浙教版2015-2016学年初二数学第二学期期末考试试卷及答案
15-16第二学期期末八年级数学答案

2015-2016学年第二学期期末八年级数学答案 第1页(共2页)2015—2016学年第二学期期末考试八年级数学试题参考答案及评分标准二、填空题(每小题2分,共10分)16.> 17.100 18.x >1 19.15° 或105° (只填一个答案不能得分) 20.241cm n (无单位不能得分) 三、解答题(本大题共6个小题;共60分) 21.(本题满分12分,每小题3分)(1)12 (2)2 (3)0 (4)ab 2-(以上四个小题,如果结果不正确便不能得分) 22.(本题满分8分)(1)证明:∵四边形ABCD是正方形 ∴AD ∥BC∴∠E=∠DAE---------------------------------------------------2分 ∵AC=EC∴∠E=∠CAE -------------------------------------------------4分 ∴∠DAE =∠CAE即AE 平分∠CAD --------------------------------------------5分 (2)解: ∵正方形ABCD 是正方形且边长为1 ∴∠B=90° AB=BC=1 ∴ EC =AC==--------------------------------7分∴BE=1+∴△ABE 的面积是(1+) ---------------------------8分(其他做法参照此评分标准酌情给分) 23. (本题满分10分) 解:(1)10 ----------------------------------------------------------2分 (2)∵A (1,0),B (9,0),AD=6.∴D (1,6). 将B ,D 两点坐标代入y=kx+b 中, 得, ----------------------------------------4分解得 ,---------------------------------------------6分∴. ----------------------------------8分(3)或.----------------------10分(只答对一个给1分)(第22题图)(第23题图)2015-2016学年第二学期期末八年级数学答案 第2页(共2页)24、(本小题满分10分) 解:(1)甲厂的平均数=(7+8+9+9+9+11+13+14+16+17+19)÷11=12,∴甲厂的广告利用了统计中的平均数;---------------------------------------------------------2分 由于乙厂数据中12出现3次,是众数,故乙厂的广告利用了统计中的众数;------4分 丙厂数据中的中位数是12,故丙厂的广告利用了统计中的中位数;-------------------6分(2)选用甲厂的产品.因为它的平均数较真实地反映灯管的使用寿命.----------10分(如果考生回答选用丙厂的产品.因为丙厂有一半以上的灯管使用寿命超过12个月,可得满分;如果只回答选用乙厂的产品,有适当理由也不扣分,如果没有适当理由则扣1--2分。
2016年浙教版八年级(下)期末数学常考试题100题(解析版)

浙教版八年级(下)期末数学常考试题100题参考答案与试题解析一、选择题(共33小题)1.(2015春•利辛县校级月考)已知一元二次方程mx2+n=0(m≠0),若方程有解,则必须()A.n=0 B. m,n同号C. n是m的整数倍D.m,n异号考点:解一元二次方程-直接开平方法.分析:首先求出x2的值为﹣,再根据x2≥0确定m、n的符号即可.解答:解:mx2+n=0,x2=﹣,∵x2≥0,∴﹣≥0,∴≤0,∴mn异号,故选:D.点评:此题主要考查了直接开平方法解一元二次方程,关键是表示出x2的值,根据x2的取值范围确定m、n的符号.2.(2015春•富阳市校级月考)下列方程是一元二次方程的是()A.x+2y=1 B.x=2x3﹣3 C.x2﹣2=0 D.3x+=4考点:一元二次方程的定义.分析:只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程.一元二次方程有三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程.解答:解:A、x+2y=1是二元一次方程,故错误;B、x=2x3﹣3是三元一次方程,故错误;C、x2﹣2=0,符合一元二次方程的形式,正确;D、3x+=4是分式方程,故错误,故选:C.点评:本题考查了一元二次方程的定义,要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为ax2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程.3.(2015春•定州市期中)与不是同类二次根式的是()A.B.C.D.考点:同类二次根式.分析:根据同类二次根式的意义,将题中的根式化简,找到被开方数相同者即可.解答:解:=A、=与被开方数不同,不是同类二次根式;B、=与被开方数相同,是同类二次根式;C、=与被开方数相同,是同类二次根式;D、=与被开方数相同,是同类二次根式.故选:A.点评:此题主要考查了同类二次根式的定义,即化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.4.(2015•淄博模拟)下列计算正确的是()A.=2B.•=C.﹣=D.=﹣3考点:二次根式的混合运算.分析:根据二次根式的性质化简二次根式,根据二次根式的加减乘除运算法则进行计算.二次根式的加减,实质是合并同类二次根式;二次根式相乘除,等于把它们的被开方数相乘除.解答:解:A、=2,故A错误;B、二次根式相乘除,等于把它们的被开方数相乘除,故B正确;C、﹣=2﹣,故C错误;D、=|﹣3|=3,故D错误.故选:B.点评:此题考查了二次根式的化简和二次根式的运算.注意二次根式的性质:=|a|.5.(2015•于洪区一模)如果函数y=kx﹣2(k≠0)的图象不经过第一象限,那么函数y=的图象一定在()A.第一,二象限B.第三,四象限C.第一,三象限D.第二,四象限考点:反比例函数的性质;一次函数的性质.分析:根据一次函数和反比例函数的性质,由一次函数不经第一象限,则k<0,由此反比例函数位于二、四象限.解答:解:∵函数y=kx﹣2(k≠0)的图象不经过第一象限,∴k<0,根据反比例函数的性质,函数y=的图象一定在第二、四象限.故选:D.点评:本题考查了一次函数和反比例函数的性质,应注意y=kx+b和y=中k的取值.6.(2015•永州模拟)如图:下列四个图案中既是轴对称图形,又是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据轴对称图形的定义沿一条直线对折后,直线两旁部分完全重合的图形是轴对称图形,以及中心对称图形的定义分别判断即可得出答案.解答:解:∵A.此图形沿一条直线对折后能够完全重合,∴此图形是轴对称图形,但不是中心对称图形,故此选项错误;B:此图形沿一条直线对折后能够完全重合,∴此图形是轴对称图形,也是中心对称图形,故此选项正确;C.此图形沿一条直线对折后能够完全重合,∴此图形是轴对称图形,旋转180°不能与原图形重合,不是中心对称图形,故此选项错误;D:此图形沿一条直线对折后不能够完全重合,∴此图形不是轴对称图形,是中心对称图形,故此选项错误.故选:B.点评:此题主要考查了中心对称图形与轴对称图形的定义,熟练掌握其定义是解决问题的关键.7.(2015•宜宾校级模拟)若点(3,4)是反比例函数图象上一点,则此函数图象必须经过点()A.(2,6)B.(2,﹣6)C.(4,﹣3)D.(3,﹣4)考点:反比例函数图象上点的坐标特征.专题:数形结合;函数思想.分析:根据反比例函数图象上点的坐标特征,将点(3,4)代入反比例函数,求得m2+2m﹣1值,然后再求函数图象所必须经过的点.解答:解:∵点(3,4)是反比例函数图象上一点,∴点(3,4)满足反比例函数,∴4=,即m2+2m﹣1=12,∴点(3,4)是反比例函数为y=上的一点,∴xy=12;A、∵x=2,y=6,∴2×6=12,故本选项正确;B、∵x=2,y=﹣6,∴2×(﹣6)=﹣12,故本选项错误;C、∵x=4,y=﹣3,∴4×(﹣3)=﹣12,故本选项错误;D、∵x=3,y=﹣4,∴3×(﹣4)=﹣12,故本选项错误;故选:A.点评:本题主要考查反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数.8.(2015•温州模拟)在同一坐标系中(水平方向是x轴),函数y=和y=kx+3的图象大致是()A.B.C .D.考点:反比例函数的图象;一次函数的图象.专题:数形结合.分析:根据一次函数及反比例函数的图象与系数的关系作答.解答:解:A、由函数y=的图象可知k>0与y=kx+3的图象k>0一致,故A选项正确;B、由函数y=的图象可知k>0与y=kx+3的图象k>0,与3>0矛盾,故B选项错误;C、由函数y=的图象可知k<0与y=kx+3的图象k<0矛盾,故C选项错误;D、由函数y=的图象可知k>0与y=kx+3的图象k<0矛盾,故D选项错误.故选:A.点评:本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.9.(2015•潍坊模拟)下列说法中,错误的是()A.平行四边形的对角线互相平分B.对角线互相平分的四边形是平行四边形C.菱形的对角线互相垂直D.对角线互相垂直的四边形是菱形考点:菱形的判定与性质;平行四边形的判定与性质.分析:根据平行四边形和菱形的性质对各个选项进行分析从而得到最后答案.解答:解:根据平行四边形和菱形的性质得到ABC均正确,而D不正确,因为对角线互相垂直的四边形也可能是梯形,故选:D.点评:主要考查了平行四边形和特殊平行四边形的特性,并利用性质解题.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.菱形的特性是:四边相等,对角线互相垂直平分.10.(2015•天河区一模)如图,E是边长为1的正方形ABCD的对角线BD上一点,且BE=BC,P为CE上任意一点,PQ⊥BC于点Q,PR⊥BE于点R,则PQ+PR的值是()A.B.C.D.考点:正方形的性质.分析:连接BP,利用面积法求解,PQ+PR的值等于C点到BE的距离,即正方形对角线的一半.解答:解:连接BP,过C作CM⊥BD,∵S△BCE=S△BPE+S△BPC=BC×PQ×+BE×PR×=BC×(PQ+PR)×=BE×CM×,BC=BE,∴PQ+PR=CM,∵BE=BC=1,且正方形对角线BD=BC=,又∵BC=CD,CM⊥BD,∴M为BD中点,又△BDC为直角三角形,∴CM=BD=,即PQ+PR值是.故选:D.点评:本题考查了正方形的性质以及勾股定理的运用,解题关键是作出正确的辅助线,利用全等三角形的判定和性质的应用,来化简题目.11.(2015•泰安模拟)若y1=bx和没有交点,则下列a,b的可能取值中,成立的是()A.a=1,b=1 B.a=﹣1,b=1 C.a=2,b=2 D.a=﹣2,b=﹣2考点:反比例函数与一次函数的交点问题.专题:计算题.分析:把a、b的值代入得到解析式,联立推出方程,若方程无解,说明两函数无交点,反之就有交点,进行判断即可.解答:解:A、把a=1,b=1代入得:y=x,y=,当x=时,x=±1,故本选项错误;B、同理把a=﹣1,b=1代入得:y=﹣x,y=,当x=﹣时,方程无解,图形无交点,故本选项正确;C、同理代入后得:y=2x,y=,当2x=时,x=±1,故本选项错误;D、代入得:y=﹣2x,y=,当﹣2x=﹣时,x=±1,故本选项错误;故选:B.