一元一次方程1

合集下载

一元一次方程教案(通用11篇)

一元一次方程教案(通用11篇)

一元一次方程教案一元一次方程教案(通用11篇)作为一名老师,就不得不需要编写教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。

怎样写教案才更能起到其作用呢?以下是小编精心整理的一元一次方程教案范文,希望对大家有所帮助。

一元一次方程教案篇1教学目标:1、能说出什么叫一元一次方程;2、知道“元”和“次”的含义;3、熟练掌握最简一元一次方程的解法及理论依据;能力目标:1、培养学生准确运算的能力;2、培养学生观察、分析和概括的能力;3、通过解方程的教学,了解化归的数学思想.德育目标:1、渗透由特殊到一般的辩证唯物主义思想;2、通过对方程的解进行检验的习惯的培养,培养学生严谨、细致的学习习惯和责任感;3、在学习和探索知识中提高学生的学习能力、合作精神及勇于探索的精神;重点:1、一元一次方程的概念;2、最简方程的解法;难点:正确地解最简方程。

教学方法:引导发现法教学过程一、旧知识的复习:1.什么叫等式?等式具有哪些性质?2.什么叫方程?方程的解?解方程?二、新知识的教学:(1)只含有一个未知数;(2)未知数的次数都是一次。

想一想:(1)你认为最简单的一元一次方程是什么样的?(2)怎样求最简方程(其中是未知数)的解?三、巩固练习1、通过练习,请你总结一下,解方程(是未知数)把系数化为1时,怎样运用等式的性质2,使计算比较简单。

2、检测:3、课堂小结:四、本节学习的主要内容1、一元一次方程定义;2、最简方程(其中是未知数);3、解最简方程的主要思路和解题的关键步骤及依据。

五、课堂作业。

一元一次方程教案篇2一、活动内容:课本第110页111页活动1和活动3二、活动目标:1、知识与技能:运用一元一次方程解决现实生活中的问题,进一步体会建模思想方法。

