5分)在半径为10cm的球面上有A,B,C三点,如果AB=8,∠ACB=60°,则球心O到平面ABC的距离为()A.2cm B.4cm C.6cm D.8cm【考点】点、线、面间的距离计算.【专题】空间位置关系与距离.【分析】设A、B、C三点所在圆的半径为r,在△ABC中,由正弦定理可求得其外接圆的直径,由此几何体的结构特征知,用勾股定理求球心O到平面ABC的距离即可.【解析】解:设A、B、C三点所在圆的半径为r,由题意在△ABC中,AB=8cm,∠ACB=60°,由正弦定理可求得其外接圆的直径为=16,即半径为r=8cm又球心在面ABC上的射影是△ABC外心,故球心到面的距离,求的半径、三角形外接圆的半径三者构成了一个直角三角形设球面距为d,球半径为10cm,故有d2=102﹣82=36,解得d=6cm.故选C.【点评】本题考点是点、线、面间的距离的计算,考查球中球面距的计算,此类问题建立方程的通常是根据由球面距、球半径、截面圆的半径三者构成的直角三角形,由勾股定理建立函数模型求值11.(5分)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的部分图象如图所示,则y=f(x+)取得最小值时x的集合为()A.{x|x=kπ﹣,k∈z} B.{x|x=kπ﹣,k∈z}C.{x|x=2kπ﹣,k∈z} D.{x|x=2kπ﹣,k∈z}【考点】函数y=Asin(ωx+φ)的图象变换.【专题】三角函数的图像与性质.【分析】由图象求出四分之一周期,进一步得到周期,再由求得ω,由五点作图的第二点求得φ,则函数解析式可求,由x+的终边落在y轴负半轴上求得x,得到y=f (x+)取得最小值时x的集合.【解析】解:由图可知,,则T=π.∴.由五点作图的第二点知,φ=,∴φ=﹣.∴f(x)=sin(2x﹣).则y=f(x+)=sin[2(x+)﹣]=sin(2x+).由,得:.∴y=f(x+)取得最小值时x的集合为{x|x=kπ﹣,k∈z}.故选:B.【点评】本题考查y=Asin(ωx+φ)型函数的图象和性质,考查了由y=Asin(ωx+φ)的部分图象求函数解析式,解答的关键是由五点作图的某一点求φ,是中档题.12.(5分)已知点A是抛物线x2=4y的对称轴与准线的交点,点B为抛物线的焦点,P在抛物线上且满足|PA|=m|PB|,当m取最大值时,点P恰好在以A,B为焦点的双曲线上,则双曲线的离心率为()A.B.C.+1 D.﹣1【考点】双曲线的简单性质.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】过P作准线的垂线,垂足为N,则由抛物线的定义,结合|PA|=m|PB|,可得=,设PA的倾斜角为α,则当m取得最大值时,sinα最小,此时直线PA与抛物线相切,求出P的坐标,利用双曲线的定义,即可得出结论.【解析】解:过P作准线的垂线,垂足为N,则由抛物线的定义可得|PN|=|PB|,∵|PA|=m|PB|,∴|PA|=m|PN|∴=设PA的倾斜角为α,则sinα=,当m取得最大值时,sinα最小,此时直线PA与抛物线相切,设直线PM的方程为y=kx﹣1,代入x2=4y,可得x2=4(kx﹣1),即x2﹣4kx+4=0,∴△=16k2﹣16=0,∴k=±1,∴P(2,2),∴双曲线的实轴长为PA﹣PB=2(﹣1)∴双曲线的离心率为=+1.故选C.【点评】本题考查抛物线的性质,考查双曲线、抛物线的定义,考查学生分析解决问题的能力,当m取得最大值时,sinα最小,此时直线PA与抛物线相切,是解题的关键.二、填空题(本大题共4小题,每小题5分,共20分,把答案填在答题纸的相应位置上)13.(5分)已知向量=(1,x),=(x﹣1,2),若,则x=2或﹣1.【考点】平行向量与共线向量.【专题】平面向量及应用.【分析】利用向量平行的坐标关系解答.【解析】解:因为,所以1×2=x(x﹣1),解得x=2或者﹣1;故答案为:2或﹣1.【点评】本题考查了平面向量平行的坐标关系;属于基础题.14.(5分)设变量x,y满足约束条件,则的最小值是1.【考点】简单线性规划.【专题】数形结合;不等式的解法及应用.【分析】由约束条件作出可行域,利用的几何意义结合两点连线的斜率得答案.【解析】解:由约束条件件作出可行域如图,联立,解得A(3,2),的几何意义为可行域内的动点与定点P(1,0)连线的斜率,则其最小值为.故答案为:1.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,考查了数学转化思想方法,是中档题.15.(5分)设数列{a n}满足a2+a4=10,点P n(n,a n)对任意的n∈N+,都有向量=(1,2),则数列{a n}的前n项和S n=n2+n.【考点】数列与向量的综合.【专题】等差数列与等比数列.【分析】由已知得a n}等差数列,公差d=2,将a2=a1+2,代入a2+a4=10,中,得a1=2,由此能求出{a n}的前n项和S n.【解析】解:∵P n(n,a n),∴P n+1(n+1,a n+1),∴=(1,a n+1﹣a n)=(1,2),∴a n+1﹣a n=2,∴{a n}等差数列,公差d=2,将a2=a1+2,a4=a1+6代入a2+a4=10中,解得a1=2,∴a n=2+(n﹣1)×2=2n,∴S n==n2+n.故答案为:n2+n.【点评】本题考查数列的前n项和的求法,是中档题,解题时要认真审题,注意等差数列的性质的合理运用.16.(5分)已知函数f(x)=,若函数g(x)=f(x)﹣x﹣b有且仅有两个零点,则实数b的取值范围是0<b<.【考点】函数的零点与方程根的关系.【专题】计算题;作图题;函数的性质及应用;导数的综合应用.【分析】由题意可转化为函数f(x)=与函数y=x+b的图象有且仅有两个交点,从而作图求解即可.【解析】解:∵函数g(x)=f(x)﹣x﹣b有且仅有两个零点,∴函数f(x)=与函数y=x+b的图象有且仅有两个交点,作函数f(x)=与函数y=x+b的图象如下,当b=0时,有一个交点,是一个临界值,当直线y=x+b与f(x)=相切时,f′(x)==;故切点为(1,1);故b=1﹣=;结合图象可得,0<b;故答案为:0<b.【点评】本题考查了导数的应用,函数图象的作法及函数的零点与函数的图象的交点的关系应用等,同时考查了数形结合的思想应用,属于中档题.三、解答题(本大题6小题,共70分,解答应写出文字说明、证明过程或演算步骤,并把解答写在答卷纸的相应位置上)17.(12分)在△ABC中,内角A,B,C所对的边分别为a,b,c,若4sinAsinB﹣4cos2=﹣2.(1)求角C的大小;(2)已知=4,△ABC的面积为8.求边长c的值.【考点】余弦定理;正弦定理.【专题】解三角形.【分析】(1)由已知等式化简可得cos(A+B)=﹣,结合角的范围即可求得C的大小.(2)由已知及正弦定理求得b,又S△ABC=8,C=从而解得a,由余弦定理即可解得c的值.【解析】解:(1)由条件得4sinAsinB=2(2cos2﹣1)+,即4sinAsinB=2cos(A﹣B)+=2(cosAcosB+sinAsinB)+,…(2分)化简得cos(A+B)=﹣,…(4分)∵0<A+B<π,∴A+B=,又A+B+C=π,∴C=,…(6分)(2)由已知及正弦定理得b=4,…(8分)又S△ABC=8,C=,∴absinC=8,得a=4,…(10分)由余弦定理c2=a2+b2﹣2abcosC得c=4.