点评:本题主要考查对反比例函数与遗传函数的交点问题的理解和掌握,能熟练地根据反比例函数与一次函数的交点问题进行说理是解此题的关键.12.(2015•石河子校级模拟)关于x的方程(3m2+1)x2+2mx﹣1=0的一个根是1,则m的值是()A.0B.﹣C.D.0或,考点:一元二次方程的解.分析:一元二次方程的根就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.解答:解:把1代入方程得3m2+1+2m﹣1=0,解得m=0或,故选:D.点评:本题的关键是把x的值代入原方程,得到一个关于待定系数的一元二次方程,然后求解.13.(2015•青岛模拟)下列四个式子中,字母a的取值可以是一切实数的是()A.B.a0C.a2D.考点:二次根式有意义的条件;分式有意义的条件;零指数幂.分析:分式有意义,分母不等于零;二次根式有意义,被开方数是非负数.解答:解:A、分式的分母a≠0.故本选项错误;B、a0中a≠0.故本选项错误;C、a2中的字母a的取值可以是一切实数.故本选项正确;D、二次根式中的被开方数a≥0.故本选项错误;故选:C.点评:本题考查了二次根式有意义的条件、分式有意义的条件以及零指数幂.注意a0中a≠0.14.(2015•平遥县模拟)一元二次方程x2﹣2x﹣1=0的根的情况为()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根考点:根的判别式.专题:计算题.分析:先计算判别式得到△=(﹣2)2﹣4×(﹣1)=8>0,然后根据判别式的意义判断方程根的情况.解答:解:根据题意△=(﹣2)2﹣4×(﹣1)=8>0,所以方程有两个不相等的实数根.故选:B.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.15.(2015•蓬溪县校级模拟)下列四个等式:①;②(﹣)2=16;③()2=4;④.正确的是()A.①②B.③④C.②④D.①③考点:二次根式的性质与化简;二次根式有意义的条件.分析:本题考查的是二次根式的意义:①=a(a≥0),②=a(a≥0),逐一判断.解答:解:①==4,正确;②=(﹣1)2=1×4=4≠16,不正确;③=4符合二次根式的意义,正确;④==4≠﹣4,不正确.①③正确.故选:D.点评:运用二次根式的意义,判断等式是否成立.16.(2015•茂名校级一模)顺次连接四边形ABCD各边中点,得到四边形EFGH,要使四边形EFGH是菱形,应添加的条件是()A.A D∥BC B.A C=BD C.A C⊥BD D.A D=AB考点:菱形的判定;三角形中位线定理.分析:菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义;②四边相等;③对角线互相垂直平分.解答:解:添加AC=BD.如图,AC=BD,E、F、G、H分别是线段AB、BC、CD、AD的中点,则EH、FG分别是△ABD、△BCD的中位线,EF、HG分别是△ABC、△ACD的中位线,∴EH=FG=BD,EF=HG=AC,∴当AC=BD时,EH=FG=FG=EF成立,则四边形EFGH是菱形.故选:B.点评:本题考查菱形的判定和三角形中位线定理.本题是开放题,可以针对各种特殊的平行四边形的判定方法,给出条件,再证明结论.17.(2015•黄冈中学自主招生)如图,在线段AE同侧作两个等边三角形△ABC和△CDE (∠ACE<120°),点P与点M分别是线段BE和AD的中点,则△CPM是()A.钝角三角形B.直角三角形C.等边三角形D.非等腰三角形考点:三角形中位线定理;等边三角形的性质.分析:首先根据等边三角形的性质,得出AC=BC,CD=CE,∠ACB=∠ECD=60°,则∠BCE=∠ACD,从而根据SAS证明△BCE≌△ACD,得∠CBE=∠CAD,BE=AD;再由点P与点M分别是线段BE和AD的中点,得BP=AM,根据SAS证明△BCP≌△ACM,得PC=MC,∠BCP=∠ACM,则∠PCM=∠ACB=60°,从而证明该三角形是等边三角形.解答:解:∵△ABC和△CDE都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠ECD=60°.∴∠BCE=∠ACD.∴△BCE≌△ACD.∴∠CBE=∠CAD,BE=AD.又点P与点M分别是线段BE和AD的中点,∴BP=AM.∴△BCP≌△ACM.∴PC=MC,∠BCP=∠ACM.∴∠PCM=∠ACB=60°.∴△CPM是等边三角形.故选:C.点评:三角形中位线性质应用比较广泛,尤其是在三角形、四边形方面起着非常重要作用,本题结合三角形全等的知识,考查了中位线定理的应用.18.(2015•黄陂区校级模拟)方程x2+8x+9=0配方后,下列正确的是()A.(x+4)2=7 B.(x+4)2=25 C.(x+4)2=﹣9 D.(x+8)2=7考点:换元法解一元二次方程.分析:先移项,再方程的两边都加上4的平方,即可得出答案.解答:解:x2+8x+9=0,x2+8x=﹣9,x2+8x+42=﹣9+42,(x+4)2=7,故选:A.点评:本题考查了解一元二次方程的应用,解此题的关键是能正确配方,题目比较好,难度适中.19.(2015•杭州模拟)已知4个数据:,,a,b,其中a、b是方程x2﹣2x﹣1=0的两个根,则这4个数据的中位数是()A.1B.C.2D.考点:解一元二次方程-公式法;中位数.分析:先求出a、b的值,再求这组数据的中位数.解答:解:∵a、b是方程x2﹣2x﹣1=0的两个根,∴a=1+,b=1﹣,或a=1﹣,b=1+,这组数据按从小到大的顺序排列为,1﹣,1+,,中位数为(1﹣+1+)÷2=1,故选:A.点评:本题考查的是一元二次方程与统计知识相结合的题目,是中等题.20.(2015•杭州模拟)如图,点A是反比例函数(x<0)的图象上的一点,过点A作平行四边形ABCD,使B、C在x轴上,点D在y轴上,则平行四边形ABCD的面积为()A.1B.3C.6D.12考点:反比例函数系数k的几何意义.专题:计算题.分析:作AH⊥OB于H,根据平行四边形的性质得AD∥OB,则S平行四边形ABCD=S矩形AHOD,再根据反比例函数y=(k≠0)系数k的几何意义得到S矩形AHOD=6,所以有S平行四边形ABCD=6.解答:解:作AH⊥OB于H,如图,∵四边形ABCD是平行四边形ABCD,∴AD∥OB,∴S平行四边形ABCD=S矩形AHOD,∵点A是反比例函数(x<0)的图象上的一点,∴S矩形AHOD=|﹣6|=6,∴S平行四边形ABCD=6.故选:C.点评:本题考查了反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.21.(2015•高青县一模)用配方法解一元二次方程x2+4x﹣5=0,此方程可变形为()A.(x+2)2=9 B.(x﹣2)2=9 C.(x+2)2=1 D.(x﹣2)2=1考点:解一元二次方程-配方法.分析:移项后配方,再根据完全平方公式求出即可.解答:解:x2+4x﹣5=0,x2+4x=5,x2+4x+22=5+22,(x+2)2=9,故选:A.点评:本题考查了解一元二次方程的应用,关键是能正确配方.22.(2015•常州模拟)下列命题,其中正确命题的个数为()(1)等边三角形是中心对称图形;(2)一组对边平行,另一组对边相等的四边形是平行四边形;(3)两条对角线互相垂直的矩形是正方形;(4)两条对角线互相垂直的四边形是菱形.A.1个B.2个C.3个D.4个考点:正方形的判定;等边三角形的性质;平行四边形的判定;菱形的判定;命题与定理.专题:应用题.分析:根据中心对称的概念以及平行四边形、正方形、菱形的判定定理进行判断即可.解答:解:(1)因为正奇边形不是中心对称图形,故等边三角形不是中心对称图形,此选项错误;(2)一组对边平行,另一组对边相等的四边形不一定是平行四边形,因为等腰梯形也符合此条件,此选项错误;(3)两条对角线互相垂直的矩形是正方形,此选项正确;(4)两条对角线互相垂直平分的四边形是菱形,此选项错误.故选:A.点评:本题考查了特殊图形的判定定理,解题的关键是熟练掌握平行四边形、正方形、菱形的各种判定定理.23.(2015春•赵县期中)下列式子一定是二次根式的是()A.B.C.D.考点:二次根式的定义.分析:根据二次根式的概念“形如(a≥0)的式子,即为二次根式”,进行分析.解答:解:根据二次根式的概念,知A、B、C中的被开方数都不会恒大于等于0,故错误;D、因为x2+2>0,所以一定是二次根式,故正确.故选:D.点评:此题考查了二次根式的概念,特别要注意a≥0的条件.24.(2014春•滕州市校级期末)面积是160平方米的长方形,它的长y米,宽x米之间的关系表达式是()C.y=160+x D.y=160﹣xA.y=160x B.y=考点:根据实际问题列反比例函数关系式.分析:此题可根据等量关系“宽=长方形的面积÷长”,把相关数值代入即可求解.解答:解:根据题意:y=,故选:B.点评:本题主要考查长方形面积公式的灵活运用,关键是找到所求量的等量关系.25.(2014春•射阳县校级期末)若,则()A.a、b互为相反数B.a、b互为倒数C.a b=5 D.a=b考点:分母有理化.分析:由a=,利用分母有理化的知识,即可将原式化简,可得a=,则可求得答案.解答:解:∵a==,b=,∴a=b.故选:D.点评:此题考查了分母有理化的知识.此题比较简单,注意将各二次根式化为最简二次根式是解此题的关键.26.(2014•宜阳县校级模拟)若一个正比例函数的图象与一个反比例函数图象的一个交点坐标是(2,3),则另一个交点的坐标是()A.(2,3)B.(3,2)C.(﹣2,3)D.(﹣2,﹣3)考点:反比例函数图象的对称性.专题:函数思想.分析:反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定关于原点对称.解答:解:∵反比例函数的图象与经过原点的直线的两个交点一定关于原点对称,∴另一个交点的坐标与点(2,3)关于原点对称,∴该点的坐标为(﹣2,﹣3).故选:D.点评:本题主要考查了反比例函数图象的中心对称性,要求同学们要熟练掌握关于原点对称的两个点的坐标的横、纵坐标都互为相反数.27.(2014•汕尾校级模拟)若y与x成反比例,x与z成反比例,则y是z的()A.正比例函数B.反比例函数C.一次函数D.不能确定考点:反比例函数的定义.分析:根据反比例函数的定义分别写出相应的解析式,根据常见函数的一般形式判断y与z 的关系即可.解答:解:∵y与x成反比例,∴y=,∵x与z成反比例,∴x=,∴y=,故选:A.点评:综合考查了反比例函数及正比例函数的关系的转换;注意用不同字母表示不同的比例系数.熟练掌握相应的函数关系式是解决本题的关键.28.(2014•嘉峪关校级模拟)如果反比例函数的图象经过点P(﹣2,﹣1),那么这个反比例函数的表达式为()A.B.C.D.考点:待定系数法求反比例函数解析式.专题:待定系数法.分析:先设y=,再把已知点的坐标代入可求出k值,即得到反比例函数的解析式.解答:解:设y=,将点(﹣2,﹣1)代入解析式可得,k=2,所以y=.故选:C.点评:此题比较简单,考查的是用待定系数法求反比例函数的解析式,是中学阶段的重点.29.(2015•讷河市校级模拟)如图,在菱形ABCD中,对角线AC、BD相交于点O,作OE∥AB,交BC于点E,则OE的长一定等于()A.B E B.A O C.A D D.O B考点:菱形的性质;直角三角形斜边上的中线.分析:根据菱形的对角线互相垂直平分可得AC⊥BD,AO=CO,再判断出点E是BC的中点,然后根据直角三角形斜边上的中线等于斜边的一半解答.