阳煤集团石港矿矿井通风系统设计-学位论文

合集下载

矿井通风系统优化设计论文

矿井通风系统优化设计论文

矿井通风系统优化设计论文:矿井通风系统优化设计探讨摘要:矿井通风系统是否合理,与矿井的安全生产、矿井的经济效益、矿井的抗灾能力及矿井的高产和稳产都有着莫大的关联。

本文通过介绍矿井通风系统的优化理论和矿井规划、设计和调节技术,最后重点探讨了矿井通风系统优化设计的方案。

关健词:矿井通风系统通风技术优化设计1 矿井通风系统优化理论所谓矿井通风系统,就是由向井下各作业地点供给新鲜空气并排出污浊空气的通风动力、通风网络和通风控制设施等构成体系的总称。

矿井通风系统是由通风机和通风网络两部分组成。

矿井通风方法以风流获得的动力来源不同,可分为自然通风和机械通风两种。

①机械通风:利用扇风机运转产生的通风动力,致使空气在井下巷道流动的通风方法叫做机械通风。

采用机械通风的矿井,自然风压也是始终存在的,并在各个时期内影响着矿井的通风工作,在通风管理工作中应给予充分重视,特别是高沼气矿井尤应注意。

②自然通风:利用自然气压产生的通风动力,致使空气在井下巷道流动的通风方法叫做自然通风。

自然风压一般都比较小,且不稳定,所以《煤矿安全规程》规定:每一矿井都必须采用机械通风。

矿井通风系统的基本任务:①调节井下气候,创造良好的工作环境。

②冲淡井下有毒有害气体和粉尘,保证安全生产。

③供给井下足够的新鲜空气,满足人员对氧气的需要。

矿井通风系统优化就是利用科学方法综合考虑各种因素影响,从众多方案中确定一个抗灾能力强、安全可靠、经济效益好和技术合理的通风系统。

矿井通风系统方案优选是一个由定量和定性因素间的相互关联、相互结合、相互制约等众多因素组成的复杂系统的决策问题。

2矿井通风系统调节技术发展因为矿井开拓开采的进展,开采水平的延伸,采掘工作面的接替使得矿井生产系统处于不断变化之中,因此矿井通风是针对一个动态的系统进行通风,它具有独特的技术:①利用电子计算机分析和计算复杂的通风网络与系统。