…(12分)【点评】本题主要考查了正弦定理,余弦定理,三角形面积公式,三角函数恒等变换的应用,解题时注意分析角的范围,属于基本知识的考查.18.(12分)如图所示,茎叶图记录了甲、乙两组各四名同学完成某道数学题的得分情况.乙组某个数据的个位数模糊,记为x,已知甲、乙两组的平均成绩相同.(1)求x的值,并判断哪组学生成绩更稳定;(2)在甲、乙两组中各抽出一名同学,求这两名同学的得分之和低于20分的概率.【考点】极差、方差与标准差;茎叶图.【专题】概率与统计.【分析】(1)根据两组数据的平均数相等,可得x的值,进而求出两组数据的方差,比较可得哪组学生成绩更稳定;(2)分别计算在甲、乙两组中各抽出一名同学及成绩和低于20分的取法种数,代入古典概型概率公式,可得答案.【解析】解:(1)=(9+9+11+11)=10,=(8+9+10+x+12)=10,解得:x=1 …(2分),又=[(9﹣10)2+(9﹣10)2+(11﹣10)2+(11﹣10)2]=1;=[(8﹣10)2+(9﹣10)2+(11﹣10)2+(12﹣10)2]=,…(4分)∴<,∴甲组成绩比乙组稳定.…(6分)(2)记甲组4名同学为:A1,A2,A3,A4;乙组4名同学为:B1,B2,B3,B4;分别从甲乙两组中各抽取一名同学所有可能的结果为:(A1,B1),(A1,B2),(A1,B3),(A1,B4)(A2,B1),(A2,B2),(A2,B3),(A2,B4),(A3,B1),(A3,B2),(A3,B3),(A3,B4),(A4,B1),(A4,B2),(A4,B3),(A4,B4),共16个基本事件,其中得分之和低于(20分)的共6个基本事件,…(10分)∴得分之和低于(20分)的概率是:P==.…(12分)【点评】本题考查了古典概型概率计算公式,茎叶图,掌握古典概型概率公式:概率=所求情况数与总情况数之比是解题的关键.19.(12分)如图,AB是圆O的直径,点C在圆O上,矩形DCBE所在的平面垂直于圆O 所在的平面,AB=4,BE=1.(1)证明:平面ADE⊥平面ACD;(2)当三棱锥C﹣ADE的体积最大时,求点C到平面ADE的距离.【考点】棱柱、棱锥、棱台的体积;平面与平面垂直的判定;点、线、面间的距离计算.【专题】空间位置关系与距离.【分析】(1)BC⊥AC,CD⊥BC.推出DE⊥平面ACD,然后证明平面ADE⊥平面ACD.(2)通过V C﹣ADE=V E﹣ACD,求出棱锥的体积的最大值,求解底面面积,设点C到平面ADE 的距离为h,利用体积公式求出距离即可,【解析】(1)∵AB是直径,∴BC⊥AC,…(1分),又四边形DCBE为矩形,CD⊥DE,BC∥DE,∴CD⊥BC.∵CD∩AC=C,∴BC⊥平面ACD,∴DE⊥平面ACD …(4分)又DE⊂平面ADE,∴平面ADE⊥平面ACD …(6分)(2)解:由(1)知V C﹣ADE=V E﹣ACD====,…(8分),当且仅当AC=BC=2时等号成立…(9分),∴当AC=BC=2三棱锥C﹣ADE体积最大为:…(10分),此时,AD=,,设点C到平面ADE的距离为h,则∴h=…(12分)【点评】本题考查几何体的体积的求法,基本不等式在最值中的应用,考查在与平面垂直的判定定理以及平面与平面垂直的判定定理的应用,考查转化思想以及计算能力.20.(12分)已知点A(1,0),点P是圆C:(x+1)2+y2=8上的任意一点,线段PA的垂直平分线与直线CP交于点E.(1)求点E的轨迹方程;(2)若直线y=kx+m与点E的轨迹有两个不同的交点P和Q,且原点O总在以PQ为直径的圆的内部,求实数m的取值范围.【考点】直线与圆锥曲线的综合问题;轨迹方程.【专题】圆锥曲线的定义、性质与方程.【分析】(1)利用已知条件推出轨迹方程为椭圆,即可轨迹方程.(2)设P(x1,y1),Q(x2,y2),则将直线与椭圆的方程联立,消去y,利用判别式以及韦达定理,通过数量积小于0,求出m、k的关系式,求出结果即可.【解析】解:(1)由题意知|EP|=|EA|,|CE|+|EP|=2,∴|CE|+|EA|=2>2=|CA|,∴E的轨迹是以C、A为焦点的椭圆,其轨迹方程为:…(4分)(2)设P(x1,y1),Q(x2,y2),则将直线与椭圆的方程联立得:,消去y,得:(2k2+1)x2+4kmx+2m2﹣2=0,△>0,m2<2k2+1…①x1+x2=,x1x2=…(6分)因为O在以PQ为直径的圆的内部,故,即x1x2+y1y2<0 …(7分)而y1y2=(kx1+m)(kx2+m)=,由x1x2+y1y2=…(9分)得:,∴,且满足①式M的取值范围是.…(12分)【点评】本题考查轨迹方程的求法,椭圆的简单性质的应用,直线与椭圆位置关系的综合应用,考查分析问题解决问题的能力.21.(12分)设函数,f(x)=lnx+,k∈R.(1)若曲线y=f(x)在点(e,f(e))处的切线与直线x﹣2=0垂直,求f(x)的单调递减区间和极小值(其中e为自然对数的底数);(2)若对任意x1>x2>0,f(x1)﹣f(x2)<x1﹣x2恒成立,求k的取值范围.【考点】导数在最大值、最小值问题中的应用;利用导数研究曲线上某点切线方程.【专题】导数的概念及应用;导数的综合应用.【分析】(1)先利用导数的几何意义求出k的值,然后利用导数求该函数单调区间及其极值;(2)由题意可知,函数f(x)﹣x在(0,+∞)上递增,即该函数的导数大于等于零在(0,+∞)恒成立,然后转化为导函数的最值问题来解.【解析】解:(1)由已知得.∵曲线y=f(x)在点(e,f(e))处的切线与直线x﹣2=0垂直,∴此切线的斜率为0.即f′(e)=0,有,解得k=e.∴,由f′(x)<0得0<x<e,由f′(x)>0得x>e.∴f(x)在(0,e)上单调递减,在(e,+∞)上单调递增,当x=e时f(x)取得极小值.故f(x)的单调递减区间为(0,e),极小值为2.(2)条件等价于对任意x1>x2>0,f(x1)﹣x1<f(x2)﹣x2(*)恒成立.设h(x)=f(x)﹣x=lnx+.∴(*)等价于h(x)在(0,+∞)上单调递减.由在(0,+∞)上恒成立,得恒成立.所以(对k=,h′(x)=0仅在x=时成立),故k的取值范围是[,+∞).【点评】本题考查了导数的几何意义(切线问题)以及利用导数如何研究函数单调性、极值的基本思路,属于基础题型.22.(10分)如图,已知圆O外有一点P,作圆O的切线PM,M为切点,过PM的中点N,作割线NAB,交圆于A、B两点,连接PA并延长,交圆O于点C,连续PB交圆O于点D,若MC=BC.(1)求证:△APM∽△ABP;(2)求证:四边形PMCD是平行四边形.【考点】与圆有关的比例线段;相似三角形的判定.【专题】证明题.【分析】(I)由切割线定理,及N是PM的中点,可得PN2=NA•NB,进而=,结合∠PNA=∠BNP,可得△PNA∽△BNP,则∠APN=∠PBN,即∠APM=∠PBA;再由MC=BC,可得∠MAC=∠BAC,再由等角的补角相等可得∠MAP=∠PAB,进而得到△APM∽△ABP (II)由∠ACD=∠PBN,可得∠PCD=∠CPM,即PM∥CD;由△APM∽△ABP,PM是圆O的切线,可证得∠MCP=∠DPC,即MC∥PD;再由平行四边形的判定定理得到四边形PMCD是平行四边形.【解析】证明:(Ⅰ)∵PM是圆O的切线,NAB是圆O的割线,N是PM的中点,∴MN2=PN2=NA•NB,∴=,又∵∠PNA=∠BNP,∴△PNA∽△BNP,∴∠APN=∠PBN,即∠APM=∠PBA,.