解答:解:在菱形ABCD中,AC⊥BD,AO=CO,∵OE∥AB,∴点E是BC的中点,∴OE=BE=CE.故选:A.点评:本题考查了菱形的对角线互相垂直平分的性质,三角形中位线的判定,直角三角形斜边上的中线等于斜边的一半的性质,熟记各性质是解题的关键.30.(2014•杭州模拟)已知一组数据x1、x2、x3、x4、x5的平均数是5,则另一组新数组x1+1、x2+2、x3+3、x4+4、x5+5的平均数是()A.6B.8C.10 D.无法计算考点:算术平均数.分析:根据平均数的性质知,要求x1+1,x2+2,x3+3,x4+4,、x5+5的平均数,只要把数x1、x2、x3、x4、x5的和表示出即可.解答:解:∵数x1、x2、x3、x4、x5的平均数为5∴数x1+x2+x3+x4+x5=5×5∴x1+1、x2+2、x3+3、x4+4、x5+5的平均数=(x1+1+x2+2+x3+3+x4+4+x5+5)÷5=(5×5+15)÷5=8.故选:B.点评:本题考查的是样本平均数的求法.解决本题的关键是用一组数据的平均数表示另一组数据的平均数.31.(2013•赤峰)如图,4×4的方格中每个小正方形的边长都是1,则S四边形ABCD与S四边形ECDF的大小关系是()A.S四边形ABDC=S四边形ECDFB.S四边形ABDC<S四边形ECDFC.S四边形ABDC=S四边形ECDF+1D.S四边形ABDC=S四边形ECDF+2考点:多边形;平行线之间的距离;三角形的面积.分析:根据矩形的面积公式=长×宽,平行四边形的面积公式=边长×高可得两阴影部分的面积,进而得到答案.解答:解:S四边形ABDC=CD•AC=1×4=4,S四边形ECDF=CD•AC=1×4=4,故选:A.点评:此题主要考查了矩形和平行四边形的面积计算,关键是掌握面积的计算公式.32.(2014•白云区一模)下列命题错误的是()A.平行四边形的对边相等B.两组对边分别相等的四边形是平行四边形C.对角线相等的四边形是矩形D.矩形的对角线相等考点:矩形的判定与性质;平行四边形的判定与性质.专题:推理填空题.分析:根据平行四边形的性质即可判断A;根据平行四边形的判定即可判断B;根据矩形的判定即可判断C;根据矩形的性质即可判断D.解答:解:平行四边形的性质有平行四边形的对边相等,故A选项错误;平行四边形的判定定理有两组对边分别相等的四边形是平行四边形,故B选项错误;C、对角线相等的平行四边形是矩形,故C选项正确;D、矩形的性质有矩形的对角线相等,故D选项错误;故选:C.点评:本题考查了矩形、平行四边形的性质和判定的应用,主要培养学生的判断能力,题型较好,但是一道比较容易出错的题目.33.(2015•泰安模拟)甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如下表:班级参赛人数中位数方差平均数甲55 149 191 135乙55 151 110 135某同学分析上表后得出如下结论:(1)甲、乙两班学生成绩平均水平相同;(2)乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);(3)甲班成绩的波动比乙班大,上述结论正确的是()A.(1)(2)(3)B.(1)(2)C.(1)(3)D.(2)(3)考点:方差;算术平均数;中位数.专题:应用题.分析:由表即可比较甲乙两班的平均数、中位数和方差.解答:解:∵甲=乙,∴(1)正确;∵乙的中位数为151,甲的中位数为149,∴乙班优秀的人数多于甲班优秀的人数(2)正确;∵S2甲>S2乙,∴甲班成绩的波动比乙班大,(3)正确;故选:A.点评:本题考查了中位数、平均数和方差的意义.要读懂统计图.二、填空题(共27小题)34.(2015春•平南县校级月考)当x是任意实数时,是二次根式.考点:二次根式的定义.分析:根据二次根式的定义列出不等式求解即可.解答:解:根据题意,(1﹣x)2≥0,解得x是任意实数.故答案为:是任意实数.点评:本题考查了二次根式的定义,利用被开方数是非负数列式求解即可,比较简单.35.(2015春•汉阳区期中)矩形的两条对角线的一个交角为60°,两条对角线的和为8cm,则这个矩形的一条较短边为2cm.考点:矩形的性质.分析:根据矩形的性质(对角线相等且互相平分),求解即可.解答:解:矩形的两条对角线交角为60°的三角形为等边三角形,又因为两条对角线的和为8cm,故一条对角线为4cm,又因为矩形的对角线相等且相互平分,故矩形的一条较短边为2cm.故答案为:2.点评:本题考查的是矩形的性质(矩形的对角线相等且相互平分),本题难度一般.36.(2015春•沭阳县期中)如图,在长方形ABCD中,E是AD的中点,F是CE的中点,若△BDF的面积为6平方厘米,则长方形ABCD的面积是48平方厘米.考点:矩形的性质;解一元一次方程;三角形的面积;三角形中位线定理.专题:计算题.分析:设这个长方形ABCD的长为a厘米,宽为b厘米.即BC=a,AB=b,则其面积为ab 平方厘米,过F作FG⊥CD,FQ⊥BC且分别交CD于G、BC于Q,求出则FQ=b,FG=a,得到△BFC的面积,同理求出△FCD的面积,根据△BDF的面积=△BCD 的面积﹣(△BFC的面积+△CDF的面积),得到6=ab﹣(ab+ab)=ab,可求出ab的值,即可得到答案.解答:解:设这个长方形ABCD的长为a厘米,宽为b厘米.即BC=a,AB=b,则其面积为ab平方厘米.∵E为AD的中点,F为CE的中点,∴过F作FG⊥CD,FQ⊥BC且分别交CD于G、BC于Q,则FQ=CD=b,FG=a.∵△BFC的面积=BC•FQ=a•b,同理△FCD的面积=•b•a,∴△BDF的面积=△BCD的面积﹣(△BFC的面积+△CDF的面积),即:6=ab﹣(ab+ab)=ab∴ab=48.∴长方形ABCD的面积是48平方厘米.故答案为:48.点评:本题主要考查了矩形的性质,三角形的中位线,三角形的面积,解一元一次方程等知识点,根据已知求出ab的值是解此题的关键.37.(2015春•滨海县校级月考)如图,AD是△ABC的高,DE∥AC,DF∥AB,则△ABC 满足条件AB=AC或∠B=∠C时,四边形AEDF是菱形.考点:菱形的判定.分析:由三角形的中位线的性质,可得四边形AEDF为平行四边形,如AE=AF,则四边形AEDF为菱形,则添加条件:AB=AC.解答:解:需加条件AB=AC,这样可根据三线合一的性质,得出D是BC的中点,根据中位线定理可得,DE平行且等于AF,则AEDF为平行四边形,又可得AE=AF,则四边形AEDF为菱形.则添加条件:AB=AC.当∠B=∠C时,四边形AEDF是菱形.故答案为:AB=AC或∠B=∠C.点评:此题主要考查菱形的判定和角平分线的定义,熟练掌握菱形的判定定理是解题关键.38.(2015•浙江模拟)如图,是4×4的正方形网格,把其中一个标有数字的白色小正方形涂黑,就可以使图中的黑色部分构成一个中心对称图形,则这个白色小正方形内的数字是3.考点:中心对称图形.分析:通过观察发现,当涂黑3时,就可以使图中的黑色部分构成一个中心对称图形,.解答:解:如图,把标有数字3的白色小正方形涂黑,就可以使图中的黑色部分构成一个中心对称图形.故答案为:3.点评:本题考查了中心对称图形的定义,要知道,一个图形绕端点旋转180°所形成的图形叫中心对称图形.39.(2015•义马市模拟)如图,菱形OABC的顶点C的坐标为(3,4),顶点A在x轴的正半轴上.反比例函数y=(x>0)的图象经过顶点B,则k的值为32.考点:菱形的性质;待定系数法求反比例函数解析式.分析:根据点C的坐标以及菱形的性质求出点B的坐标,然后利用待定系数法求出k的值.解答:解:∵C(3,4),∴OC==5,∴CB=OC=5,则点B的横坐标为3+5=8,故B的坐标为:(8,4),将点B的坐标代入y=得,4=,解得:k=32.故答案为:32.点评:本题考查了菱形的性质以及利用待定系数法求反比例函数解析式,解答本题的关键是根据菱形的性质求出点B的坐标.40.(2015•石河子校级模拟)方程kx2+1=x﹣x2无实根,则k>﹣.考点:根的判别式.分析:首先将方程整理成一元二次方程的一般形式,然后根据其无实根△<0求得k的取值。
(有答案)初二数学2015—2016学年第二学期期末考试

2015—2016学年第二学期期末考试初二数学试题第Ⅰ卷一.选择题(每小题3分,共30分.)1. 已知函数y =8x -11,要使y >0,那么x 应取( ) A.x >811 B.x < 811 C.x >0D.x <02.一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是( ) A.415B.13C.15D.2153. 如图,AB ∥ED ,AG 平分∠BAC ,∠ECF=70°,则∠FAG 的度数是( ) A.155°B.145°C.110°D.35°4. 如图,AB ∥CD ,∠A=45°,∠C=28°,则∠AEC 的大小为( ) A.17°B.62°C.63°D.73°第2题图 第3图 第4题图 第6题图5.小亮解方程组 的解为 由于不小心,滴上了两滴墨水,刚好遮住了两个数●和★,则两个数●与★的值为( ) A. B. C D.6. 如图,△ABC 和△DEF 中,AB=DE ,∠B=∠DEF ,添加下列哪一个条件无法证明△ABC ≌△DEF ( ) A.AC ∥DFB .∠A=∠DC .AC=DFD .∠ACB=∠F7.如图,在折纸活动中,小明制作了一张△ABC 纸片,点D 、E 分别是边AB 、AC 上,将△ABC 沿着DE 折叠压平,A 与A ′重合,若∠A=75°,则∠1+∠2=( ) A.150°B.210°C.105°D.75°8.在平面直角坐标系内,P (2x -6,x -5)在第四象限,则x 的取值范围为( ) A .3<x <5B .-3<x <5C .-5<x <3D .-5<x<-39. 如果不等式组 无解,那么的取值范围是 ( )A. m >5B. m ≥5C. m<5D. m ≤510.如图,在第1个△BC A 1中,∠B =30°,CB B A =1;在边B A 1上任取一点D ,延长CA 1到A 2,使D A A A 121=,得到第2个△D A A 21;在边D A 2上任取一点E ,延长22A A 到3A ,使E A A A 232=,得到第3个△E A A 32,…按此做法继续下去,则第n 个三角形中以n A 为顶点的内角度数是( )E⋅⋅⋅FA 4A 3DA 2C BA1A . 75)21(1⋅-nB . 65)21(1⋅-nC . 75)21(⋅nD .85)21(⋅n2015—2016学年第二学期期末考试初二数学试题第Ⅱ卷二.填空题(每题3分,共18分)11. 用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应该假12. 分别用写有“济宁”、“卫生”、“城市”的词语拼句子,那么能够排成“济宁卫生城市”的概率是 .13.如图,直线l 1:y=x+1与直线l 2:y=mx+n 相交于点P (a,2),则关于x14. 若关于x 的不等式0721x m x -<⎧⎨-⎩,≤的整数解共有4个,则m 的取值范围是 .15. 如图所示,在△ABC 中,∠B=90°,AB=3,AC=5,将△ABC 折叠,使点C 与点A 重合,折痕为DE ,则△ABE 的周长为 .16.如图,AD 是△ABC 的角平分线,DF ⊥AB ,垂足为F ,DE=DG ,△ADG 和△AED 的面积分别为40和29,则△EDF 的面积为_____________三.解答题(共52分)17.(8分)解不等式组,并把解集在数轴上表示出来:(1)x-6≤2x-4 (2)562(3)3143x x x x -+⎧⎪-⎨-<⎪⎩≤18. (8分)若关于x 、y 的二元一次方程组533x y m x y m -=-⎧⎨+=+⎩中,x 的值为负数,y 的值为正数,求m 的取值范围.19.