这个为矿井通风系统分析提供了有效的方法。

②矿井火灾时风流非稳定流动规律的研究不断深化,同时建立起了若干典型风流控制方案。

矿井通风设计论文

矿井通风设计论文

矿井通风设计论文1. 引言1.1 背景矿井通风是矿山生产中非常重要的一环。

通过良好的通风设计,能够保证矿工的工作环境安全,提高矿山生产效率。

因此,矿井通风设计一直以来都是矿山工程师关注的焦点。

1.2 目的本论文旨在通过研究和分析不同类型矿井的通风设计方法,探讨如何优化矿井通风系统,提出有效的改进方案,使矿山工作环境更加安全舒适。

通风系统是矿井通风设计的核心。

要合理设计通风系统,首先需要理解通风设计的基本原理。

2.1 空气流动原理矿井通风系统的设计基于空气流动原理。

空气在矿井中的流动有两个主要驱动因素:重力和压力差。

重力使得冷空气下沉,温暖空气上升,形成自然对流。

压力差则是由于矿井中动力设备产生的气流,推动空气流动。

2.2 通风系统组成通风系统主要由通风井、风机、管道和风门等组成。

通风井是通风系统的核心,用于提供气流进出口。

风机则负责产生气流,通过管道将气流输送到需要通风的区域。

风门用于控制气流的流量和方向。

3.1 基于经验的设计方法基于经验的设计方法是最常用的通风设计方法之一。

通过根据已有的类似矿井的通风经验,推断当前矿井的通风设计方案。

这种方法简单、快速,适用于一些常见的矿井类型。

但是,由于每个矿井的结构和条件不同,基于经验的设计方法可能存在较大的偏差。

3.2 数值模拟方法数值模拟方法是一种基于计算机模型的通风设计方法。

通过建立矿井的几何模型和物理模型,利用计算流体力学(CFD)等方法,计算出矿井内的空气流动情况。

数值模拟方法可以更准确地预测矿井中的通风情况,为优化设计提供依据。

然而,数值模拟方法需要较为复杂的计算和较长的计算时间,对计算设备要求较高。

3.3 综合设计方法综合设计方法是基于经验设计方法和数值模拟方法的结合。

首先,利用基于经验的设计方法初步确定通风方案,然后利用数值模拟方法辅助优化设计。

综合设计方法兼具快速性和准确性,是一种较为常用的通风设计方法。

4. 矿井通风设计的优化4.1 优化通风系统布局通风系统布局直接影响气流的流动情况。

矿井通风系统论文

矿井通风系统论文

矿井通风矿井通风系统是矿井通风方法、通风方式和通风网络的总称。

也就是说矿井以开掘出进、出井巷和具备一定通风动力设备,并在进出风井巷之间建有控制风流的设施,使矿井的进风流和回风流,均能按预定路线,通过采区和工作面及需要通风的地点或场所,并有效的排出各种有害气体。

矿井通风系统,是否完善合理,这对整个矿井的通风和安全生产有着至关重要的作用。

《煤炭工矿井业设计规范》规定;矿井通风设计必须符合下列规定:1.将足够的新鲜空气有效的送到井下工作场所,保证安全生产和良好的劳动条件;2.通风系统简单、风流稳定、易于管理具、有抗灾能力;3.发生事故时,风流易于控制,人员便于撤出;4.有符合规定的井下环境及安全监测监控系统;5.符合现行《煤矿安全规程》的有关规定。

1 矿井通风系统选择1.1 矿井通风系统的基本要求和原则选择任何通风系统,都要符合投产较快、出煤较多、安全可靠、技术经济指标合理等总原则。

具体地说,要适应以下基本要求:1.矿井至少要有两个通地面的安全出口;2.进风井口要有利于防洪,不受粉尘等有害气体污染;3.北方矿井,冬季井口需装供暖设备;4.总回风巷不得作为主要行人道;5.工业广场不得受扇风机的噪音干扰;6.装有箕斗的井筒不得作为主要进风井;7.可以独立通风的矿井,采区尽可能独立通风;8.通风系统要为防瓦斯、火、尘、水及高温创造条件;9.通风系统要有利于深水平式或后期通风系统的发展变化。

矿井通风系统的主要原则1.必须符合《煤矿安全规程》和《煤炭工业矿井设计规范》有关规定:2.通风系统的选择应有利于加快矿井建设速度,有利于矿井高产高效,安全生产,整个系统技术经济合理。

3.还应综合考虑一下因素:1)风井的位置要在洪水位标高以上,进风井口必须避免污染空气进入,距有害气体源的地点不得小于500米。

2)井口工程地质及井筒施工地质条件简单。

3)占地少压煤少交通方便便于施工。

4)通风系统简单,风流稳定易于管理。

5)发生事故时风流易于控制,井下每一水平到上一水平。

通风系统论文

通风系统论文

当前,我国煤矿矿井事故类型多种多样,但其内部总有一定的发展规律可循。

事故统计发现,但凡能造成重特大事故,一般都与通风系统的有关,或者是通风系统不合理,或者是通风系统本身就没有完整地形成,导致包括瓦斯爆炸、煤尘爆炸重特大事故。

因此,一套合理的通风系统对于保证煤矿矿井安全生产极为重要。

1、合理矿井通风系统的特点合理的矿井通风系统是利用通风动力,以最经济的方式,向井下各用风地点提供足量的新鲜空气,提供适宜的温度、湿度,保持良好的气候条件,以保证井下作业人员的生命安全和改善劳动环境的需要,采取符合实际的矿井通风方式、矿井通风方法和矿井通风网络。

并且要求在发生灾害时,能及时而有效地控制风向及风量,并配合其它措施,将事故控制在一定范围内,防止灾害的进一步扩大。

只有能顺利完成以上任务的矿井通风系统才能算作是合理的,而体现在宏观上,合理的矿井通风系统必须具备以下几个特点:(1)通风系统简单实用;(2)通风设施安全可靠;(3)保证稳定的风流导向;(4)矿井通风阻力﹙包括摩擦阻力和局部阻力﹚最小,且分布合理;把安全工程师站点加入收藏夹(5)具备抗灾能力强。

2、构建合理通风系统应遵循的基本原则2.1整体性矿井生产系统是一个紧密结合有机的整体,通风系统仅仅是矿井生产系统的一个子系统,因此在拟定和分析通风系统时,必须与其他系统同时考虑。