∵MC=BC,∴∠MAC=∠BAC,∴∠MAP=∠PAB,∴△APM∽△ABP…(5分)(Ⅱ)∵∠ACD=∠PBN,∴∠ACD=∠PBN=∠APN,即∠PCD=∠CPM,∴PM∥CD.∵△APM∽△ABP,∴∠PMA=∠BPA∵PM是圆O的切线,∴∠PMA=∠MCP,∴∠PMA=∠BPA=∠MCP,即∠MCP=∠DPC,∴MC∥PD,∴四边形PMCD是平行四边形.…(10分)【点评】本题考查的知识点是切割线定理,圆周角定理,三角形相似的判定与性质,平行四边形的判定,熟练掌握平面几何的基本定理是解答本题的关键.23.(2015•玉林模拟)在直角坐标系xOy中,圆C的参数方程(φ为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.(Ⅰ)求圆C的极坐标方程;(Ⅱ)直线l的极坐标方程是ρ(sinθ+)=3,射线OM:θ=与圆C的交点为O,P,与直线l的交点为Q,求线段PQ的长.【考点】简单曲线的极坐标方程;直线与圆的位置关系.【专题】直线与圆.【分析】(I)圆C的参数方程(φ为参数).消去参数可得:(x﹣1)2+y2=1.把x=ρcosθ,y=ρsinθ代入化简即可得到此圆的极坐标方程.(II)由直线l的极坐标方程是ρ(sinθ+)=3,射线OM:θ=.可得普通方程:直线l,射线OM.分别与圆的方程联立解得交点,再利用两点间的距离公式即可得出.【解析】解:(I)圆C的参数方程(φ为参数).消去参数可得:(x﹣1)2+y2=1.把x=ρcosθ,y=ρsinθ代入化简得:ρ=2cosθ,即为此圆的极坐标方程.(II)如图所示,由直线l的极坐标方程是ρ(sinθ+)=3,射线OM:θ=.可得普通方程:直线l,射线OM.联立,解得,即Q.联立,解得或.∴P.∴|PQ|==2.【点评】本题考查了极坐标化为普通方程、曲线交点与方程联立得到的方程组的解的关系、两点间的距离公式等基础知识与基本方法,属于中档题.24.设函数f(x)=|x+2|+|x﹣2|,x∈R.不等式f(x)≤6的解集为M.(1)求M;(2)当a,b∈M时,证明:3|a+b|≤|ab+9|.【考点】绝对值不等式的解法.【专题】不等式的解法及应用.【分析】(1)由条件利用绝对值的意义求出不等式f(x)≤6的解集M.(2)用分析法证明此不等式,分析使此不等式成立的充分条件为(a2﹣9)(9﹣b2)≤0,而由条件a,b∈M可得(a2﹣9)(9﹣b2)≤0成立,从而证得要证的不等式.【解析】解:(1)不等式即|x+2|+|x﹣2|≤6,而|x+2|+|x﹣2|表示数轴上的x对应点到﹣2、2对应点的距离之和,﹣3和3对应点到﹣2、2对应点的距离之和正好等于6,故不等式的解集为M=[﹣3,3].(2)要证3|a+b|≤|ab+9|,只要证9(a+b)2≤(ab+9)2,即证:9(a+b)2﹣(ab+9)2=9(a2+b2+2ab)﹣(a2•b2+18ab+81)=9a2+9b2﹣a2•b2﹣81=(a2﹣9)(9﹣b2)≤0,而由a,b∈M,可得﹣3≤a≤3,﹣3≤b≤3,∴(a2﹣9)≤0,(3﹣b2)≥0,∴(a2﹣9)(9﹣b2)≤0成立,故要证的不等式3|a+b|≤|ab+9|成立.【点评】本题主要考查绝对值的意义、绝对值不等式的解法,用分析法证明不等式,体现了转化的数学思想,属于中档题.。

山西省忻州一中2015届高三上学期1月月考数学试卷(文科)

山西省忻州一中2015届高三上学期1月月考数学试卷(文科)一、选择题(本大题共12小题,每小题5分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U={x∈N*|x<6},集合A={1,3},B={1,3,5},则∁U(A∪B)等于( ) A.{1,4} B.{1,5} C.{2,5} D.{2,4}考点:交、并、补集的混合运算.专题:集合.分析:先求出全集U,再求出AUB,从而求出其补集.解答:解:∵U={1,2,3,4,5},AUB={1,3,5},∴∁U(A∪B)={2,4},故选:D.点评:本题考查了交集,并集,补集的运算,是一道基础题.2.i为虚数单位,复数在复平面内对应的点到原点的距离为( )A.B.C.1 D.考点:复数的代数表示法及其几何意义;复数求模.专题:数系的扩充和复数.分析:利用复数代数形式的乘除运算化简,求出复数在复平面内对应的点的坐标,由点到直线的距离公式得答案.解答:解:==.∴复数在复平面内对应的点的坐标为(),∴复数在复平面内对应的点到原点的距离为.故选:B.点评:本题考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,是基础题.3.阅读如图所示的程序框图,若输入m=5,n=3,则输出a,i分别是( )A.a=15,i=3 B.a=15,i=5 C.a=10,i=3 D.a=8,i=4考点:程序框图.专题:算法和程序框图.分析:根据题意,模拟程序框图的运行过程,即可得出该程序输出的结果是什么.解答:解:开始,m=5,n=3,i=1;第一次循环:a=5×1=5,i=1+1=2;第二次循环:a=5×2=10,i=2+1=3;第次循环:a=5×3=15,满足判断框中的条件,输出a=15,i=3;故选A.点评:本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.4.已知向量+=(2,﹣8),﹣=(﹣8,16),则与夹角的余弦值为( )A.B.C.D.考点:数量积表示两个向量的夹角.专题:计算题;平面向量及应用.分析:利用向量坐标关系,求出=(﹣3,4),=(5,﹣12),再利用cosθ=求解即可.解答:解:由向量,,得=(﹣3,4),=(5,﹣12),所以||=5,||=13,=﹣63,即与夹角的余弦值cosθ==.故选:B.点评:本题考查向量运算的坐标表示,夹角的计算,属于基础题.5.下列说法正确的是( )A.要得到函数的图象,只要将y=sin2x的图象向左平移单位B.“a=2”是“函数f(x)=log a x在区间(0,+∞)上为增函数”的必要不充分条件C.若定义在(﹣∞,+∞)上的函数满足f(x+1)=﹣f(x),则f(x)是周期函数D.命题“∃x∈(﹣∞,0),2x<3x”是真命题考点:命题的真假判断与应用.专题:简易逻辑.分析:A.要得到函数的图象,只要将y=sin2x的图象向左平移单位;B.“a=2”是“函数f(x)=log a x在区间(0,+∞)上为增函数”的充分不必要条件;C.由于f(x+2)=﹣f(x+1)=f(x)是周期为2的函数,即可判断出;D.命题“∃x∈(﹣∞,0),2x<3x”是假命题.解答:解:A.要得到函数的图象,只要将y=sin2x的图象向左平移单位,不正确;B.“a=2”是“函数f(x)=log a x在区间(0,+∞)上为增函数”的充分不必要条件,不正确;C.若定义在(﹣∞,+∞)上的函数满足f(x+1)=﹣f(x),则f(x+2)=﹣f(x+1)=f(x)是周期为2的函数,正确;D.命题“∃x∈(﹣∞,0),2x<3x”是假命题,不正确.故选:C.点评:本题考查了三角函数图象变换法则、对数函数的单调性、函数的周期性、指数函数的图象与单调性、简易逻辑的判定,考查了推理能力与计算能力,属于基础题.6.现有四个函数:①y=x•sinx;②y=x•cosx;③y=x•|cosx|;④y=x•2x的图象(部分)如下:则按照从左到右图象对应的函数序号安排正确的一组是( )A.①④③②B.③④②①C.④①②③D.①④②③考点:函数的图象.专题:函数的性质及应用.