(8分)已知△ABC中,∠A=80°,∠B=40°,请你用尺规作图法作一条直线把如图所示的△ABC分成两个等腰三角形,并通过计算说明你的分法的合理性.20.(9分)在△ABC中,AB=AC,D是BC的中点,以AC为腰向外作等腰直角△ACE,∠EAC=90°,连接BE,交AD于点F,交AC于点G.(1)若∠BAC=40°,求∠AEB的度数;(2)求证:∠AEB=∠ACF;(3)求证:EF 2+BF 2= AC 2.21.(9分)某校运动会需购买A、B两种奖品.若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.(1)求A、B两种奖品单价各是多少元?(2)学校计划购买A、B两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍.设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式,求出自变量m的取值范围,并确定最少费用W的值.22.(10分)在数学探究课上,老师出示了这样的探究问题,请你一起来探究:已知:C是线段AB所在平面内任意一点,分别以AC、BC为边,在AB同侧作等边△ACE和△BCD,连结AD、BE交于点P.(1)如图1,当点C在线段AB上移动时,线段AD 与BE的数量关系:.(2)如图2,当点C在直线AB外,且∠ACB<120°,上面的结论是否还成立?若成立请证明,不成立说明理由.(3)如图3,在(2)的条件下,以AB为边在AB另一侧作等边三角形△ABF,连结AD、BE和CF交于点P,求证:PB+PC+PA=BE.初二数学期末试题答案1. A 2. B 3. B4. D 5.B6. C 7.A 8. A 9. B 10. A 11.三角形中每一个内角都大于60°12.13.x ≥1 14.15. 716. 5.5 17.(1)x ≥-2 (2)04x <≤18.142m -<< 19.分成两个等腰三角形,并通过计算说明你的分法的合理性. 20.两种奖品单价分别为元、解得:由,解得:由一次函数可知,随增大而减小当最小,最小为(元)22.解:(1)∵△ACE 、△CBD 均为等边三角形, ∴AC=EC ,CD=CB ,∠ACE=∠BCD , ∴∠ACD=∠ECB ; 在△ACD 与△ECB 中,AC EC ACD ECB CD CB =∠=∠=⎧⎪⎨⎪⎩, ∴△ACD ≌△ECB (SAS ), ∴AD=BE ,(2)AD=BE 成立,∠APE 不随着∠ACB 的大小发生变化,始终是60°. 证明:∵△ACE 和△BCD 是等边三角形 ∴EC=AC ,BC=DC , ∠ACE=∠BCD=60°,∴∠ACE+∠ACB=∠BCD+∠ACB ,即∠ECB=∠ACD ; 在△ECB 和△ACD 中,EC AC ECB ACD BC DC =∠=∠=⎧⎪⎨⎪⎩∴△ECB ≌△ACD (SAS ), ∴∠CEB=∠CAD ; 设BE 与AC 交于Q ,又∵∠AQP=∠EQC ,∠AQP+∠QAP+∠APQ=∠EQC+∠CEQ+∠ECQ=180° ∴∠APQ=∠ECQ=60°,即∠APE=60°.(3)由(2)同理可得∠CPE=∠EAC=60°;在PE 上截取PH=PC ,连接HC , 则△PCH 为等边三角形, ∴HC=PC ,∠CHP=60°, ∴∠CHE=120°;又∵∠APE=∠CPE=60°, ∴∠CP A=120°, ∴∠CP A=∠CHE ; 在△CP A 和△CHE 中,CPA CHE CAP CEH PC HC ∠=∠∠=∠=⎧⎪⎨⎪⎩, ∴△CP A ≌△CHE (AAS ), ∴AP=EH ,∴PB+PC+P A=PB+PH+EH=BE .。
2015-2016学年初二数学第二学期期末试卷带答案

八年级数学期末考试卷2016.6注意事项:1.本卷考试时间为100分钟,满分100分.2. 请把试题的答案写在答卷上,不要写在试题上。
2.卷中除要求近似计算的按要求给出近似结果外,其余结果均应给出精确结果.一、选择题(本大题共10小题,每小题2分,共20分.)1.下列根式中,与是同类二次根式的是(▲) A . B . C . D .2.下列图标中,既是中心对称图形又是轴对称图形的是(▲)A .B .C .D .3.在代数式、、、、、a+中,分式的个数有(▲)A .2个B .3个C .4个D .5个4.为了解一批电视机的使用寿命,从中抽取100台进行试验,这个问题的样本是(▲) A .这批电视机 B .这批电视机的使用寿命 C .抽取的100台电视机的使用寿命 D .100台5.如图,在△ABC 中,D ,E 分别是AB ,AC 的中点,AC=12,F 是DE 上一点,连接AF ,CF ,DF=1.若∠AFC=90°,则BC 的长度为(▲) A .12 B .13 C .14 D .156.函数(a 为常数)的图象上有三点(﹣4,y 1),(﹣1,y 2),(2,y 3),则函数值y 1,y 2,y 3的大小关系是(▲)A .y 3<y 1<y 2B .y 3<y 2<y 1C .y 1<y 2<y 3D .y 2<y 3<y 1 7.下列一元二次方程没有实数根的是(▲)A .x 2+2x+1=0B .x 2+x+2=0C .x 2﹣1=0D .x 2﹣2x ﹣1=0第5题图第10题图8.若分式方程+1=有增根,则a 的值是(▲)A .4B .0或4C .0D .0或﹣49.在△ABC 中,∠C =90°,AC 、BC 的长分别是方程x 2﹣7x +12=0的两根,△ABC 内一点P 到三边的距离都相等,则PC 长为 (▲)A .1B .2C .223 D .22 10.如图,在坐标系中放置一菱形OABC ,已知∠ABC=60°,点B 在y 轴上,OA=1.将菱形OABC 沿x 轴的正方向无滑动翻转,每次翻转60°,连续翻转2015次,点B 的落点依次为B 1,B 2,B 3,…,则B 2014的坐标为(▲)A .(1343,0)B .(1342,0)C .(1343.5,)D .(1342.5,)二、填空题(本大题共8小题,每空2分,共20分.)11.若二次根式5-x 在实数范围内有意义,则x 的取值范围是 ▲ ;若分式392+-x x 的值为0,则x 的取值是__▲_.12.关于x 的一元二次方程(a -1)x 2+x +||a -1=0的一个根是0,则实数a 的值是▲ . 13.某种油菜籽在相同条件下的发芽试验结果如下:由此可以估计油菜籽发芽的概率约为_▲_(精确到0.01),其依据是__▲_. 14.若实数a 、b 、c 在数轴的位置,如图所示,则化简= ▲ .15.已知点P (a ,b )是反比例函数y=图象上异于点(﹣1,﹣1)的一个动点,则ba +++1212= ▲ . 16.如图,在平面直角坐标系中,菱形ABCD 在第一象限内,边BC 与x 轴平行,A ,B 两点的纵坐标分别为3,1,反比例函数xy 3=的图像经过A ,B 两点,则菱形ABCD 的面积为 ▲ .第17题图17.如图,直线y 1=﹣x+b 与双曲线y 2=交于A 、B 两点,点A 的横坐标为1,则不等式 ﹣x+b <的解集是 ▲ .18.在平面直角坐标系中,O 为坐标原点,B 在x 轴上,四边形OACB 为平行四边形,且 ∠AOB =60°,反比例函数ky x=(k >0)在第一象限内过点A ,且与BC 交于点F 。
2015-2016学年度第二学期八年级数学期末测试题(含答案)

2015--2016学年度第二学期八年级数学期末测试题一.选择题(共12小题,每题3分,共计36分。
)1.(2015•乐山)下列说法不一定成立的是()A.若a>b,则a+c>b+c B.若a+c>b+c,则a>bC.若a>b,则ac2>bc2D.若ac2>bc2,则a>b2.(2015•甘孜州)下列图形中,是中心对称图形的是()A.B.C.D.3.(2015•永州)若不等式组恰有两个整数解,则m的取值范围是()A.﹣1≤m<0 B.﹣1<m≤0C.﹣1≤m≤0D.﹣1<m<0 4.(2015•枣庄)如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD交于点O,则四边形AB1OD的面积是()A.B.C.D.﹣15.(2015•济南)如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是()A.x>﹣2 B.x>0 C.x>1 D.x<16.(2015•贵港)下列因式分解错误的是()A.2a﹣2b=2(a﹣b)B.x2﹣9=(x+3)(x﹣3)C.a2+4a﹣4=(a+2)2 D.﹣x2﹣x+2=﹣(x﹣1)(x+2)7.(2015•义乌市)化简的结果是()A.x+1 B.C.x﹣1 D.8.(2015•枣庄)关于x的分式方程=1的解为正数,则字母a的取值范围为()A.a≥﹣1 B.a>﹣1 C.a≤﹣1 D.a<﹣19.(2015•营口)若关于x的分式方程+=2有增根,则m的值是()A.m=﹣1 B.m=0 C.m=3 D.m=0或m=3 10.(2015•铁岭)如图,点D、E、F分别为△ABC各边中点,下列说法正确的是()A.DE=DF B.EF=AB C.S△ABD=S△ACD D.AD平分∠BAC11.(2015•绥化)如图,▱ABCD的对角线AC、BD交于点O,AE平分∠BAD交BC于点E,且∠ADC=60°,AB=BC,连接OE.下列结论:①∠CAD=30°;②S▱ABCD=AB•AC;③OB=AB;④OE=BC,成立的个数有()A.1个B.2个C.3个D.4个12.(2015•乌鲁木齐)九年级学生去距学校10km的博物馆参观,一部分学生骑自行车先走,过了20min 后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为xkm/h,则所列方程正确的是()A.=﹣B.=﹣20 C.=+D.=+20二.填空题(共6小题,每题4分,共计24分。
2015-2016学年八年级下学期期末考试数学试题带答案(精品)