因而,在进行矿井通风系统设计时就要实地考察矿井的实际情况,全面分析影响矿井生产与安全的各项因素并结合地质和开采条件来拟定出一套合理的矿井通风系统;而采掘巷道在布置时也必须考虑到对矿井通风系统的影响,以保证各子系统之间相互协调有序地运行。

同时,矿井通风系统本身又是由进回风井筒、通风机和其附属装置、通风网路以及通风设施等多个要素组成,这些要素之间也相互联系、相互作用、相互依赖、相互影响。

因此,在分析和设计通风系统时,不能够单从某一要素考虑,必须从通风系统整体考虑;在对生产矿井的通风系统进行技术设计和改造时,不仅要考虑到新系统的先进性、科学性、可靠性、合理性和适应性,而且还要考虑矿井整体的物理条件。

矿井通风毕业论文

矿井通风毕业论文

矿井通风毕业论文引言矿井通风作为保障矿工工作环境安全的重要手段,在矿山行业具有极其重要的地位。

合理、高效的通风系统可以有效地降低矿井中的有害气体浓度,保证矿工的安全健康。

本文将对矿井通风进行深入研究,探索提高矿井通风系统性能和效率的方法。

1. 矿井通风系统概述矿井通风系统由主风机、风管网络、风门、散流器等组成。

主要任务是将新鲜空气引入矿井,并将废弃气体排出矿井外,以维持矿工工作地点的适宜气候条件。

通风系统的效率和性能直接关系到矿工的安全和工作效率。

2. 矿井通风系统的设计与优化2.1 矿井风量的计算矿井通风的设计需要准确计算所需的风量。

通常根据矿井中的人数、设备情况、工作面长度等因素来确定所需风量。

本文将介绍常用的矿井风量计算方法,并分析其适用性和局限性。

2.2 通风风道的布置与设计通风风道的布置与设计是矿井通风系统设计中的重要环节。

合理的通风风道布置能够提高通风效率,同时减少通风系统的能耗。

本文将介绍通风风道布置的一些常见原则和方法,并结合实际案例进行分析和讨论。

2.3 风门与散流器的选择与调整风门和散流器对通风效果起到关键作用。

正确选择和调整风门和散流器可以改善矿井通风的均匀性和稳定性。

本文将介绍常用的风门和散流器类型,并探讨其对通风系统的影响。

3. 矿井通风系统的性能评价与监控为了确保通风系统的稳定运行和高效工作,需要对通风系统进行定期检测和监控。

通过对通风系统的性能评价与监控,可以及时发现和处理通风系统中的问题,提高通风系统的可靠性和效率。

本文将介绍常用的通风系统评价方法和监控技术,并分析其应用效果和优缺点。

4. 矿井通风系统的问题与改进虽然矿井通风系统在保证矿工安全方面起到了重要作用,但仍然存在一些问题和待改进之处。

本文将对常见的通风系统问题进行分析,并提出相应的改进方法和措施,以期进一步提高矿井通风系统的性能和效率。

结论通过对矿井通风系统的设计、优化、评价与监控以及问题改进的研究,可以提高矿井通风系统的性能和效率,保障矿工的安全健康。

矿井通风设计毕业论文

矿井通风设计毕业论文

矿井通风课程设计选题序号: 1学号:姓名:马志敏班级:指导老师:第一章绪论矿井通风系统是矿井生产系统的重要组成部分,它包括矿井进、回风和工作面进、回风巷道布置形式,矿井通风路线的连接方式,以及矿井通风设施和设备等基本内容。

它与矿井巷道布置和采煤方法在一定程度上相互制约。

矿井通风设计应满足下列要求:1、无意漏风少2、采、掘工作面实现独立通风3、通风构筑物设置较少、安设得当、合理4、进风污染少5、工作面串联少6、矿井总风阻小,可靠性高7、变电所必须有独立的通风系统8、符合《规程》相关规定第二章概况第一节矿井概况某煤矿井田范围走向长7.42km,倾斜宽0.66—1.47km,井田面积约8.53 km2。