分析:从左到右依次分析四个图象可知,第一个图象关于Y轴对称,是一个偶函数,第二个图象不关于原点对称,也不关于Y轴对称,是一个非奇非偶函数;第三、四个图象关于原点对称,是奇函数,但第四个图象在Y轴左侧,图象都在x轴的下方,再结合函数的解析式,进而得到答案.解答:解:分析函数的解析式,可得:①y=x•sinx为偶函数;②y=x•cosx为奇函数;③y=x•|cosx|为奇函数,④y=x•2x为非奇非偶函数且当x<0时,③y=x•|cosx|≤0恒成立;则从左到右图象对应的函数序号应为:①④②③故选:D.点评:本题考点是考查了函数图象及函数图象变化的特点,解决此类问题有借助两个方面的知识进行研究,一是函数的性质,二是函数图象要过的特殊点.7.若k∈,则k的值使得过A(1,1)可以做两条直线与圆(x﹣k)2+y2=2相切的概率等于( ) A.B.C.D.考点:几何概型;直线与圆的位置关系.专题:计算题;概率与统计.分析:由过已知点总可以作圆的两条切线,得到点在圆外,故把点的坐标代入圆的方程中得到一个关系式,让其大于0列出关于k的不等式,求出不等式的解集,最后根据几何概率的定义,求出相切的概率即可.解答:解:由题意,点(1,1)应在已知圆的外部,把点代入圆方程得:(1﹣k)2+12>2,解得:k<0或k>2.则k的值使得过A(1,1)可以做两条直线与圆(x﹣k)2+y2=2相切的概率等于=,故选C.点评:此题考查了几何概型,点与圆的位置关系,二元二次方程为圆的条件及一元二次不等式的解法.理解过已知点总可以作圆的两条切线,得到把点坐标代入圆方程其值大于0是解本题的关键.8.已知数列{a n}中满足a1=15,=2,则的最小值为( )A.10 B.2﹣1 C.9 D.考点:数列递推式.专题:等差数列与等比数列.分析:由已知得a n+1﹣a n=2n,从而a n=a1+(a2﹣a1)+(a3﹣a2)+…+(a n﹣a n﹣1)=n2﹣n+15,进而=n+﹣1,由此能求出当且仅当n=,即n=4时,取最小值4+=.解答:解:∵数列{a n}中满足a1=15,=2,∴a n+1﹣a n=2n,∴a n=a1+(a2﹣a1)+(a3﹣a2)+…+(a n﹣a n﹣1)=15+2+4+6+8+…+2(n﹣1)=15+=n2﹣n+15,∴=n+﹣1≥2﹣1,∴当且仅当n=,即n=4时,取最小值4+=.故选:D.点评:本题考查的最小值的求法,是中档题,解题时要注意累加法和均值定理的合理运用.9.某三棱锥的三视图如图所示,该三棱锥的表面积是( )A.28+6B.30+6C.56+12D.60+12考点:由三视图求面积、体积.专题:立体几何.分析:通过三视图复原的几何体的形状,利用三视图的数据求出几何体的表面积即可.解答:解:三视图复原的几何体是底面为直角边长为4和5的三角形,一个侧面垂直底面的等腰三角形,高为4,底边长为5,如图,所以S底==10,S后=,S右==10,S左==6.几何体的表面积为:S=S底+S后+S右+S左=30+6.故选:B.点评:本题考查三视图与几何体的关系,注意表面积的求法,考查空间想象能力计算能力.10.函数f(x)=lnx+ax存在与直线2x﹣y=0平行的切线,则实数a的取值范围是( ) A.(﹣∞,2]B.(﹣∞,2)C.考点:函数的零点.专题:计算题;压轴题.分析:函数F(x)=f(x)﹣a(0<a<1)的零点转化为:在同一坐标系内y=f(x),y=a的图象交点的横坐标.作出两函数图象,考查交点个数,结合方程思想,及零点的对称性,为计算提供简便.解答:解:当﹣1≤x<0时⇒1≥﹣x>0,x≤﹣1⇒﹣x≥1,又f(x)为奇函数∴x<0时,画出y=f(x)和y=a(0<a<1)的图象,如图共有5个交点,设其横坐标从左到右分别为x1,x2,x3,x4,x5,则⇒log2(1﹣x3)=a⇒x3=1﹣2a,可得x1+x2+x3+x4+x5=1﹣2a,故选D.点评:本题考查函数的图象,函数零点知识,考查函数与方程,数形结合的思想,准确画好图,把握图象的对称性是关键.二、填空题(本大题共4小题,每小题5分,共20分,把答案填在答题卡的应位置上)13.抛物线x2=ay的准线方程是y=1,则实数a的值为﹣4.考点:抛物线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:利用抛物线x2=ay的准线方程是y=即可得出.解答:解:∵抛物线x2=ay的准线方程是y=1,∴,解得a=﹣4.故答案为:﹣4.点评:本题考查了抛物线的性质,属于基础题.14.若θ∈,sin2θ=,则sinθ=.考点:二倍角的正弦;同角三角函数间的基本关系.专题:三角函数的求值.分析:由θ的范围求出2θ的范围,再由平方关系求出cos2θ,根据倍角的余弦公式变形求出sinθ的值.解答:解:由得,,∴=﹣=,∵cos2θ=1﹣2sin2θ,sinθ>0∴sinθ==,故答案为:.点评:本题考查了平方关系和倍角的余弦公式的应用,注意角的范围确定,以及三角函数值的符号问题.15.已知三棱柱ABC﹣A1B1C1的侧棱垂直于底面,各顶点都在同一球面上,若AB=AA1=2,AC=1,∠BAC=60°,则此球的表面积等于8π.考点:球的体积和表面积.专题:计算题.分析:通过已知体积求出底面外接圆的半径,确定球心为O的位置,求出球的半径,然后求出球的表面积.解答:解:在△ABC中AB=AA1=2,AC=1,∠BAC=60°,可得BC=,可得△ABC外接圆半径r=1,三棱柱ABC﹣A1B1C1的侧棱垂直于底面,三棱柱为直三棱柱,侧面BAA1B1是正方形它的中心是球心O,球的直径为:BA1=2,球半径R=,故此球的表面积为4πR2=8π故答案为:8π点评:本题是中档题,解题思路是:先求底面外接圆的半径,转化为直角三角形,求出球的半径,这是三棱柱外接球的常用方法;本题考查空间想象能力,计算能力.16.古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n个三角形数为.记第n个k边形数为N(n,k)(k≥3),以下列出了部分k边形数中第n个数的表达式:三角形数,正方形数N(n,4)=n2,五边形数,六边形数N(n,6)=2n2﹣n,…可以推测N(n,k)的表达式,由此计算N(10,24)=1000.考点:归纳推理.专题:计算题.分析:观察已知式子的规律,并改写形式,归纳可得,把n=10,k=24代入可得答案.解答:解:原已知式子可化为:,,,,由归纳推理可得,故=1100﹣100=1000故答案为:1000点评:本题考查归纳推理,观察已知式子的规律并改写形式是解决问题的关键,属基础题.三、解答题(本大题6小题,共70分,解答应写出文字说明、证明过程或演算步骤,并把解答写在答卷纸的相应位置上)17.在△ABC中,角A、B、C的对边分别为a、b、c,且满足(2b﹣c)cosA﹣acosC=0,(Ⅰ)求角A的大小;(Ⅱ)若,,试判断△ABC的形状,并说明理由.考点:正弦定理;余弦定理.专题:计算题.分析:(1)先利用正弦定理把(2b﹣c)cosA﹣acosC=0中的边转化成角的正弦,进而化简整理得sinB(2cosA﹣1)=0,求得cosA,进而求得A.(2)根据三角形面积公式求得bc,进而利用余弦定理求得b2+c2进而求得b和c,结果为a=b=c,进而判断出∴△ABC为等边三角形.解答:解:(Ⅰ)∵(2b﹣c)cosA﹣acosC=0,由正弦定理,得(2sinB﹣sinC)cosA﹣sinAcosC=0,∴2sinBcosA﹣sin(A+C)=0,sinB(2cosA﹣1)=0,∵0<B<π,∴sinB≠0,∴,∵0<A<π,∴.