CBA2015—2016学年第二学期初二期末试卷数 学学校 姓名 准考证号考 生 须 知1.本试卷共6页,共三道大题,26道小题.满分100分,考试时间100分钟. 2.在试卷和答题卡上准确填写学校名称、姓名和考号.3.试卷答案一律填涂或书写在答题卡上,在试卷上作答无效.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答. 4.考试结束,将本试卷和答题卡一并交回.一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.在平面直角坐标系xOy 中,点P (-3,5)关于y 轴对称的点的坐标是( ) A .(-3,-5)B .(3,-5)C .(3,5)D .(5,-3)2.下列图形中,既是中心对称图形又是轴对称图形的是( )3.一个多边形的内角和为540°,则这个多边形的边数是( ) A .4B .5C .6D .74.菱形ABCD 的边长为4,有一个内角为120°,则较长的对角线的长为( ) A .43B .4C .23D .25.如图,利用平面直角坐标系画出的正方形网格中, 若A (0,2),B (1,1),则点C 的坐标为( ) A .(1,-2) C .(2,1)B .(1,-1) D .(2,-1)6.如图,D ,E 为△ABC 的边AB ,AC 上的点,DE ∥BC , 若:1:3AD DB =,AE =2,则AC 的长是( ) A .10 B.8 C .6 D .47.关于x 的一元二次方程2210mx x -+=有两个实数根,则m 的取值范围是( )A .1m ≤ C .1m <且0m ≠B .1m <D .1m ≤且0m ≠8.如图,将边长为3cm 的等边△ABC 沿着边BC 向右平移2cm ,得到△DEF ,则四边形ABFD 的周长为( ) A .15cmB .14cmC .13cmD .12cmA .B .C .D .EDA B CDAB CP第13题图第14题图第8题图第9题图9.园林队在某公园进行绿化,中间休息了一段时间.绿化面积S(单位:平方米)与工作时间t (单位:小时)的函数关系的图象如图所示,则休息后园林队每小时绿化面积为()A.40平方米B.50平方米C.80平方米D.100平方米10.如右图,矩形ABCD中,AB=2,BC=4,P为矩形边上的一个动点,运动路线是A→B→C→D→A,设P点经过的路程为x,以A,P,B为顶点的三角形面积为y,则下列图象能大致反映y与x的函数关系的是()二、填空题(本题共18分,每小题3分)11.如图,点D,E分别为△ABC的边AB,BC的中点,若DE=3cm,则AC=cm.12.已知一次函数2()y m x m=++,若y随x的增大而增大,则m的取值范围是.13.如图,在△ABC中,D是AB边上的一点,连接CD,请添加一个适当的条件,使△ACD ∽△ABC(只填一个即可).14.如图,在□ABCD中,BC=5,AB=3,BE平分∠ABC交AD于点E,交对角线AC于点F,则AEFCBFSS△△= .DAB CFE DB CAEDAB CSt/平方米/小时16060421ODAFE CB第15题图15.如图,矩形ABCD 中,AB =8,AD =10,点E 为DC 边上的一点,将△ADE 沿直线AE 折叠,点D 刚好落在 BC 边上的点F 处,则CE 的长是 .16.如图,在平面直角坐标系xOy 中,一次函数y =x +1与x 、y 轴分别交于点A 、B ,在直线 AB 上截取BB 1=AB ,过点B 1分别 作x 、y 轴的垂线,垂足分别为点A 1、C 1, 得到矩形OA 1B 1C 1;在直线 AB 上截取B 1B 2= BB 1,过点B 2分别 作x 、y 轴的垂线,垂足分别为点A 2 、C 2, 得到矩形OA 2B 2C 2;在直线AB 上截取B 2B 3= B 1B 2,过点B 3分别 作x 、y 轴的垂线,垂足分别为点A 3、C 3, 得到矩形OA 3B 3C 3;……;则点B 1的坐标是 ;第3个矩形OA 3B 3C 3的面积是 ; 第n 个矩形OA n B n C n 的面积是 (用含n 的式子表示,n 是正整数).三、解答题(本题共52分,第17-24题,每小题5分;第25-26题,每小题6分)解答应写出文字说明,演算步骤或证明过程. 17.用适当的方法解方程:2610x x --=.18.如图,在□ABCD 中,E ,F 是对角线BD上的两点且BE =DF ,联结AE ,CF . 求证:AE =CF .19.一次函数1y kx b =+的图象与正比例函数2y mx =交于点A (-1,2),与y 轴交于点B (0,3). (1)求这两个函数的表达式;(2)求这两个函数图象与x 轴所围成的三角形的面积.yxy =x+1C 3C 2A 3A 2C 1B 3B 2B 1A B A 1OFE CADBEFCD A B20.如图,在矩形ABCD 中,E 为AD 边上的一点,过C 点作CF ⊥CE 交AB 的延长线于点F .(1)求证:△CDE ∽△CBF ;(2)若B 为AF 的中点,CB =3,DE =1,求CD 的长.21.已知关于x 的一元二次方程2(32)60mx m x -++=(0)m ≠. (1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m 的值.22.如图,Rt △ABC 中,90ACB ∠=︒,CD 是斜边AB上的中线,分别过点A ,C 作AE ∥DC ,CE ∥AB , 两线交于点E .(1)求证:四边形AECD 是菱形;(2)若602B BC ∠=︒=,,求四边形AECD 的面积.23.列方程解应用题:某地区2013年的快递业务量为2亿件,受益于经济的快速增长及电子商务发展等多重因素,快递业务迅猛发展,2015年的快递业务量达到3.92亿件.求该地区这两年快递业务量的年平均增长率.24.某市为了鼓励居民节约用电,采用分段计费的方法按月计算每户家庭的电费,分两档收费:第一档是当月用电量不超过240度时实行“基础电价”;第二档是当用电量超过240度时,其中的240度仍按照“基础电价”计费,超过的部分按照 “提高电价”收费.设每个家庭月用电量为x 度时,应交电费为y 元.具体收费情况如折线图所示,请根据图象回答下列问题: (1)“基础电价”是_________元/度;(2)求出当x >240时,y 与x 的函数表达式; (3)小石家六月份缴纳电费132元,求小石家这个月用电量为多少度?y x (元)(度)400120240216B AOEDAFB CEDBAC图1 图225.已知正方形ABCD 中,点M 是边CB (或CB 的延长线)上任意一点,AN 平分∠MAD ,交射线DC 于点N .(1)如图1,若点M 在线段CB 上 ①依题意补全图1;②用等式表示线段AM ,BM ,DN 之间的数量关系,并证明;(2)如图2,若点M 在线段CB 的延长线上,请直接写出线段AM ,BM ,DN 之间的数量关系.ADBCM26.在平面直角坐标系xOy 中,过象限内一点分别作坐标轴的垂线,若与坐标轴围成的矩形的周长与面积相等, 则这个点叫做“和谐点”.如右图,过点H (-3,6)分 别作x 轴,y 轴的垂线,与坐标轴围成的矩形OAHB 的周长与面积相等,则点H (3,6)是“和谐点”.(1)H 1(1,2), H 2(4,-4), H 3(-2,5)这三个点中的“和谐点”为 ; (2)点C (-1,4)与点P (m ,n )都在直线y x b =-+上,且点P 是“和谐点”.若m >0,求点P 的坐标.——————————————草 稿 纸——————————————ADB C MADBCM y x1A BHO2015—2016学年第二学期期末试卷 初二数学 试卷答案及评分参考阅卷须知:为便于阅卷,解答题中的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可.若考生的解法与给出的解法不同,正确者可参照评分参考给分.评分参考中所注分数,表示考生正确做到此步应得的累加分数.一、 选择题(本题共30分,每小题3分) 题号 123456 7 8 9 10 答案C A B AD BDCBB二、填空题(本题共18分,每小题3分)11.6 12.2m >- 13.ACD B ∠=∠(或ADC ACB ∠=∠或AD ACAC AB=) 14.925 15.3 16.(1,2);12(1)n n +;或2n n +(每空1分) 三、解答题(本题共52分,第17-24题,每小题5分;第25-26题,每小题6分) 17.18.证明一:联结AF ,CE ,联结AC 交BD 于点O.∵四边形ABCD 是平行四边形 ∴OA =OC ,OB =OD ⋯⋯⋯⋯⋯2分 又∵BE =DF∴OE =OF ⋯⋯⋯⋯⋯3分 ∴四边形AECF 是平行四边形 ⋯⋯4分 ∴AE =CF ⋯⋯⋯⋯⋯5分证明二:∵四边形ABCD 是平行四边形∴AB =CD ,AB ∥CD ⋯⋯⋯⋯⋯1分 ∴∠1=∠2 ⋯⋯⋯⋯⋯2分OFE CADB解法一: 26919x x -+=+ ⋯⋯⋯⋯⋯1分2310x -=() ⋯⋯⋯⋯⋯3分310x -=± ⋯⋯⋯⋯⋯4分12310,310x x ∴==+-⋯⋯5分解法二:2140⨯⨯=---=Q △(6)41() ⋯⋯1分6402x ±∴=⋯⋯⋯⋯⋯3分 62102x ±∴= ⋯⋯⋯⋯⋯4分12310,310x x ∴==+- ⋯⋯5分在△ABE 和△CDF 中12 AB CD BE DF =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△CDF (SAS ) ⋯⋯⋯⋯⋯4分∴AE CF = ⋯⋯⋯⋯⋯5分 19.解:(1)∵2y mx =过点A (-1,2)∴-m =2 ∴m =-2 ⋯⋯⋯⋯⋯1分 ∵点A (-1,2)和点B (0,3)在直线1y kx b =+上2133k b k b b -+==⎧⎧∴∴⎨⎨==⎩⎩⋯⋯⋯⋯⋯3分 ∴这两个函数的表达式为:13y x =+和2-2y x=⋯⋯⋯⋯⋯3分(2)过点A 作AD ⊥x 轴于点D ,则AD =2∵13y x =+交x 轴于点C (-3,0) ⋯⋯4分∴1=2AOC S OC AD⨯⨯△ 1=322⨯⨯ =3 ⋯⋯5分即这两个函数图象与x 轴所围成的三角形的面积是3.20.(1)证明:∵四边形ABCD 是矩形∴∠D=∠1=∠2+∠3=90° ⋯⋯⋯⋯⋯1分 ∵CF ⊥CE ∴∠4+∠3=90°∴∠2=∠4∴△CDE ∽△CBF ⋯⋯⋯⋯⋯2分(2) 解:∵四边形ABCD 是矩形∴CD =AB ∵B 为AF 的中点∴BF =AB ∴设CD=BF= x ⋯⋯⋯3分 ∵△CDE ∽△CBF21.(1)证明:∵0m ≠ ∴2(32)60mx m x -++=是关于x 的一元二次方程∵2[(32)]46m m =-+-⨯△ ⋯⋯⋯⋯⋯1分2912424m m m =++- 29-124m m =+23-20m =()≥ ⋯⋯⋯⋯⋯2分21FECADByx–11–1–2–3–41234D CBA O4321EDAFBC∴CD DE CB BF = ⋯⋯4分 ∴13x x =∵x >0 ∴3x =⋯⋯⋯5分即:3CD =∴此方程总有两个实数根. ⋯⋯⋯⋯⋯3分(2) 解:∵(3)(2)0x mx --=∴1223,x x m ==⋯⋯⋯⋯⋯4分∵方程的两个实数根都是整数,且m 是正整数∴m =1或 m =2 ⋯⋯⋯⋯⋯5分22.(1)证明:∵AE ∥DC ,CE ∥AB∴四边形AECD 是平行四边形 ⋯⋯⋯⋯⋯1分 ∵Rt △ABC 中,90ACB ∠=︒,CD 是斜边AB 上的中线 ∴CD =AD∴四边形AECD 是菱形 ⋯⋯⋯⋯⋯2分(2) 解:联结DE .∵90ACB ∠=︒,60B ∠=︒∴30BAC ∠=︒ ∴423A ABC ==, ⋯⋯⋯⋯⋯3分∵四边形AECD 是菱形 ∴EC =AD =DB 又∵EC ∥DB ∴四边形ECBD 是平行四边形∴ED = CB =2 ⋯⋯⋯⋯⋯4分∴2322322AECD AC ED S ⨯⨯===菱形 ⋯⋯⋯⋯⋯5分23. 解:设该地区这两年快递业务量的年平均增长率为x . 根据题意,得 ⋯⋯1分 22(1) 3.92x += ⋯⋯⋯⋯⋯3分解得120.4, 2.4x x ==-(不合题意,舍去) ⋯⋯⋯⋯⋯4分 ∴0.440x ==%答:该地区这两年快递业务量的年平均增长率为40%. ⋯⋯⋯⋯⋯5分24.(1)0.5 ⋯⋯⋯⋯⋯ 1分 (2)解:当x >240时,设y =kx+b ,由图象可得:2401200.640021624k b k k b b +==⎧⎧∴⎨⎨+==-⎩⎩ ⋯⋯⋯⋯⋯2分 ∴0.624(240)y x x =-> ⋯⋯⋯⋯⋯3分(3)解:∵132120y =>∴令0.624=132x -, ⋯⋯⋯⋯⋯4分 得:=260x ⋯⋯⋯⋯⋯5分∴小石家这个月用电量为260度.EDBAC25.(1)①补全图形,如右图所示. ⋯⋯⋯⋯⋯1分 ②数量关系:AM BM DN =+ ⋯⋯⋯⋯⋯2分 证明:在CD 的延长线上截取DE =BM ,联结AE .