位于背斜南翼,为一般平缓的单斜构造,地层产状走向近东西向,倾向南,倾角10-25°,一般为16°左右。

矿井生产能力为90万t/a。

第二节矿井开拓方式矿井采用中央竖井,煤层分组采区上山布置的开拓方式,单翼对角式通风。

矿井通风难易时期的系统示意图见后。

井田设三个井筒:主井、副井、风井。

地面标高+200m。

全矿井划分为两个水平,第一水平标高-150m,第二水平标高-350m,回风水平标高+45~+50m。

第一水平东西运输大巷布置在煤层的底板岩石中,距煤层30m,通过水平大巷开拓煤层的全部上山采区。

矿井采用走向长壁开采方式。

第三节矿井瓦斯和温度情况该矿是高瓦斯矿井,瓦斯涌出量较大,为安全起见,用“品”字形布置三条上山。

采用综合机械化放顶煤采煤。

采煤工作面的平均断面积8.1 m2,回采工作面温度一般在21°,回风巷风流中瓦斯(或二氧化碳)的平均绝对涌出量为5.65m3/min,三四班交接时人数最多66人;掘进工作面平均绝对瓦斯涌出量3.75m3/min,掘进工作面同时工作的最多人数18人,一次爆破炸药用量4.3kg。

第三章采区通风设计第一节采区通风系统矿井采用抽出式通风方式,利用轨道上山、运输上山进风,回风上山回风,三条上山均布置在煤层中,三条巷道都可以行人。

矿井安全通风系统论文

矿井安全通风系统论文摘要:安全工作无止境,可以说,合理的矿井通风是实现安全生产的保证,是实现经济效益的基础。

因此,要严格落实各级领导安全生产责任制,各负其责、各司其职,抓好通风安全管理工作,保证矿井通风系统的投入合理,实施科技进步、科技兴矿战略,突出解决综合降尘、瓦斯抽放与监控、电气设备防爆防火,各种安全保护的运用等方面的问题,实现标准化、效益化和实效化。

前言矿井通风系统主要是由通风机和通风网络这两大部分构成。

其原理是,把地面的新鲜风流通过矿井主要扇风机的作用压入矿井的入风井口进入矿井后,实现矿井各个工作场所的用风需求,然后再由回风巷进入回风井排出到地面。

合理的矿井通风系统是由影响矿井安全生产的主要因素(如瓦斯、煤尘、煤层自燃、矿井温度等)所决定的。

为了便于管理、设计和检查,就要根据矿井的瓦斯、煤层自燃和高温的具体情况对矿井进行合理的、科学的布置。

要实现煤矿安全生产,合理的矿井通风起着决定性的作用。

所谓合理的矿井通风系统,就是要使矿井的风量、风速以及通风设施、通风设备等都要符合《煤矿安全规程》的要求。

要实现合理的矿井通风,首先就要严格执行你某矿安全规程》以及国家有关安全生产的法律法规。

1矿井通风系统特点矿井通风系统作为一个复杂的系统具有以下几个特点:1.1系统的动态性。

矿井的通风系统并非是一成不变的,因为它会随矿井生产的进行不断改变位置。

随着矿井采掘的工作不断进行通风系统的网络结构以及参数都会随机变化。

1.2系统的复杂性。

矿井内的通风系统主要是由多个网络分支组成的。

例如大型矿井,其网络分支多达600条以上,网络节点则是500个以上。

通风设备多达上百个,这样一个复杂、变化、非稳定的通风动态系统直接确定了通风系统的不稳定性。

2矿井通风系统的重要地位矿井通风系统按照其作用可分为:一般型、降温型、防火型、排放瓦斯型、防火及降温型、排放瓦斯及降温型、排放瓦斯及防火型、排放瓦斯与防火及降温型;如果按照进回风巷在井田所处位置划分的话,有中央式、对角式、分区式和混合式这四种形式。