(Ⅱ)∵,即∴bc=3①由余弦定理可知cosA==∴b2+c2=6,②由①②得,∴△ABC为等边三角形.点评:本题主要考查了正弦定理和余弦定理的应用.考查了学生分析问题和灵活运用所学知识的能力.18.如图,在四棱锥中P﹣ABCD中,底面ABCD为菱形,∠BAD=60°,PA=PD=AD=2,点M在线段PC上,且PM=2MC,N为AD的中点.(Ⅰ)求证:BC⊥平面PNB;(Ⅱ)(只文科生做)若平面PAD⊥平面ABCD,求三棱锥P﹣NBM的体积;(只理科生做)若平面PAD⊥平面ABCD,求二面角P﹣NB﹣M的平面角的正切值.考点:二面角的平面角及求法;直线与平面垂直的判定.专题:空间位置关系与距离;空间角.分析:(Ⅰ)直接根据题中的已知条件求出线线垂直在得到线面垂直,最后转化出结论.(Ⅱ)(文科)根据面面垂直转化出线面垂直,再根据已知条件求出锥体的体积.(理科)先作出二面角的平面角,利用面面垂直和相关的线段长,再根据解三角形知识求出结果解答:证明:(I)PA=PD,N为AD的中点,∴PN⊥AD,又底面ABCD为菱形,∠BAD=60°,∴BN⊥AD,∴AD⊥平面PNB,∵AD∥BC,∴BC⊥平面PNB.(II)(文科)∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,PN⊥AD∴PN⊥平面ABCD,∴PN⊥NB,∵PA=PD=AD=2∴,∴又BC⊥平面PNB,PM=2MC,∴.(理科)作ME∥BC交PB于E点,作EF⊥NB于F点,连结MF.∵BC⊥平面PNB,∴ME⊥平面PNB,EF是MF在平面PNB上的射影∴MF⊥BN,∴∠MFE是二面角P﹣NB﹣M的平面角,∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,PN⊥AD∴PN⊥平面ABCD,∴PN⊥NB,∵PA=PD=AD=2∴,在△PBC中可知,在△PNB中∴.点评:本题考查的知识要点:线面垂直的判定定理,面面垂直的性质定理,锥体的体积公式的应用,二面角的应用.属于中等题型.19.某研究机构为了研究人的脚的大小与身高之问的关系,随机抽测了20人,得到如下数据:序号 1 2 3 4 5 6 7 8 9 10身高x(厘米)192 164 172 177 176 159 171 166 182 166脚长y(码)48 38 40 43 44 37 40 39 46 39序号11 12 13 14 15 16 17 18 19 20身高x(厘米)169 178 167 174 168 179 165 170 162 170脚长y(码)43 41 40 43 40 44 38 42 39 41 (Ⅰ)若“身高大于l75厘米”的为“高个”,“身高小于等于175厘米”的为“非高个”;“脚长大于42码”的为“大脚”,“脚长小于等于42码”的为“非大脚”.请根据上表数据完成下面的2×2列联表:高个非高个合计大脚非大脚12合计20(Ⅱ)根据题(I)中表格的数据,若按99%的可靠性要求,能否认为脚的大小与身高之间有关系?(Ⅲ)若按下面的方法从这20人中抽取1人来核查测量数据的误差:将一个标有数字1,2,3,4,5,6的正六面体骰子连续投掷两次,记朝上的两个数字的乘积为被抽取人的序号.试求:①抽到12号的概率;②抽到“无效序号(超过20号)”的概率.考点:等可能事件的概率;独立性检验.专题:计算题.分析:I)直接将数据统计填在表中即可;(Ⅱ)可直接利用独立性检验公式求得x2的值进而得出结论;(Ⅲ)求出连续投掷两次所有的结果,按古典概型计算公式进行计算即可.解答:解:(I)据题意,列出2×2列联表为:高个非高个合计大脚 5 2 7非大脚 1 12 13合计 6 14 20…(说明:黑框内的三个数据每个,黑框外合计数据有错误的暂不扣分)(II)假设H0:脚的大小与身高之间没有关系根据列联表得X2=当H0成立时,X2>7.789的概率大约为0.005,而这里8.802>7.897所以有99%的可靠性,认为脚的大小与身高之间有关.(Ⅲ)连续投掷两次所有的结果有6×6=36由古典概型的概率公式得①抽到12号的概率为;…②抽到“无效序号(超过20号)”的概率为…点评:概率与统计问题的应用难度不大,但易出现下面的一些错误:一是不能准确地掌握各计算公式,二是出现计算方面的错误.20.给定椭圆C:=1(a>b>0),称圆心在原点O,半径为的圆是椭圆C的“准圆”.若椭圆C的一个焦点为,其短轴上的一个端点到F的距离为.(Ⅰ)求椭圆C的方程和其“准圆”方程.(Ⅱ)点P是椭圆C的“准圆”上的一个动点,过点P作直线l1,l2,使得l1,l2与椭圆C都只有一个交点,且l1,l2分别交其“准圆”于点M,N.①当P为“准圆”与y轴正半轴的交点时,求l1,l2的方程;②求证:|MN|为定值.考点:直线与圆锥曲线的综合问题.专题:综合题;压轴题;分类讨论.分析:(I)由椭圆的方程与准圆的方程关系求得准圆的方程(II)(1)由准圆x2+y2=4与y轴正半轴的交点为P(0,2),设椭圆有一个公共点的直线为y=kx+2,与准圆方程联立,由椭圆与y=kx+2只有一个公共点,求得k.从而得l1,l2方程(2)分两种情况①当l1,l2中有一条无斜率和②当l1,l2都有斜率处理.解答:解:(I)因为,所以b=1所以椭圆的方程为,准圆的方程为x2+y2=4.(II)(1)因为准圆x2+y2=4与y轴正半轴的交点为P(0,2),设过点P(0,2),且与椭圆有一个公共点的直线为y=kx+2,所以,消去y,得到(1+3k2)x2+12kx+9=0,因为椭圆与y=kx+2只有一个公共点,所以△=144k2﹣4×9(1+3k2)=0,解得k=±1.所以l1,l2方程为y=x+2,y=﹣x+2.(2)①当l1,l2中有一条无斜率时,不妨设l1无斜率,因为l1与椭圆只有一个公共点,则其方程为或,当l1方程为时,此时l1与准圆交于点,此时经过点(或)且与椭圆只有一个公共点的直线是y=1(或y=﹣1),即l2为y=1(或y=﹣1),显然直线l1,l2垂直;同理可证l1方程为时,直线l1,l2垂直.②当l1,l2都有斜率时,设点P(x0,y0),其中x02+y02=4,设经过点P(x0,y0)与椭圆只有一个公共点的直线为y=t(x﹣x0)+y0,则,消去y得到x2+3(tx+(y0﹣tx0))2﹣3=0,即(1+3t2)x2+6t(y0﹣tx0)x+3(y0﹣tx0)2﹣3=0,△=2﹣4•(1+3t2)=0,经过化简得到:(3﹣x02)t2+2x0y0t+1﹣y02=0,因为x02+y02=4,所以有(3﹣x02)t2+2x0y0t+(x02﹣3)=0,设l1,l2的斜率分别为t1,t2,因为l1,l2与椭圆都只有一个公共点,所以t1,t2满足上述方程(3﹣x02)t2+2x0y0t+(x02﹣3)=0,所以t1•t2=﹣1,即l1,l2垂直.综合①②知:因为l1,l2经过点P(x0,y0),又分别交其准圆于点M,N,且l1,l2垂直,所以线段MN为准圆x2+y2=4的直径,所以|MN|=4.点评:本题主要考查直线与曲线的位置关系,通过情境设置,拓展了圆锥曲线的应用范围,同时渗透了其他知识,考查了学生综合运用知识的能力.21.已知函数f(x)=x﹣1+(a∈R,e为自然对数的底数).(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;(Ⅱ)求函数f(x)的极值;(Ⅲ)当a=1的值时,若直线l:y=kx﹣1与曲线y=f(x)没有公共点,求k的最大值.