∵四边形ABCD 是正方形∴190B ∠=∠=︒,AD AB =,AB CD ∥ ∴6BAN ∠=∠ 在△ADE 和△ABM 中1 AD AB B DE BM =⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌△ABM (SAS ) ∴AE AM =,32∠=∠ ⋯⋯⋯⋯⋯⋯3分又∵54∠=∠ ∴EAN BAN ∠=∠ 又∵6BAN ∠=∠ ∴6EAN ∠=∠∴AE NE = ⋯⋯⋯⋯⋯4分 又∵AE AM =,NE DE DN BM DN +=+=∴AM BM DN =+ ⋯⋯⋯⋯⋯5分 (证法二:在CB 的延长线上截取BF =DN ,联结AF ) (2)数量关系:AM DN BM =- ⋯⋯⋯⋯⋯6分26.(1)H 2 ⋯⋯⋯⋯⋯1分 (2)解:∵点C (-1,4)在直线y x b =-+上∴14b += ∴3b =∴3y x =-+ ⋯⋯⋯⋯⋯2分 ∴3y x =-+与x 轴,y 轴的交点为N (3, 0),M (0,3) ∵点P (m ,n )在直线3y x =-+上 ∴点P (m ,-m +3)过点P 分别作x 轴,y 轴的垂线,垂足为D ,E ∵m >0∴点P 可能在第一象限或第四象限(解法一) ① 若点P 在第一象限,如图1,则,3OD m PD n m +=== -∴3)6PEOD C m m ++==2(-矩形654321EN AD B CMNADB CMyy = -x+33)PEOD S m m +=(-矩形∵点P 是“和谐点”∴3)6m m +(-= ⋯⋯⋯3分 260m m +-3=2(-3)460=-⨯△<∴此方程无实根∴第一象限的直线上的点不可能是“和谐点”. ⋯⋯⋯⋯⋯4分② 若点P 在第四象限,如图2,则,3)3OD m PD n m m -=+=-== --( ∴3)46PEOD C m m m +=-=2(-矩形3)PEOD S m m =(-矩形 ∵点P 是“和谐点”∴3)46m m m -(-= ⋯⋯5分 260m m +-7=1261m m ==,∵点P (m ,-m +3)在第四象限 ∴3m > ∴6m =∴点P (6,-3) ⋯⋯⋯⋯⋯6分综上所述,满足条件的点P 的坐标为P (6,-3).(解法二)① 若点P 在第一象限,如图1,则,3OD m PD n m +=== - ∴3)6PEOD C m m ++==2(-矩形∵133 4.52MON S ⨯⨯==△ ⋯⋯⋯3分而MONPEOD S S <△矩形 ∴PEOD PEOD C S 矩形矩形≠∴第一象限的直线上的点不可能是“和谐点”. ⋯⋯⋯⋯⋯4分 ② 若点P 在第四象限,如图2,则,OD m PD n == -∴)PEOD C m n =2(-矩形PEOD S mn =-矩形∵点P 是“和谐点”∴2)m n mn (-=- ⋯⋯⋯⋯⋯5分 ∴22mn m =-∵点P (m ,n )在直线3y x =-+上 ∴3n m =-+yxy = -x+3EDP (m ,-m +3)O y x 33y = -x+3E D MN OP (m ,-m +3)图1∴232m m m =-+-260m m +-7= 1261m m ==, 经检验,1261m m ==,是方程232m m m=-+-的解 ∵点P (m ,-m +3)在第四象限∴3m > ∴6m =∴点P (6,-3) ⋯⋯⋯⋯⋯6分 综上所述,满足条件的点P 的坐标为P (6,-3).yx y = -x+3E D P (m ,-m +3)O。
2015-2016学年度浙教版数学八年级下学期期末试卷(含答案)
2015-2016学年度八年级下学期数学期末试卷姓名 班级 学号 成绩一、选择题(本小题共12小题,每小题3分,共36分)下列各题给出的四个选项中,只有一个是正确的,请将正确答案填写在括号中。
1、如果分式x11有意义,那么x 的取值范围是( ) A 、x >1 B 、x <1 C 、x ≠1 D 、x =12. 命题“两点之间线段最短”是( )A.角的定义B.假命题C.公理D.定理 3、一直角三角形两边分别为3和5,则第三边为( ) A 、4 B 、34 C 、4或34 D 、2 4、用两个全等的等边三角形,可以拼成下列哪种图形( ) A 、矩形 B 、菱形 C 、正方形 D 、等腰梯形 5. 若一个多边形的内角和等于720度,则这个多边形的边数是( ) A.5 B.6 C.7 D.86、小明妈妈经营一家服装专卖店,为了合理利用资金,小明帮妈妈对上个月各种型号的服装销售数量进行了一次统计分析,决定在这个月的进货中多进某种型号服装,此时小明应重点参考( )A 、众数B 、平均数C 、加权平均数D 、中位数7、王英在荷塘边观看荷花,突然想测试池塘的水深,她把一株竖直的荷花(如右图)拉到岸边,花柄正好与水面成600夹角,测得AB 长60cm ,则荷花处水深OA 为( ) A 、120cm B 、360cm C 、60cm D 、320cm第7题图 第8题图 第9题图8、如图,□ABCD 的对角线AC 、BD 相交于O ,EF 过点O 与AD 、BC 分别相交于E 、F ,若AB=4,BC=5,OE=1.5,那么四边形EFCD 的周长为( ) A 、16 B 、14 C 、12 D 、109、如图,把菱形ABCD 沿AH 折叠,使B 点落在BC 上的E 点处,若∠B=700,则∠EDC 的大小为( )A 、100B 、150C 、200D 、300 10、下列命题正确的是( )A 、同一边上两个角相等的梯形是等腰梯形;B 、一组对边平行,一组对边相等的四边形是平行四边形;C 、如果顺次连结一个四边形各边中点得到的是一个正方形,那么原四边形一定是正方形。
浙教版八年级数学第二学期期末测试试题及答案
浙教版八年级数学第二学期期末测试试题及答案(满分120分,考试时间90分钟)一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的。
注意可以用多种不同的方法来选取正确答案. 1. 要使二次根式x 有意义,字母x 必须满足的条件是( ) A . 0>x B .0<x C .0≥x D . 0≤x 2. 下列图形中,不.是.中心对称图形的是( )3.一元二次方程x 2=x 的解是( ) A .0=x B.1=x C.0=x 或1=x D.0=x 或1-=x 4.甲、乙、丙、丁四位选手各10次射击成绩的平均数和方差如下表:选手 甲 乙 丙 丁 平均数(环)9.29.29.2 9.2 方差(环2) 0.035 0.0150.0250.027则这四人中成绩发挥最稳定的是( )A .甲B .乙C .丙D .丁 5.用配方法解方程x 2+2x =1,配方结果正确的是( )A.(x +1)2=1B. (x +1)2=2C. (x +1)2=0D. (x +2)2=5 6.下列关于多边形的说法不正确...的是( ) A. 内角和与外角和相等的多边形是四边形;B.十边形的内角和为1440° C. 多边形的内角中最多有四个直角 D.十边形共有40条对角线7. 点P (m ,25)在反比例函数4y x =的图象上,则m 的值为( )A .52 B .255 C .455 D .558.如图,在正方形ABCD 中,点O 是对角线BD 的中点,点E 是AB 边上的一个动点,OF ⊥OE 交AD 边于点F ,点G 、H 分别是点E 、F 关于直线BD 的对称点.当点E 从点B 运动到点A 时,阴影部分的面积大小变化情况是( )A .一直不变B .先增大后减少C .先减小后增大D .先增大后不变9.如图,把四边形ABCD 改成一个三角形,并保持面积不变,则这样的改法共有( )A. 2种B.4种C.8种D.无数种10.如图,点P 是反比例函数my x=(x >0)图象上的一点,HGF EDCBAO矩形OAPB 的顶点A ,B 分别在x 轴与y 轴上,且边PB ,PA 分别交反比例函数ky x =(x >0)的图象于E ,F 两点,直线EF 交x 轴于C 点,交y 轴于D 点,连结OE ,OF . 现给出下列结论:①四边形OEPF 的面积为m -k ;②DE=CF . 则( )A.①正确,②正确B.①正确,②错误C.①错误,②正确D.①错误,②错误二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案. 11.合作交流是学习数学的重要方式之一,学校八年级1~6班合作学习小组的个数分别是:6,6,6,7,8,8,这组数据的众数是 .12.已知ab =4,若-2≤b ≤-1,则a 的取值范围是 .13.已知:多项式2x 2-kx +1是一个完全平方式,则k = . 14.如图是各种四边形间的转化的结构图,则①中添加的条件是 ,④是添加的条件是 .15.已知平行四边形的四条边和两条对角线这六条线段中只有两种长度,则这个平行四边形的最大内角的为 度.16. 如图,以□OABC 的顶点O 为原点,边OC 为x 轴建立直角坐标系,且反比例函数4y x =的图象过□OABC 的顶点A 及对角线的交点D ,则□OABC 的面积为 .三、全面答一答(本题有7个小题,共66分)解答应写出文字说明、证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以. 17. (本题满分6分)计算或化简:(1)22)2()2(-+- (2)3)13(39⋅-+÷18. (本题满分8分)已知关于x 的一元二次方程x 2+4x +m -1=0有两个不相等的实数根. (1)求m 的取值范围;(2)请你为m 选取一个合适的整数..,并求出得到的方程的两个实数根. 19.(本题满分8分)如图,在□ABCD 中,E ,F 为BC 上两点.,且BE=CF ,BE=CF ,AF=DE . 求证:(1)△ABF ≌△DCE ;(2)四边形ABCD 是矩形.20.(本题满分10分)如图,已知反比例函数11k y x=(k 1≠0)的图象与直线y 2=k 2x (k 2≠0)相交于第二象限的A 点.(1)若直线y 2=k 2x 恰为反比例函数11k y x=的图象的对称轴,则直线y 2=k 2x 的解析式为 .(2)若A (-2,8),解答下列问题:①这个反比例函数的解析式为 ;直线与反比例函数的图象的另一个交点B 的坐标为 .②当y 1>y 2时,自变量x 的取值范围是 . ③若直线y=mx+n 与反比例函数的图象只有唯一的交点A 点,求直线y=mx+n 的解析式.21.(本题满分10分)我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边. (1)写出你所学过的特殊四边形中是勾股四边形的一种图形的名称 ; (2)如图,以△ABC 的边AB , AC 为边, 向三角形外作正方形ABDE 及ACFG ,连结CE ,BG 相交于O 点,P 是线段DE 上任意一点(不与E 点重合).①求证:四边形OBPE 是勾股四边形.②分别取BC ,BE ,EG ,CG 的中点H ,K ,M ,N ,请判断四边形HKMN 的形状(只F E DCBA要直接写出结论,不必写出推理过程).22. (本题满分12分)一家面临倒闭的企业在“调整产业结构,转变经营机制”的改革后,扭亏为盈. 下表是该企业2013年第4季度(10~12月)、2014年1~5月的月利润统计表:时间2013年2014年10月11月12月1月2月3月4月5月利润(万元)48 46 42 44 40 50 72 根据以上信息,解答下列问题:(1)2013年10月至2014年3月该企业利润的月平均利润为万元,月利润的中位数为万元;(2)已知该企业2014年4、5月份的月利润的平均增长率相同,求这个平均增长率和4月份的月利润.23. (本题满分12分)已知直角坐标系中菱形ABCD的位置如图,C,D两点的坐标分别为(4,0),(0,3). 现有两动点P,Q分别从A,C同时出发,点P沿线段AD向终点D 运动,速度为每秒1个单位,点Q沿折线CBA向终点A运动,速度为每秒2个单位.设运动时间为t秒.