矿井通风设计-毕业论文

矿井通风设计-毕业论文矿井基建时期的通风设计是指在矿井建设初期,根据矿井的地质条件、矿井规模和生产能力等因素,确定矿井通风系统的基本结构和布局。

在设计过程中,要充分考虑通风系统的可靠性、经济性和适用性,确保通风系统的稳定运行和生产安全。

第二节矿井生产时期的通风矿井生产时期的通风设计是指在矿井正式投产后,根据矿井生产的实际情况,对通风系统进行调整和改造,以满足矿井生产的需要。

在设计过程中,要考虑矿井生产的特点和变化,及时调整通风系统,确保通风系统的稳定运行和生产安全。

第三节矿井通风设计的内容矿井通风设计的内容包括通风系统的布局、通风设备的选择、通风风量的计算、通风总阻力的计算等。

在设计过程中,要充分考虑矿井的地质条件、矿井规模和生产能力等因素,确保通风系统的合理性和可行性。

第四节矿井通风设计的要求矿井通风设计的要求包括通风系统的稳定性、可靠性、经济性和适用性等。

在设计过程中,要充分考虑矿井的实际情况和变化,及时调整通风系统,确保通风系统的稳定运行和生产安全。

第二章优选矿井通风系统第一节矿井通风系统的要求矿井通风系统的要求包括通风系统的稳定性、可靠性、经济性和适用性等。

在选择通风设备和布局通风系统时,要充分考虑矿井的地质条件、矿井规模和生产能力等因素,确保通风系统的合理性和可行性。

第二节确定矿井通风系统确定矿井通风系统是指根据矿井的实际情况和要求,选择合适的通风设备和布局通风系统。

在确定通风系统时,要充分考虑通风系统的稳定性、可靠性、经济性和适用性等因素,确保通风系统的合理性和可行性。

第三章矿井风量计算第一节矿井风量计算原则矿井风量计算的原则是根据矿井的地质条件、矿井规模和生产能力等因素,确定矿井所需的通风风量。

在计算过程中,要充分考虑矿井的实际情况和变化,确保通风系统的稳定运行和生产安全。

第二节矿井需风量的计算1.采煤工作面需风量的计算采煤工作面需风量的计算是指根据采煤工作面的长度、工作面采高、采煤机功率等因素,确定采煤工作面所需的通风风量。

矿井通风设计毕业设计论文

目录一概述 (1)二矿井通风系统选择 (1)(一)设计原则及步骤 (1)三风量计算及风量分配 (3)(一)矿井需风量计算 (3)(二)风量分配与风速验算 (8)四矿井通风阻力计算 (10)(一)计算原则 (10)(二)计算方法 (11)五主要通风机选型 (12)(一)自然风压的计算 (12)(二)选择主要通风机 (13)(三)选择电动机 (15)六概算矿井通风费用 (16)七矿井等积孔计算 (17)参考文献 (18)附录一矿井井巷通风总阻力附表 (19)附录二困难时期通风网络图 (21)附录三容易时期通风网络图 (22)一概述某煤矿井田范围走向长7.42km,倾斜宽0.66—1.47km,井田面积约8.53 km2。

位于背斜南翼,为一般平缓的单斜构造,地层产状走向近东西向,倾向南,倾角10-25。

,一般为16。

左右。

矿井生产能力为90万t/a。

矿井采用中央竖井,煤层分组采区上山布置的开拓方式,单翼对角式通风。

矿井通风难易时期的系统示意图见后。

井田设三个井筒:主井、副井、风井。

地面标高+200m。

全矿井划分为两个水平,第一水平标高-150m,第二水平标高-350m,回风水平标高+45~+50m。

第一水平东西运输大巷布置在煤层的底板岩石中,距煤层30m,通过水平大巷开拓煤层的全部上山采区。

矿井采用走向长壁开采方式。

该矿是高瓦斯矿井,瓦斯涌出量较大,为安全起见,用“品”字形布置三条上山。

采用综合机械化放顶煤采煤。

采煤工作面的平均断面积8.1 m2,回采工作面温度一般在21°,回风巷风流中瓦斯(或二氧化碳)的平均绝对涌出量为5.65m3/min,三四班交接时人数最多66人;掘进工作面平均绝对瓦斯涌出量3.75m3/min,掘进工作面同时工作的最多人数18人,一次爆破炸药用量4.3kg。

二矿井通风系统选择选择合理的局部通风方法、风筒类型与直径,计算局部通风阻力、选择局部通风机及掘进通风安全技术措施、装备。

矿井通风设计论文毕设论文

目录前言 (1)第一章设计依据 (2)一、矿井概况 (2)二、井巷尺寸及支护参数 (3)第二章矿井及采区通风系统 (4)一、采区通风方式 (4)二、采煤工作面的通风方式 (4)三、主扇的工作方法 (5)第三章矿井总风量和各用风地点风量 (7)一、矿井总风量计算 (7)第四章矿井通风阻力的计算 (14)一、矿井通风阻力计算原则 (14)第五章矿井主扇风机的选型 (18)一、选型依据 (18)二、主要通风机的选择 (18)第六章参考文献及感想 (20)一、参考文献 (20)二、感想 (20)附图1:通风容易时期通风系统图 (21)附图2:通风容易时期通风 (22)附图3:通风困难时期通风系统 (23)附图4:通风困难时期通风网络图 (24)前言矿井通风课程设计是本课程学习的最后一个实践教学环节。