考点:利用导数研究函数的极值;利用导数研究曲线上某点切线方程.专题:导数的综合应用.分析:(Ⅰ)依题意,f′(1)=0,从而可求得a的值;(Ⅱ)f′(x)=1﹣,分①a≤0时②a>0讨论,可知f(x)在∈(﹣∞,lna)上单调递减,在(lna,+∞)上单调递增,从而可求其极值;(Ⅲ)令g(x)=f(x)﹣(kx﹣1)=(1﹣k)x+,则直线l:y=kx﹣1与曲线y=f(x)没有公共点⇔方程g(x)=0在R上没有实数解,分k>1与k≤1讨论即可得答案.解答:解:(Ⅰ)由f(x)=x﹣1+,得f′(x)=1﹣,又曲线y=f(x)在点(1,f(1))处的切线平行于x轴,∴f′(1)=0,即1﹣=0,解得a=e.(Ⅱ)f′(x)=1﹣,①当a≤0时,f′(x)>0,f(x)为(﹣∞,+∞)上的增函数,所以f(x)无极值;②当a>0时,令f′(x)=0,得e x=a,x=lna,x∈(﹣∞,lna),f′(x)<0;x∈(lna,+∞),f′(x)>0;∴f(x)在∈(﹣∞,lna)上单调递减,在(lna,+∞)上单调递增,故f(x)在x=lna处取到极小值,且极小值为f(lna)=lna,无极大值.综上,当当a≤0时,f(x)无极值;当a>0时,f(x)在x=lna处取到极小值lna,无极大值.(Ⅲ)当a=1时,f(x)=x﹣1+,令g(x)=f(x)﹣(kx﹣1)=(1﹣k)x+,则直线l:y=kx﹣1与曲线y=f(x)没有公共点,等价于方程g(x)=0在R上没有实数解.假设k>1,此时g(0)=1>0,g()=﹣1+<0,又函数g(x)的图象连续不断,由零点存在定理可知g(x)=0在R上至少有一解,与“方程g(x)=0在R上没有实数解”矛盾,故k≤1.又k=1时,g(x)=>0,知方程g(x)=0在R上没有实数解,所以k的最大值为1.点评:本题考查利用导数研究函数的极值,考查利用导数研究曲线上某点切线方程,突出分类讨论思想与等价转化思想的综合运用,属于中档题.请考生在22、23、24中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做第一个题目计分,作答时请用2B铅笔在答题卡上将所选题号后的方框涂黑.选修4-1:几何证明选讲22.(选修4﹣1:几何证明选讲)如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于D.(Ⅰ)证明:DB=DC;(Ⅱ)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径.考点:与圆有关的比例线段.专题:直线与圆.分析:(I)连接DE交BC于点G,由弦切角定理可得∠ABE=∠BCE,由已知角平分线可得∠ABE=∠CBE,于是得到∠CBE=∠BCE,BE=CE.由已知DB⊥BE,可知DE为⊙O的直径,Rt△DBE≌Rt△DCE,利用三角形全等的性质即可得到DC=DB.(II)由(I)可知:DG是BC的垂直平分线,即可得到BG=.设DE的中点为O,连接BO,可得∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°.得到CF⊥BF.进而得到Rt△BCF 的外接圆的半径=.解答:(I)证明:连接DE交BC于点G.由弦切角定理可得∠ABE=∠BCE,而∠ABE=∠CBE,∴∠CBE=∠BCE,BE=CE.又∵DB⊥BE,∴DE为⊙O的直径,∠DCE=90°.∴△DBE≌△DCE,∴DC=DB.(II)由(I)可知:∠CDE=∠BDE,DB=DC.故DG是BC的垂直平分线,∴BG=.设DE的中点为O,连接BO,则∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°.∴CF⊥BF.∴Rt△BCF的外接圆的半径=.点评:本题综合考查了圆的性质、弦切角定理、等边三角形的性质、三角形全等、三角形的外接圆的半径等知识,需要较强的推理能力、分析问题和解决问题的能力.选修4-4:坐标系与参数方程23.选修4﹣4:坐标系与参数方程极坐标系与直角坐标系xOy有相同的长度单位,以原点O为极点,以x轴正半轴为极轴.已知直线l的参数方程为,(t为参数),曲线C的极坐标方程为ρsin2θ=8cosθ.(Ⅰ)求C的直角坐标方程;(Ⅱ)设直线l与曲线C交于A、B两点,求弦长|AB|.考点:直线的参数方程;简单曲线的极坐标方程.专题:直线与圆.分析:(I)利用极坐标与直角坐标的互化公式即可得出.(2)把直线l的参数方程代入抛物线C的方程,利用参数的几何意义即可得出.解答:解:(I)由曲线C的极坐标方程为ρsin2θ=8cosθ,得ρ2sin2θ=8ρcosθ.∴y2=8x即为C的直角坐标方程;(II)把直线l的参数方程,(t为参数),代入抛物线C的方程,整理为3t2﹣16t﹣64=0,∴,.∴|AB|=|t1﹣t2|==.点评:熟练掌握极坐标与直角坐标的互化公式、直线与抛物线相交问题转化为方程联立得到根与系数的关系、直线参数方程的参数的几何意义等是解题的关键.选修4-5:不等式选讲24.对于任意的实数a(a≠0)和b,不等式|a+b|+|a﹣b|≥M•|a|恒成立,记实数M的最大值是m.(Ⅰ)求m的值;(Ⅱ)解不等式|x﹣1|+|x﹣2|≤m.考点:绝对值不等式的解法;绝对值三角不等式.专题:计算题;不等式的解法及应用.分析:(Ⅰ)由题意可得M≤,对于任意的实数a(a≠0)和b恒成立,再由≥2可得,M≤2,由此可得m的值;(Ⅱ)由于|x﹣1|+|x﹣2|表示数轴上的x对应点到1和2对应点的距离之和,而数轴上和对应点到1和2对应点的距离之和正好等于2,由此求得|x﹣1|+|x﹣2|≤2的解集.解答:解:(Ⅰ)不等式|a+b|+|a﹣b|≥M•|a|恒成立,即M≤对于任意的实数a(a≠0)和b恒成立,故只要左边恒小于或等于右边的最小值.因为|a+b|+|a﹣b|≥|(a+b)+(a﹣b)|=2|a|,当且仅当(a﹣b)(a+b)≥0时等号成立,即|a|≥|b|时,≥2成立,也就是的最小值是2,故M的最大值为2,即m=2.(Ⅱ)不等式|x﹣1|+|x﹣2|≤m即|x﹣1|+|x﹣2|≤2.由于|x﹣1|+|x﹣2|表示数轴上的x对应点到1和2对应点的距离之和,而数轴上和对应点到1和2对应点的距离之和正好等于2,故|x﹣1|+|x﹣2|≤2的解集为:{x|≤x≤}.点评:本题主要考查绝对值的意义,绝对值不等式的解法,函数的恒成立问题,属于中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014-2015学年山西省忻州一中高三(上)期中数学试卷(文科)一、选择题(每小题5分,共60分)1.(5分)已知全集U=R,集合A={x|y=log2(﹣x2+2x)},B={y|y≥1},则A∩∁U B=()A.{x|0<x<1}B.{x|x<0}C.{x|x>2}D.{x|1<x<2}2.(5分)在复平面内,复数z满足z(1+i)=1+i,则z的共轭复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)函数f(x)=ln(x+1)﹣的零点所在的大致区间是()A.(3,4) B.(2,e) C.(1,2) D.(0,1)4.(5分)已知函数f(x)=若f(2﹣x2)>f(x),则实数x的取值范围是()A.(﹣∞,﹣1)∪(2,+∞)B.(﹣∞,﹣2)∪(1,+∞)C.(﹣1,2)D.(﹣2,1)5.