(1)求AD与BC间的距离h;(2)若四边形PQCD为平行四边形,求t的值;(3)是否存在某一时刻,使得P,Q两点同时在反比例函数kyx的图象上,若存在,求出此时t与k的值.POGF EDCBA(备用图)参考答案2014.06.04二、认真填一填(本题有6个小题,每小题4分,共24分)11. 6 12. -4≤a ≤-214. 两边对边分别平行;两组对边分别相等;一组对边平行且相等;对角线互相平分等 邻边相等或对角线互相垂直等 15.90或120 16. 12三、全面答一答(本题有7个小题,共66分) 17.(本题共6分)(1)原式=2+2 ………2分(每化对一个给1分) =4 ………1分(2)原式=33+33- ………2分(每化对一个给1分) =+32 3 ………1分18.(本题共8分)解:(1)∵方程有两个不相等的实数根,∴b 2-4ac >0……………1分 ∴42-4(m -1)>0,解得m <5 ………2分(2)m (m <5)取对…………1分 方程解答正确(2x =-4分 19.(本题共8分)解:(1)∵BE=CF ,∴BF=CF .∵四边形ABCD 是平行四边形,∴AB=DC .又∵AF=DE ,∴△ABF ≌△DCE .…………………………4分 (2)∵,△ABF ≌△DCE ,∴∠B =∠C .∵四边形ABCD 是平行四边形,∴AB ∥CD . ∴∠B +∠C =180°,∴∠B =∠C =90°.∴四边形ABCD 是矩形.……………………………………4分 20.(本题10分)(1)y=-x …………(2分)(2)16y x -=……(1分) B (2,-8)……(1分) -2<x <0或x >2……(2分)(3)把A (-2,8)代入y=mx+n ,得-2m +n =8,∴n =8+2m ,∴y =mx +(8+2m )…………………………………………………………(1分)又16y x -=,∴16(82)mx m x -=++,即mx 2+(8+2m )x +16=0∵直线与反比例函数图象只有一个交点,∴b 2-4ac =0………………………………(1分)∴(8+2m )2-4×m ×16=0,即m 28m +16=0,解得m =4.∴解析式为y=4x +16……………………………………………………………………(2分)21. (本题10分)(1)矩形或正方形或直角梯形………………(2分)(2)∵四边形ABDE及ACFG是正方形,∴AB=AE,AG=AC,∠CAG=∠BAE=90°∴∠BAG=∠EAC,∴△ABG≌△AEC(SAS)……………………………………(3分)∴∠ABG=∠AEC. 设EC交AB于Q,则∠BQO=AQE∴∠BOQ=∠QAE=90°,∴OB2+OE2=BE2,即四边形OBPE是勾股四边形.……(3分)(3)正方形……………………(2分)22. (本题12分)(1)平均利润45万元……(2分)中位数45万元……(2分)(2)设平均增长率为x,则50(1+x)2=72……………………………………(3分)解得x1=20%,x2=-2.2(不合题意,舍)……………………………………(3分)∴4月份的利润:50(1+20%)=60万元……………………………………(2分)答:略23. (本题12分)解:(1)∵S菱形ABCD=4S△COD,∴AD·h=4×12×3×4,AD =22345+=∴h=245……………………………………(3分)(2)若四边形PQCD为平行四边形,则PD=CQ,即5-t=2t,∴t=53.…………………………(3分)(3)显然,当552t<≤时,P,Q在二、三象限,显然不可能.………………(1分)当52t<≤时,若存在,点P、Q分别在两个分支上,…………………………(1分)由反比例函数图象特点可知,点Q关于原点O的对称点Q′(即直线QO与AD的交点)也在双曲线上,且AQ′=CQ=2t,如图.又∵AP=t,∴AP=PQ′=t.易知△PQ′F≌△APM,∴PM=12Q′N,由PM·PH=Q′N·Q′G,知PH=2Q′G,可知AP=PQ′=Q′D,∴53t=.………………(3分)∴P(83-,1)或Q(43-,2),此时,k=83-.……(1分)Q′yx。
浙教版八年级数学第二学期期末测试试题
浙教版八年级数学第二学期期末测试试题及答案一、选择题(本题有10小题,每小题3分,共30分)1.4的算术平方根是()A.2B.±2C.4D.﹣42.以下关于垃圾分类的图标中是中心对称图形的是()A.B.C.D.3.方差是刻画数据波动程度的量,对于一组数据x1,x2,x3,…,x n,可用如下算式计算方差:S2=[(x1﹣2)2+(x2﹣2)2+(x3﹣2)2+…+(x n﹣2)2],上述算式中的“2”是这组数据的()A.最小值B.平均数C.中位数D.众数4.某多边形的内角和是其外角和的2倍,则此多边形的边数为()A.3B.4C.5D.65.如图,已知点O是矩形ABCD的对称中心,且AB>AD.点E从点A出发沿AB向点B运动,移动到点B停止,延长EO交CD于点F,则四边形AECF的形状不可能是()A.平行四边形B.正方形C.矩形D.菱形6.用反证法证明某个命题的结论“a>0”时,第一步应假设(()A.a<0B.a≠0C.a≥0D.a≤07.已知(﹣3,y1),(﹣2,y2),(1,y3)是反比例函数y=(k≠0)图象上的点,则()A.y3<y2<y1B.y3<y1<y2C.y2<y3<y1D.y1<y3<y28.小浔受赵爽弦图的启发,制作了以下图形:将边长为1的正方形ABCD的四边AD、DC、CB、BA分别延长至点H、G、F、E,使得AE=CG、BF=DH.若∠BFE=45°,AH=3AE.则四边形EFGH的面积为()A.8B.7C.6D.59.如图,已知平行四边形ABCD,以点A为圆心,AD长为半径画弧,交AB于点E;再分别以点D、E为圆心,大于DE长为半径画弧,两弧交于点F,画射线AF,与DC交于点G.若∠AGB=90°,CG=10,则AB的长为()A.B.C.20D.1510.如图,在直角坐标系xOy中,已知点A,点B分别是x轴和y轴上的点,过x轴上的另一点D作DC∥AB,与反比例函数y=(k≠0)的图象交于C、E两点,E恰好为CD的中点,连结BE和BD.若OD=3OA,△BDE 的面积为2,则k的值为()A.3B.C.2D.1二、填空题(本题有6小题,每小题4分,共24分)11.要使二次根式有意义,x的取值范围是.12.已知一组数据1,2,5,4,5,则这组数据的众数是.13.已知反比例函数y=的图象在第一、三象限内,则k的取值范围是.14.要使关于x的一元二次方程x2+x+m=0有两个相等的实数根,则m的值是.15.已知一个液压升降机如图1所示,图2和图3是该液压升降机的平面示意图,菱形CODP的边长及等腰三角形OAB、PEF的腰长都是定值且相等.如图2,载物台EF到水平底座AB的距离h1为60cm,此时∠AOB=120°;如图3,当∠AOB=90°时,载物台EF到水平底座AB的距离h2为cm(结果精确到1cm,参考数据:≈1.41,≈1.73).16.如图,已知有一张正方形纸片ABCD,边长为9cm,点E,F分别在边CD,AB上,CE=2cm.现将四边形BCEF沿EF折叠,使点B,C分别落在点B',C',上当点B'恰好落在边AD上时,线段BF的长为cm;在点F 从点B运动到点A的过程中,若边FB'与边AD交于点G,则点G相应运动的路径长为cm.三、解答题(本大题有8小题,共66分.)17.计算:﹣×+5.18.解方程:x(x﹣2)=1.19.如图,在平面直角坐标系xOy中.已知一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于点A (1,5)和点B(n,1).(1)求反比例函数和一次函数的解析式;(2)根据图象,直接写出当不等式kx+b>成立时,x的取值范围.20.某学校开展了防溺水知识的宣传教育活动.为了解这次活动的效果,学校从全校1500名学生中随机抽取部分学生进行知识测试(测试满分100分,得分x均为不小于60的整数),并将测试成绩分为四个等级:基本合格(60≤x<70),合格(70≤x<80),良好(80≤x<90),优秀(90≤x≤100),制作了如下统计图(部分信息未给出).根据图中给出的信息解答下列问题:(1)求测试成绩为合格的学生人数,并补全频数分布直方图;(温馨提示:请画在答题卷相对应的图上)(2)这次测试成绩的中位数是什么等级?(3)如果全校学生都参加测试,请你根据抽样测试的结果,估计该校获得优秀的学生有多少人?21.如图,已知矩形ABCD,延长CB至点E,使得BE=BC,对角线AC,BD交于点F,连结EF.(1)求证:四边形AEBD是平行四边形;(2)若BC=4,CD=8,求EF的长.22.科学研究表明接种疫苗是战胜新冠病毒的最有效途径.当前居民接种疫苗迎来高峰期,导致相应医疗物资匮乏,某工厂及时补进了一条一次性注射器生产线生产一次性注射器.开工第一天生产200万个,第三天生产288万个.试回答下列问题:(1)求前三天生产量的日平均增长率;(2)经调查发现,1条生产线最大产能是600万个/天,若每增加1条生产线,每条生产线的最大产能将减少20万个/天.①现该厂要保证每天生产一次性注射2600万个,在增加产能同时又要节省投入的条件下(生产线越多,投入越大),应该增加几条生产线?②是否能增加生产线,使得每天生产一次性注射器5000万个,若能,应该增加几条生产线?若不能,请说明理由.23.定义:我们把对角线长度相等的四边形叫做等线四边形.(1)尝试:如图1,在3×3的正方形网格图形中,已知点A、点B是两个格点,请你作出一个等线四边形,要求A、B是其中两个顶点,且另外两个顶点也是格点;(温馨提示:请画在答题卷相对应的图上)(2)推理:如图2,已知△AOD与△BOC均为等腰直角三角形,∠AOD=∠BOC=90°,连结AB,CD,求证:四边形ABCD是等线四边形;(3)拓展:如图3,已知四边形ABCD是等线四边形,对角线AC,BD交于点O,若∠AOD=60°,AB=,BC=,AD=2.求CD的长.24.如图1,在平面直角坐标系xOy中,已知四边形AOCD的顶点A,C分别在y轴和x轴上.直线y=﹣x+6经过点A,与a轴交于点E.已知∠D=90°,∠OAD=120°,EC=4.CF平分∠OCD,交AD于点F,点P是线段CF上一动点.(1)求AE的长和∠AEO的度数;(2)若点G是平面内任意一点,当以E、C、P、G为顶点的四边形为菱形时,求点G的坐标;(3)如图2,在线段AE上有一动点Q,点P与点Q分别同时从点C和点A出发,已知当点P从点C匀速运动至点F时,点Q恰好从点A匀速运动至点E,连结PQ、PD、QF.问:在运动过程中,是否存在这样的点P和点Q,使得△PFQ的面积与△PDQ的面积相等.若存在,请直接写出相应的点P的坐标,若不存在,请说明理由.。
浙教版八年级数学下册期末试卷及答案
浙教版八年级数学下册期末试卷及答案浙教版八年级数学(下)期末测试卷一、选择题(本题有10小题,每小题3分,共30分)1.二次根式a+3中,字母a的取值范围是A) a>-3 (B) a≥-3 (C) a>3 (D) a≥32.在下列关于平行四边形的各命题中,假命题是A) 平行四边形的对边相等 (B) 平行四边形的对角相等 (C) 平行四边形的对角线互相平分 (D) 平行四边形的对角线互相垂直3.一元二次方程x^2-4x-6=0,经过配方可变形为A) (x-2)^2=10 (B) (x-2)^2=6 (C) (x-4)^2=6 (D) (x-2)^2=24.在下列图形中,中心对称图形是A) 等边三角形 (B) 平行四边形 (C) 等腰梯形 (D) 正五边形5.若√(a+√(a))是一个完全平方式。
则a的值是:_________________。
6.下列计算正确的是A) 3+2=5 (B) 3-2=1 (C) 32-8=2 (D) 3+3=37.一幅平面图案,在某个顶点处由四个正多边形镶嵌而成,其中的三个分别为正三角形、正方形、正六边形,那么另外一个为__________。