通过课程设计,学生对所学的理论知识经行一个系统的总结,并结合实际条件加以运用,以巩固和扩大所学的理论知识,巩固和发展学生的运算和绘图的工程能力,培养和提高大学生分析和理解的能力,丰富学生的安全生产实际知识,并进一步培养和锻炼学生热爱劳动、善于理论联系实际、尊重科学和实践的良好思想作风。

课程设计的目的包括:(1)巩固和加深专业知识的理解,提高综合运用所学知识的能力。

(2)根据需要选学参考书籍,查阅相关文献资料,学会分析和解决问题的方法。

(3)了解与本课程有关的工程技术规范,能按照设计任务书的要求,编写设计说明书,绘制技术图表等。

(4)培养严肃,认真的工作学风和科学态度。

(5)应使学生了解课程设计工作的基本步骤和流程,初步具备运用所学知识解决实际问题的能力,重点掌握设计工作的基本程序和实施方法。

第一章设计依据一、矿井概况煤层地质概况:单一煤层,倾角25˚,煤层厚2.5m,属于瓦斯矿井,二氧化碳涌出量很小,煤尘有爆炸危险,涌水量不大。

井田范围:设计第一水平深度380m,走向长度7200m,双翼开采,每翼长3600m。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

太原理工大学继续教育学院毕业设计说明书毕业生姓名:穆计科专业:安全工程学号:10421624033指导教师: 王旭宏所属系(部):采矿工程系二〇一二年六月阳煤集团石港矿矿井通风系统设计穆计科二〇一二年八月十日目录前言 (3)第一章矿井概况 (6)1.1 矿井基本概况 (6)1.2 井田境界及储量 (10)第二章矿井开拓方式 (10)2.1开拓方式 (10)2.2水平划分 (10)2.3采区划分 (11)2.4井下开拓巷道布置 (11)2.5井筒特征 (12)2.6井底车场 (12)第三章采区巷道布置 (13)3.1 采区巷道布置 (13)3.2 采煤方法 (16)3.3 巷道掘进 (23)第四章矿井风量计算 (26)4.1 瓦斯资源 (26)4.2 矿井瓦斯涌出量 (27)4.3 矿井瓦斯抽放效果 (28)4.4 矿井需风量计算 (30)第五章矿井现有通风能力核定 (35)5.1 井巷概况 (35)5.2 矿井总进风能力核定 (36)5.3 矿井回风系统回风能力核定 (36)5.4 主扇能力核定 (37)5.5 通风系统改造的必要性 (37)第六章通风系统改造方案 (39)6.1 矿井通风系统改造方案 (39)6.2 方案比选 (43)6.3 主要安全措施 (45)第七章通风设备选型 (45)7.1 通风设备概况 (45)7.2 设计依据 (46)7.4 通风设备选型计算 (46)7.5 确定扇风机工况点 (48)7.6 电动机功率核算 (51)7.7 通风机其它附属设施 (51)第八章结论与建议 (51)11.1 结论 (51)11.2 建议 (52)专题部分 (52)参考文献 (61)结束语 (62)前言一、概述石港煤矿位于左权县城北13Km处,该矿井始建于1958年, 2003年底阳煤集团决定兼并收购石港煤矿,成立石港公司, 2004年8月开始对矿井进行技术改造(150k t/a—900k t/a),矿井2007年9月19日开始试生产。

矿井为高瓦斯矿井,改造后采用斜井开拓,开采15号煤层,布置有三进一回共四个井筒,分别为混合提升斜井、运人斜井、瓦斯管路斜井、回风立井。

矿井在井下施工过程中,于2007年6月发生一起瓦斯动力现象,致使矿井开采条件发生变化,被鉴定为煤与瓦斯突出矿井。

由于近年石港公司井下开采条件的变化,矿井被鉴定为煤与瓦斯突出矿井,2010年11月经河南理工大学预测,矿井绝对瓦斯量185.27m3/min、相对瓦斯量97.8m3/min,与2009年相对瓦斯量77.14m3/min相比,增大了26.8%。