(5分)已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A.108cm3B.100cm3C.92cm3D.84cm36.(5分)若直线(m+2)x+3y+3=0与直线x+(2m﹣1)y+m=0平行,则实数m=()A.﹣或1 B.1 C.1或2 D.﹣7.(5分)定义:|×|=||•||•sinθ,其中θ为向量与的夹角,若||=2,||=5,•=﹣6,则|×|=()A.8 B.﹣8 C.8或﹣8 D.68.(5分)函数y=log a(|x|+1)(a>1)的图象大致是()A. B. C.D.9.(5分)如图所示为函数f(x)=2sin(ωx+φ)(ω>0,0≤φ≤)的部分图象,其中A,B两点之间的距离为5,那么f(﹣1)=()A.﹣1 B.﹣C.D.110.(5分)M(x0,y0)为圆x2+y2=a2(a>0)内异于圆心的一点,则直线x0x+y0y=a2与该圆的位置关系为()A.相切B.相交C.相离D.相切或相交11.(5分)函数f(x)=x2﹣2x,g(x)=ax+2(a>0),对∀x1∈[﹣1,2],∃x0∈[﹣1,2],使g(x1)=f(x0),则a的取值范围是()A. B. C.[3,+∞)D.(0,3]12.(5分)已知正六棱柱的12个顶点都在一个半径为3的球面上,当正六棱柱的体积最大(柱体体积=底面积×高)时,其高的值为()A.B.C.D.二、填空题(每小题5分,共20分)13.(5分)从集合{﹣1,1,2,3}中随机选取一个数记为m,从集合{﹣1,1,2}中随机选取一个数记为n,则方程=1表示双曲线的概率为.14.(5分)随机抽取某产品n件,测得其长度分别为x1,x2,…x n,则图所示的程序框图输出的s表示的样本的数字特征是.15.(5分)已知变量x,y满足,则的最大值是.16.(5分)若数列{a n}满足﹣=d(n∈N*,d为常数),别称数列{a n}为调和数列,已知数列{}为调和数列且x1+x2+…+x20=200,则x5+x16=.三、解答题(共70分)17.(10分)已知,,函数(1)求f(x)的最小正周期;(2)当时,求函数f(x)的值域.18.(12分)等比数列{a n}的各项均为正数,且2a1+3a2=1,a32=9a2a6,(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=log3a1+log3a2+…+log3a n,求数列{}的前n项和.19.(12分)在△ABC中,角A,B,C对的边分别为a,b,c,且c=2,sin(C﹣)=cosC(Ⅰ)求的值;(Ⅱ)若a+b=ab,求△ABC的面积S.△ABC20.(12分)如图所示,在四棱锥P﹣ABCD中,AB⊥AD,AD⊥DC,PA⊥底面ABCD,PA=AD=DC=AB=1,M为PC的中点,N在AB上且AN=NB.(Ⅰ)证明:MN∥平面PAD;(Ⅱ)求三棱锥B﹣PNC的体积.21.(12分)已知函数f(x)=a(x﹣1)2+lnx+1.(Ⅰ)当a=﹣时,求函数f(x)的极值;(Ⅱ)若函数f(x)在区间[2,4]上是减函数,求实数a的取值范围.22.(12分)已知椭圆+=1(a>b>0)的长轴长为4,且点(1,)在椭圆上.(Ⅰ)求椭圆的方程;(Ⅱ)过椭圆右焦点斜率为k的直线l交椭圆于A,B两点,若•=0,求直线l的方程.2014-2015学年山西省忻州一中高三(上)期中数学试卷(文科)参考答案与试题解析一、选择题(每小题5分,共60分)1.(5分)已知全集U=R,集合A={x|y=log2(﹣x2+2x)},B={y|y≥1},则A∩∁U B=()A.{x|0<x<1}B.{x|x<0}C.{x|x>2}D.{x|1<x<2}【解答】解:由A中y=log2(﹣x2+2x),得到﹣x2+2x>0,即x(x﹣2)<0,解得:0<x<2,即A={x|0<x<2},∵B={y|y≥1},全集U=R,∴∁U B={y|y<1},则A∩∁U B={x|0<x<1}.故选:A.2.(5分)在复平面内,复数z满足z(1+i)=1+i,则z的共轭复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:z(1+i)=1+i,∴z(1+i)(1﹣i)=(1+i)(1﹣i),∴2z=()+()i,∴z=+i.复数z的共轭复数为:(,﹣).在第四象限.故选:D.3.(5分)函数f(x)=ln(x+1)﹣的零点所在的大致区间是()A.(3,4) B.(2,e) C.(1,2) D.(0,1)【解答】解:∵在(0,+∞)单调递增∵f(1)=ln2﹣2<0,f(2)=ln3﹣1>0,∴f(1)f(2)<0∴函数的零点在(1,2)之间,故选:C.4.(5分)已知函数f(x)=若f(2﹣x2)>f(x),则实数x的取值范围是()A.(﹣∞,﹣1)∪(2,+∞)B.(﹣∞,﹣2)∪(1,+∞)C.(﹣1,2)D.(﹣2,1)【解答】解:∵当x=0时,两个表达式对应的函数值都为零∴函数的图象是一条连续的曲线∵当x≤0时,函数f(x)=x3为增函数;当x>0时,f(x)=ln(x+1)也是增函数∴函数f(x)是定义在R上的增函数因此,不等式f(2﹣x2)>f(x)等价于2﹣x2>x,即x2+x﹣2<0,解之得﹣2<x<1,故选:D.5.(5分)已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A.108cm3B.100cm3C.92cm3D.84cm3【解答】解:由三视图可知:该几何体是一个棱长分别为6,6,3,砍去一个三条侧棱长分别为4,4,3的一个三棱锥(长方体的一个角).∴该几何体的体积V=6×6×3﹣=100.故选:B.6.(5分)若直线(m+2)x+3y+3=0与直线x+(2m﹣1)y+m=0平行,则实数m=()A.﹣或1 B.1 C.1或2 D.﹣【解答】解:∵直线(m+2)x+3y+3=0与直线x+(2m﹣1)y+m=0平行,∴(m+2)(2m﹣1)﹣3×1=0,解得m=﹣或1经验证当m=1时,两直线重合,应舍去,故选:D.7.(5分)定义:|×|=||•||•sinθ,其中θ为向量与的夹角,若||=2,||=5,•=﹣6,则|×|=()A.8 B.﹣8 C.8或﹣8 D.6【解答】解:由数量积可得=10cosθ,解得,∵0≤θ≤π,∴.∴|×|===8.故选:A.8.(5分)函数y=log a(|x|+1)(a>1)的图象大致是()A. B. C.D.【解答】解:先画y=log a x,然后将y=log a x的图象向左平移1个单位得y=log a(x+1),再保留y=log a(x+1)图象在y轴的右边的图象,y轴左边的图象与之对称即得到函数y﹣log a(|x|+1)(a>1)的大致图象.故选:B.9.(5分)如图所示为函数f(x)=2sin(ωx+φ)(ω>0,0≤φ≤)的部分图象,其中A,B两点之间的距离为5,那么f(﹣1)=()A.﹣1 B.﹣C.D.1【解答】解:∵函数图象经过点(0,1),∴f(0)=2sinφ=1,可得sinφ=,又∵0≤φ≤,∴φ=.∵其中A、B两点的纵坐标分别为2、﹣2,∴设A、B的横坐标之差为d,则|AB|==5,解之得d=3,由此可得函数的周期T=6,得=6,解之得ω=.∴函数f(x)的解析式为f(x)=2sin(x+),可得f(﹣1)=2sin(﹣+)=﹣2sin=﹣1.故选:A.10.(5分)M(x0,y0)为圆x2+y2=a2(a>0)内异于圆心的一点,则直线x0x+y0y=a2与该圆的位置关系为()A.