8.将50个数据分成五组,编成组号为①~⑤的五个组,频数分别如下表:组号:①②③④⑤频数:8 10 □ 14 11那么第③组的频率为__________。
9.如图,已知矩形ABCD的对角线AC的长为10cm,连结各边中点E、F、G、H得四边形EFGH,则四边形EFGH的周长为__________。
10.如图,梯形ABCD中,AD∥BC,AB=CD,AD=5,BC=8.将腰DC绕点D逆时针方向旋转90º至DE,连结AE,则△ADE的面积为__________。
二、填空题(本题有10小题,每小题3分,共30分)11.数据10,5,12,7的极差为__________。
12.五边形的内角和等于__________。
13.方程2x^2=6的解是__________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016学年第二学期期末考试初二数学试卷本卷满分100分,考试时间90分钟温馨提示:同学们考试就要开始了,请不要粗心,要注意把握好考试时间,努力吧!一、仔细选一选(本题有10个小题,每小题3分,共30分)1.对于反比例函数y= ,下列说法正确的是()A.图像经过(1,-1)B.图像位于二四象限C.图像是中心对称图形D.当x<0,y随X的增大而增大2.如图,在▱ABCD中,E在AB上,CE、BD交于F,若AE:BE=4:3,且BF=2,则DF的长为()A.5/3 B.7/3 C.10/3 D.14/33.四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD第2题图从中任选两个条件,能使四边形ABCD为平行四边形的选法有( )A.3种B.4种C.5种D.6种4.已知二次函数y=x2+x+ ,当自变量x取m时对应的值小于0,当自变量x分别取m-1、m+1时对应的函数值为y1、y2,则y1、y2必须满足()A.y1>0、y2>0 B.y1<0、y2<0 C.y1<0、y2>0 D.y1>0、y2<05.如图,正方形ABCD中,AB=8cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t(s),△OEF的面积为s(cm2),则s(cm2)与t(s)的函数关系可用图象表示为()A B C D6.如图,矩形ABCD的面积为20cm2,对角线交于点O;以AB、AO为邻边做平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边做平行四边形AO1C2B;…;依此类推,则平行四边形AO4C5B的面积为()第6题图7.先做二次函数y=2x2+bx+c关于x轴对称的图象,在绕图像的顶点旋转180度,得到二次函数y=ax2-8x+5,则a、b、c的取之分别是()A.2,-8,11B.2,-8,5C.-2,-8,11D.-2,-8,58.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc<0 ②b<a+c ③4a+2b+c>0 ④2c<3b ⑤a+b<m(am+b),(m≠1的实数)其中正确的结论的有()A.1个 B.2个 C.3个 D.4个第8题图第9题图第10题图9.如图,①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH(不重叠无缝隙).若①②③④四个平行四边形面积的和为14cm2,四边形ABCD面积是11cm2,则①②③④四个平行四边形周长的总和为()A.48cm B.36cm C.24cm D.12cm10.如图,在正方形ABCD的对角线上取点E,使得∠BAE=15°,连结AE,CE.延长CE到F,连结BF,使得BC=BF.若AB=1,则下列结论:①AE=CE;②F到BC的距离为;③BE+EC=EF;④S△AED= ;⑤S△EBF= .其中正确的是()A.①③B.①③⑤ C.①②④ D.①③④⑤二、认真填一填(本题有8个小题,每小题3分,共24分)11.一个内角和为1620°的多边形一共可以连条对角线12.用反证法证明“在三角形中,至少有一个角不大于60°”时,应先假设13.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则△AEF的周长= cm.第13题图14.若抛物线y=(m-1)2x2+2mx+3m-2的顶点在坐标轴上,则m的值为15.如图,已知第一象限内的图象是反比例函数y= 图象的一个分支,第二象限内的图象是反比例函数y=- 图象的一个分支,在x轴的上方有一条平行于x轴的直线l与它们分别交于点A、B,过点A、B作x轴的垂线,垂足分别为C、D.若四边形ABCD的周长为8且AB<AC,则点A的坐标为第15题图第16题图第17题图16.如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.若AG=13,CF=6,则四边形BDFG的周长为17.给出下列说法及函数y=x,y=x2和y=①如果,那么0<a<1;②如果,那么a>1;③如果,那么﹣1<a<0;④如果时,那么a<﹣1.以上说法正确的是18.若一个四边形的一条对角线把四边形分成两个等腰三角形,我们把这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.在四边形ABCD中,AB=AD=BC,∠BAD=90°,AC是四边形ABCD的和谐线,则∠BCD=三、全面答一答(本大题共44分,其中19、20、21题6分,22题8分,23、24题10分)19.如图,直线y=k1x+b与双曲线y= 相交于A(1,2)、B(m,﹣1)两点.(1)求直线和双曲线的解析式;(2)求△OAB的面积20.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于F ,且AF=BD,连结BF(1)求证:D是BC的中点.(2)如果AB=AC ,试判断四边形AFBD的形状,并证明你的结论.21.如图,在Rt△ABC中,∠C=90°,翻折∠C,使点C落在斜边AB上某一点D处,折痕为EF(点E、F分别在边AC、BC上)(1)若△CEF与△ABC相似.当AC=BC=2时,AD的长为;(2)当点D是AB的中点时,△CEF与△ABC相似吗?请说明理由.22.某大学生利用暑假40天社会实践参与了一家网店的经营,了解到一种成本为20元/件的新型商品在x天销售的相关信息如表所示.p=50﹣x销售量p(件)销售单价q(元/件)当1≤x≤20时,q=30+x当21≤x≤40时,q=20+(1)请计算第几天该商品的销售单价为35元/件?(2)求该网店第x天获得的利润y关于x的函数关系式;(3)这40天中该网店第几天获得的利润最大?最大的利润是多少?23.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始,沿边AC向点C以每秒1个单位长度的速度运动,动点D从点A开始,沿边AB向点B以每秒个单位长度的速度运动,且恰好能始终保持连结两动点的直线PD⊥AC,动点Q从点C开始,沿边C B向点B以每秒2个单位长度的速度运动,连结PQ.点P,D,Q分别从点A,C同时出发,当其中一点到达端点时,另两个点也随之停止运动,设运动时间为t秒(t≥0).(1)当t为何值时,四边形BQPD的面积为△ABC面积的一半?(2)是否存在t的值,使四边形PDBQ为平行四边形?若存在,求出t的值;若不存在,说明理由;(3)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由,并探究如何改变点Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q 的速度.24.如图,在平面直角坐标系中,O为坐标原点,抛物线y=x2+2x与x轴相交于O、B,顶点为A,连接OA.(1)A的坐标,∠AOB= 。
(2)若将抛物线y=x2+2x向右平移4个单位,再向下平移2个单位,得到抛物线m,其顶点为点C.连接OC和AC,把△AOC沿OA翻折得到四边形ACOC′.试判断其形状,并说明理由;(3)在(2)的情况下,判断点C′是否在抛物线y=x2+2x上,请说明理由;(4)若点P为x轴上的一个动点,试探究在抛物线m上是否存在点Q,使以点O、P、C、Q为顶点的四边形是平行四边形,且OC为该四边形的一条边?若存在,请直接写出点Q的坐标;若不存在,请说明理由.2015-2016学年第二学期期末考试初二数学答案及评分标准一、仔细选一选(本题有10个小题,每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10答案 C D B A B B A C A B二、认真填一填(本题有8个小题,每小题3分,共24分)11.44 12. 三角形三个内角都大于60°(三角形没有一个内角不大于60°)13. 9 14. 0或0.5或2 15.(1/3,3) 16. 20 17.①④18. 45°或90°或135°三、全面答一答(本大题共44分,其中19、20、21题6分,22题8分,23、24题10分)19(1)y=,y=x+1(3分)(2)1.5(3分)20.(1)∵E是AD中点∴AE=DE∵AF‖BC ∴∠AFE=∠DCE,∠EAF=∠EDC在△AFE和△DCE中∴△AFE≌△DCE ∴AF=DC又∵AF=DB∴DC=BD∴点D是BC的中点(4分)(2)四边形ADBF是矩形。
连结DF ∵AF∥DB, AF=DB∴四边形ADBF是平行四边形。
又∵AB=AC D为BC中点∴AD⊥BC∴四边形ADBF是矩形(2分)21(1)(2分)(2)△CEF与△ABC相似.(1分)理由如下:连接CD,与EF交于点Q.∵CD是Rt△ABC的中线,∴CD=DB=AB∴∠DCB=∠B.由折叠性质可知,∠CQF=∠DQF=90°,∴∠DCB+∠CFE=90°∵∠B+∠A=90°∴∠CFE=∠A又∵∠C=∠C∴△CEF∽△CBA.(3分)22.(1)第10天或第25天该商品的销售单价为35元/件(2分)(2)(3分)(3)这40天中该网店第21天获得的利润最大(1分),最大利润是725元(2分)23(1)t= (3分)(2)存在,t=2.4(3分)(2分)(2分)24.(1)(-2,-2);45°(2分)(2)四边形ACOC′为菱形.(1分)由题意可知抛物线m的二次项系数为,且过顶点C的坐标是(2,﹣4),∴抛物线的解析式为:y=(x﹣2)2﹣4,即y=x2﹣2x﹣2,(1分)过点C作CE⊥x轴,垂足为E;过点A作AF⊥CE,垂足为F,与y轴交与点H,∴OE=2,CE=4,AF=4,CF=CE﹣EF=2,∴OC===2,同理,AC=2,OC=AC,由反折不变性的性质可知,OC=AC=OC′=AC′,故四边形ACOC′为菱形.(1分)(共3分)(3)如图1,点C′不在抛物线y=x2+2x上.(1分)理由如下:过点C′作C′G⊥x轴,垂足为G,∵OC和OC′关于OA对称,∠AOB=∠AOH=45°,∴∠COH=∠C′OG,∵CE∥OH,∴∠OCE=∠C′OG,又∵∠CEO=∠C′GO=90°,OC=OC′,∴△CEO≌△C′GO,∴OG=4,C′G=2,∴点C′的坐标为(﹣4,2),(1分)把x=﹣4代入抛物线y=x2+2x得y=0,∴点C′不在抛物线y=x2+2x上;(1分)(共3分)(4)存在符合条件的点Q.∵点P为x轴上的一个动点,点Q在抛物线m上,∴设Q(a,(a﹣2)2﹣4),∵OC为该四边形的一条边,∴OP为对角线,∴=0,解得x1=6,x2=4,∴P(6,4)或(﹣2,4)(舍去),∴点Q的坐标为(6,4).(直接写出即可,2分,多写1个只得1分)文澜中学的难度系数约0.76,全杭州市的难度系数约0.63。