目前,石港煤矿现有主扇已经调到最大角度,总风量仅能达到9600 m3/min,不能满足风量富余系数不得小于1.5倍的要求。

经通风系统能力核定,必须对矿井通风系统进行改造。

本设计针对石港公司通风系统进行了重点设计。

二、设计依据1、2009年12月山西地宝能源有限公司编制的《山西石港煤业有限责任公司矿井地质报告》;2、2010年10月河南理工大学编制的《山西石港煤业有限责任公司15号煤层煤与瓦斯突出危险性区域预测报告》;3、《2007、2008、2009年度矿井瓦斯等级鉴定结果批复》;4、2010年7月河南理工大学编制的《山西石港煤业有限责任公司15号煤层开采矿井瓦斯涌出量预测》及晋煤瓦发[2010]1662号批复文件;5、矿方提供的有关现状资料;6、国家有关煤炭工业的规程、规范和技术政策等。

三、设计指导思想在贯彻执行国家能源开发的方针、政策及煤炭工业《规程》、《规范》的前提下,并根据阳煤集团公司要求的,按1.5倍的通风富余系数计算矿井通风参数(风量、阻力、风速),对不能满足此要求的通风系统(设施、设备及井巷)进行改造。

四、设计主要特点1、根据河南理工大学预测的15号煤层瓦斯涌出量最大值进行通风参数计算,计算结果作为通风系统改造的依据。

2、对现有通风系统进行了能力核定。

五、主要技术经济指标1、矿井设计生产能力为900k t/a;2、矿井全井田划分为两个采区,采用“一井一面”达产。

采区采掘配备为:一个15号煤综采工作面(备用一个)、三个掘进工作面(备用两个)。

矿井所需总风量13200m3/min,矿井通风系统改造后容易时期通风阻力H小=256mmH2o、困难时期通风阻力H大=298mmH2o。

3、通风系统改造新增回风立井井筒直径为3.0m、深度330m,井下回风联络巷100m,井巷工期 4个月,安装1个月,总工期5个月。

4、新选用FBCDZ-10-No33型防爆对旋轴流式通风机2台,1台工作,1台备用。

5、新建地面通风道50m。

六、问题及建议1、建议进一步提高矿井瓦斯的抽采率,减少风排瓦斯量,从而降低矿井的总风量。

2、进一步加强瓦斯预测工作,并按国家有关规定完善井下通风设施。

3、通风系统改造工程实施与设备更换期间,矿方必须制定出安全可靠的措施。

第1章矿井概况1.1 矿井基本概况1.1.1地理位置及交通1.地理位置石港煤矿位于左权县城北13km处,行政区划属左权县寒王乡管辖。

其地理坐标为北纬37°10′10″—37°12′11″,东经113°24′35″—113°26′37″。

2.交通情况阳(泉)——黎(城)干线公路207国道和阳(泉)——涉(县)铁路均由井田东界外附近通过,交通条件便利。

井田距周围主要城镇的里程如下:北距阳泉90km,南距涉县87km,西距榆社50km,东距邢台82km。

3.地形、地势及河流井田位于太行山中段西麓,属中低山侵蚀地貌,地表经常年风化剥蚀,沟谷纵横、梁岭绵延,地形比较复杂。

总的地势为北高南低,地形最高点位于井田中东部,标高为1526.80m;最低点位于井田西南边缘丰垢河床,标高为1234.90m,地形最大相对高差291.90m。

井田内河流主要为丰垢河,位于井田西南边界处,由西北向东南流经井田西南部,属季节性河流,雨季水量略大,平时水量微小,属漳河水系。

4.气象及地震井田地处黄土高原,气候干燥,昼夜温差大,属温带大陆性气候,冬春干旱多风,夏秋温和多雨,全年夏短冬长。

年平均气温6.3℃,其中一月气温最低,平均为-9.2℃。

极端最低气温-32.1℃(1971年1月22日),7月气温最高,平均为19.3℃,极端最高气温35℃(1981年5月18日)。

年平均降水量592.8mm,最大年降水量1069mm(1963年),最大日降水量136.3mm(1963年8月5日)。

雨季一般为7、8月份,占全年降水量的50.5%。

年平均蒸发量1622.8mm,其中4~7月最大,最大年蒸发量1874.1mm(1972年),最低年蒸发量1180.6mm(1964年)。

年主导风向为西南风,冬季多西风,夏季多西南风,年平均风速为2.2m/s。

根据中华人民共和国国家标准《中国地震动参数区划图》GB18306及《建筑抗震设计规范》GB50011-2010,本区建筑抗震设防烈度为6度,设计基本地震加速度值为0.05g,设计地震分组为第三组。