相切B.相交C.相离D.相切或相交【解答】解:由圆的方程得到圆心坐标为(0,0),半径r=a,由M为圆内一点得到:<a,则圆心到已知直线的距离d=>=a=r,所以直线与圆的位置关系为:相离.故选:C.11.(5分)函数f(x)=x2﹣2x,g(x)=ax+2(a>0),对∀x1∈[﹣1,2],∃x0∈[﹣1,2],使g(x1)=f(x0),则a的取值范围是()A. B. C.[3,+∞)D.(0,3]【解答】解:设f(x)=x2﹣2x,g(x)=ax+2(a>0),在[﹣1,2]上的值域分别为A、B,由题意可知:A=[﹣1,3],B=[﹣a+2,2a+2]∴∴a≤又∵a>0,∴0<a≤故选:A.12.(5分)已知正六棱柱的12个顶点都在一个半径为3的球面上,当正六棱柱的体积最大(柱体体积=底面积×高)时,其高的值为()A.B.C.D.【解答】解:以正六棱柱的最大对角面作截面,如图.设球心为O,正六棱柱的上下底面中心分别为O1,O2,则O是O1,O2的中点.设正六棱柱的底面边长为a,高为2h,则a2+h2=9.正六棱柱的体积为,即,则,得极值点,不难知道这个极值点是极大值点,也是最大值点.故当正六棱柱的体积最大,其高为.故选:B.二、填空题(每小题5分,共20分)13.(5分)从集合{﹣1,1,2,3}中随机选取一个数记为m,从集合{﹣1,1,2}中随机选取一个数记为n,则方程=1表示双曲线的概率为.【解答】解:由题意知基本事件总数为4×3=12,表示双曲线的要求为:mn<0.当m=﹣1时,n=1、2;当n=﹣1时,m=1、2、3,共5种情况.故表示双曲线的概率为:故答案为:14.(5分)随机抽取某产品n件,测得其长度分别为x1,x2,…x n,则图所示的程序框图输出的s表示的样本的数字特征是平均数.【解答】解:分析程序中各变量、各语句的作用,根据流程图所示的顺序,可知:该程序的作用是计算依次输入的n个数a1,a2,…,a n的算术平均数,即S=,根据统计中的定义,样本数据的算术平均数所表示的样本的数字特征为样本平均数.故答案为:平均数.15.(5分)已知变量x,y满足,则的最大值是1.【解答】解:由题意作出其平面区域:可看成阴影内的点与原点连线的斜率,故过点A(2,2)时,有最大值,最大值为=1.故答案为:1.16.(5分)若数列{a n}满足﹣=d(n∈N*,d为常数),别称数列{a n}为调和数列,已知数列{}为调和数列且x1+x2+…+x20=200,则x5+x16=20.【解答】解:由题意知:∵数列{}为调和数列∴∴{x n}是等差数列又∵x1+x2+…+x20=200=∴x1+x20=20又∵x1+x20=x5+x16∴x5+x16=20故答案为20.三、解答题(共70分)17.(10分)已知,,函数(1)求f(x)的最小正周期;(2)当时,求函数f(x)的值域.【解答】解:(1).=.所以f(x)的最小正周期为π.(2)∵.∴∴,即f(x)的值域为18.(12分)等比数列{a n}的各项均为正数,且2a1+3a2=1,a32=9a2a6,(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=log3a1+log3a2+…+log3a n,求数列{}的前n项和.【解答】解:(Ⅰ)设数列{a n}的公比为q,由a32=9a2a6得a32=9a42,所以q2=.由条件可知各项均为正数,故q=.由2a1+3a2=1得2a1+3a1q=1,所以a1=.故数列{a n}的通项式为a n=.(Ⅱ)b n=++…+=﹣(1+2+…+n)=﹣,故=﹣=﹣2(﹣)则++…+=﹣2[(1﹣)+(﹣)+…+(﹣)]=﹣,所以数列{}的前n项和为﹣.19.(12分)在△ABC中,角A,B,C对的边分别为a,b,c,且c=2,sin(C﹣)=cosC(Ⅰ)求的值;.(Ⅱ)若a+b=ab,求△ABC的面积S△ABC【解答】解:(Ⅰ)∵sin(C﹣)=sinCcos﹣cosCsin=cosC,∴sinC=cosC,即tanC=,又C为三角形内角,∴C=,∵c=2,∴由正弦定理得====,∴a=sinA,b=sinB,则==;(2)由余弦定理得c2=a2+b2﹣2abcosC,即4=a2+b2﹣ab=(a+b)2﹣3ab,又a+b=ab,∴(ab)2﹣3ab﹣4=0,解得:ab=4或ab=﹣1(舍去),则S=absinC=×4×=.△ABC20.(12分)如图所示,在四棱锥P﹣ABCD中,AB⊥AD,AD⊥DC,PA⊥底面ABCD,PA=AD=DC=AB=1,M为PC的中点,N在AB上且AN=NB.(Ⅰ)证明:MN∥平面PAD;(Ⅱ)求三棱锥B﹣PNC的体积.【解答】(Ⅰ)证明:过M在平面PCD内作ME∥DC交PD于E,连接AE,则ME平行且等于DC,…(2分)又DC=1,∴ME=又AB⊥AD,AD⊥DC,∴DC∥AB又AN=NB=AB=,∴ME平行且等于AN,∴EMAN为平行四边形…(4分)∴MN∥AE,∴MN∥平面PAD,…(6分)(Ⅱ)解:∵PA⊥底面ABCD,=V P﹣BNC==.…(12分)∴V B﹣PNC21.(12分)已知函数f(x)=a(x﹣1)2+lnx+1.(Ⅰ)当a=﹣时,求函数f(x)的极值;(Ⅱ)若函数f(x)在区间[2,4]上是减函数,求实数a的取值范围.【解答】(本题满分14分)解:(I)当时,…(2分)则当0<x<2时f'(x)>0,故函数f(x)在(0,2)上为增函数;当x>2时f'(x)<0,故函数f(x)在(2,+∞)上为减函数,…(5分)故当x=2时函数f(x)有极大值…(7分)(Ⅱ),因函数f(x)在区间[2,4]上单调递减,则在区间[2,4]上恒成立,…(9分)即在[2,4]上恒成立,而当2≤x≤4时,,…(12分),即,故实数a的取值范围是.…(14分)22.(12分)已知椭圆+=1(a>b>0)的长轴长为4,且点(1,)在椭圆上.(Ⅰ)求椭圆的方程;(Ⅱ)过椭圆右焦点斜率为k的直线l交椭圆于A,B两点,若•=0,求直线l的方程.【解答】解:(Ⅰ)由题意a=2,设所求椭圆方程为=1.又点(1,)在椭圆上,可得b=1.则所求椭圆方程为+y2=1;(Ⅱ)由(Ⅰ)知a2=4,b2=1,所以c=,椭圆右焦点为(,0).则直线AB的方程为y=k(x﹣).由可得(1+4k2)x2﹣8k2x+12k2﹣4=0.由于直线AB过椭圆右焦点,可知△>0.设A(x1,y1),B(x2,y2),则x1+x2=,x1x2=,y1y2=k2(x1﹣)(x2﹣)=k2[x1x2﹣(x1+x2)+3]=.所以=x1x2+y1y2=.由=0,即=0,可得k2=,即k=.所以直线l的方程为y=(x ﹣).赠送—高中数学知识点【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x=,令()u g x=,若()y f u=为增,()u g x=为增,则[()]y f g x=为增;若()y f u=为减,()u g x=为减,则[()]y f g x=为增;若()y f u=为增,()u g x=为减,则[()]y f g x=为减;若()y f u=为减,()u g x=为增,则[()]y f g x=为减.(2)打“√”函数()(0)af x x ax=+>的图象与性质()f x分别在(,-∞、)+∞上为增函数,分别在[、上为减函数.(3)最大(小)值定义yxo①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.。

相关文档
最新文档