采煤生产建设中,矿井的提升、通风、供电、供水、通信和瓦斯排放系统,抗震设防类别应划为乙类设防类别。

1.1.2地质概况1、地质构造井田位于我国东部新华夏系构造体系第三隆起带中段的太行山隆褶带与沁水拗陷接壤部位。

区域构造为北北东向的单斜。

井田构造形态为走向北北东且向北西西缓倾的单倾构造,局部有次一级波状起伏。

井田内地层倾角一般为4°-15°,井田东北部发育一个短轴向斜和一个短轴背斜,斜局部地段由于挠曲构造发育导致倾角增大达30°。

区内挠曲构造发育,解释挠曲22个,挠曲密集发育带3条,发现21条正断层,19个陷落柱,断层和陷落柱情况详见表2-2、2-3,其中F09断层为三维地震勘探控制,可靠程度为较可靠,但现亦由井下巷道揭露,揭露其位置、落差、走向、倾角与三维地震控制情况吻合,故本次将其可靠程度叙述为可靠。

综上所述,井田内为单斜构造,地层倾角一般较小,井田东北部发育一个短轴向斜和一个短轴背斜,井田及其附近发育21条断层(其中仅3条断层落差大于10m)和19个小陷落柱,井田构造简单属一类。

井田内断层共21条,落差大多较小,陷落柱规模也不大,从区域和井田来看,预计构造对煤层、煤质、水文地质及其它开采技术条件不会产生大的影响。

2、可采煤层井田内可采煤层共2层,分别为14、15号煤层,其中15号煤层,全井田均达可采,是井田内主要可采煤层;14号煤层由于硫份超标,暂不开采。

(可采煤层特征见表):可采煤层特征表时代煤层编号厚度(m)最小-最大平均层间距(m)最小-最大平均结构稳定性可采性顶底板岩性赋存部位顶板底板太原组140.63-1.160.844.53-12.156.55简单较稳定暂不开采泥岩石炭岩泥岩细砂岩太原组下部155.93-8.227.18复杂稳定全可采泥岩砂质泥岩粉砂岩泥岩铝质泥岩太原组下部15号煤层:井田内施工钻孔11个,共有10个(除SG-01H外)钻孔穿过该煤层,煤矿井下亦揭露该煤层;煤层厚度大,全井田均达可采,可采性指数为1。

厚度5.93-8.22m,平均7.18m,稳定煤层,属井田内主要可采煤层,结构复杂,含夹矸1-3层,夹矸岩性为炭质泥岩。

顶板岩性为泥岩、砂质泥岩、粉砂岩,底板岩性为泥岩、铝质泥岩。

井田东南部,已大部分采空,采空范围约1.22km2。

3、瓦斯、煤层自燃发火倾向性及煤尘爆炸危险性(1)瓦斯根据山西省煤炭工业局文件晋煤安发[2007]2030号文件批复,石港煤矿2007年矿井瓦斯等级鉴测结果为:CH4绝对涌出量为35.22m3/min,CH4相对涌出量为366.19m3/t,CO2相对涌出量为53.86m3/t,CO2绝对涌出量为5.18m3/min,批复等级为瓦斯突出矿井;根据阳煤通字[2009]1034号文件批复,石港煤矿2008年矿井瓦斯等级鉴测结果为:CH4绝对涌出量为145.55m3/min,CH4相对涌出量为102.58m3/t,CO2相对涌出量为3.2734m3/t,CO2绝对涌出量为6.24m3/min,批复等级为瓦斯突出矿井;2009年矿井瓦斯等级鉴测结果为:CH4绝对涌出量为160.70m3/min,CH4相对涌出量为77.14m3/t,CO2相对涌出量为2.16m3/t,CO2绝对涌出量为4.5m3/min,批复等级为瓦斯突出矿井。

(2)煤尘精查勘探中于202、402号孔采取了15号煤层煤芯煤样及石港煤矿煤层简选样做了煤尘爆炸性试验,试验结果表明15号煤层煤尘均具有爆炸性。

(3)煤的自燃精查勘探施工中在201、202、402号孔煤芯煤样及石港煤矿简选样对14、15号煤的自燃倾向性进行了试验,其试验结果为:14号煤层吸氧量为1.38cm3/g,自燃等级为I类,自燃倾向性为容易自燃。

相关文档
最新文档