2、过程与方法:(1)通过数学活动使学生进一步体会一元一次方程和实际问题中的关系,通过分析问题中的数量关系,进行预测、判断。

(2)运用所学过的数学知识进行分析,演练、合作探究,体会数学知识在社会活动中的运用,提高应用知识的能力和社会实践能力。

一元一次方程式的解法

一元一次方程式的解法

一)知识要点:1.一元一次方程的概念:只含有一个未知数,并且未知数的次数是1,系数不为0的方程叫做一元一次方程.一元一次方程的标准形式是:ax+b=0 (其中x是未知数,a,b是已知数,且a≠0),它的解是x=- .我们判断一个方程是不是一元一次方程要看它化简后的最简形式是不是标准形式ax+b=0 (a≠0).例如方程3x2+5=8x+3x2,化简成8x-5=0是一元一次方程;而方程4x-7=3x-7+x 表面上看有一个未知数x,且x的次数是一次,但化简后为0x=0,不是一元一次方程.2.解一元一次方程的一般步骤:(1)方程含有分母时要先去分母,使过程简便,具体做法为:在方程的两边都乘以各分母的最小公倍数.要注意不要漏掉不含分母的项,如方程x+ =3,去分母得10x+3=3就错了,因为方程右边忘记乘以6,造成错误.(2)去括号:按照去括号法则先去小括号,再去中括号,最后去大括号.特别注意括号前是负号时,去掉负号和括号,括号里的各项都要变号.括号前有数字因数时要注意使用分配律.(3)移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边.注意移项要变号.(4)合并项:把方程化成最简形式ax=b (a≠0).(5)把未知数的系数化成1:在方程两边都除以未知数的系数a,得到方程的解x= .解方程时上述步骤有些可能用不到,并且也不一定按照上述顺序,要根据方程的具体形式灵活安排求解步骤.(二)例题:例1.解方程(x-5)=3- (x-5)分析:按常规此方程应先去分母,去括号,但发现方程左右两边都含有x-5项,所以可以把它们看作一个整体,移项,合并,使运算简便.移项得:(x-5)+ (x-5)=3合并得:x-5=3∴ x=8.例2.解方程2x- = -因为方程含有分母,应先去分母.去分母:12x-3(x+1)=8-2(x+2)(注意每一项都要乘以6)去括号:12x-3x-3=8-2x-4(注意分配律及去括号法则)移项:12x-3x+2x=8-4+3合并:11x=7系数化成1:x= .例3.{ [ ( +4)+6]+8}=1解法1:从外向里逐渐去括号,展开求去大括号得:[ ( +4)+6]+8=9去中括号得:( +4)+6+56=63整理得:( +4)=1去小括号得:+4=5去分母得:x+2+12=15移项,合并得:x=1.解法2:从内向外逐渐去括号,展开求去小括号得:{ [ ( + +6]+8}=1去中括号得:{ + + +8}=1去大括号得:+ + + =1去分母得:x+2+3×4+2×45+8×105=945即:x+2+12+90+840=945移项合并得:∴x=1.注意:从上面的两种解法可以看到,解一元一次方程并不一定要严格按照前面说的步骤一步一步来,可以按照具体的题目灵活运用方法.例4.解方程[ ( -1)-2]-2x=3分析:此方程含括号,因为× =1,所以先去中括号简便.去中括号:( -1)- -2x=3去小括号:-1- -2x=3去分母:5x-20-24-40x=60移项:5x-40x=60+44合并项:-35x=104系数化成1得:x=- .例5.解方程- - =0分析:本方程分子、分母中都含有小数,如果直接去分母,会使运算繁琐.但如果利用分数的性质,即分子分母同乘以不等于零的数分数的值不变的性质,使方程左边前两项分子、分母中的小数都化成整数,就能使运算简便.利用分数的性质(即左边第一项分子、分母同乘以10,第二项分子、分母同乘以100),原方程可化为:- - =0去分母:6(4x+9)-10(3-2x)-15(x-5)=0去括号:24x+54-30+20x-15x+75=0移项得:24x+20x-15x=-54+30-75合并得:29x=-99系数化成1:x=- .例6.在公式S= (a+b)h中,已知:a=5, S=44, h=8,求b的值.分析:这是梯形面积公式,四个量S,a, b, h中知道任意3个量的值,都可以求出第四个量的值.解法1:把a=5, S=44, h=8代入公式得44= (5+b)×8这是关于b的一元一次方程化简得:b+5=11移项,合并得:b=6.解法2:先把b看作未知数,把其它量都看作已知数,将公式变形,用其它三个量来表示b,然后再代入已知数的值求出b.S= (a+b)h去分母:2S=(a+b)h去括号:2S=ah+bh移项:2S-ah=bh即bh=2S-ah系数化成1:∵ h≠0,∴ b= -a (一定不要忘记条件h≠0)当a=5, S=44,h=8时,b= -5=11-5=6∴ b=6.例7.当x=2时,式子x2+bx+4的值为0,求当x=3时,x2+bx+4的值.分析:这仍是一元一次方程的应用的例子,要求x2+bx+4的值,先求出b的值,最后求当x=3时,x2+bx+4的值.∵当x=2时,x2+bx+4的值为0,∴ 4+2b+4=0 (得到关于b的一元一次方程)解这个方程得2b=-8,∴ b=-4,∴ x2+bx+4为x2-4x+4,当x=3时,x2-4x+4=32-4×3+4=9-12+4=1,∴当x=3时,这个式子值为1.例8.解绝对值方程:(1) |2x-1|=8(2) =4(3) =4(4) |3x-1|+9=5(5) |1-|x||=2说明:解绝对值方程也是一元一次方程的应用,它的解法主要是:①先把|ax+b|看作一个整体,把绝对值方程看作是以|ax+b|为未知数的一元一次方程,变形成|ax+b|=c的形式;②对|ax+b|=c进行讨论,当c>0时,正确去掉绝对值,得到ax+b=c或ax+b=-c两个一元一次方程,从而求出x的值;当c=0时,得到ax+b=0一个一元一次方程,从而求出x;当c。

一元一次方程的解法及应用

一元一次方程的解法及应用

一元一次方程的解法及应用一元一次方程是初中数学中最基础的一种方程形式,它的形式可以表示为ax+b=0,其中a和b为实数,且a不等于0。

解一元一次方程可以通过运用一些基本的解法和技巧来实现。

在本文中,将介绍一些常见的解一元一次方程的方法,并探讨一些实际应用场景。

一、解法一:移项法移项法是解一元一次方程最常用的方法之一。

其基本思想是将方程中的未知数项移至一边,常数项移至另一边,使方程变为形如x=c的简单形式。

例如,解方程2x+3=7:首先,我们将方程中的常数项3移至右边:2x+3-3=7-3化简后得到:2x=4最后,将方程两边同除以2,得到解:x=2二、解法二:消元法消元法是解一元一次方程的另一种常见方法。

其基本思想是通过相互抵消未知数项或常数项,从而使方程变为形如x=c的简单形式。

例如,解方程3x+2=2x+5:首先,我们将方程中的常数项2移至左边,将未知数项3x移至右边:3x-2x=5-2化简后得到:x=3最终得到解x=3。

三、解法三:代入法代入法通常用于解决一元一次方程组,它的基本思想是将一个方程的某个变量用另一个方程中的变量表示,然后代入到另一个方程中,进而求解未知数的值。

例如,解方程组:2x+y=7x-y=3首先,根据第二个方程可得x=y+3将x的表达式代入第一个方程中:2(y+3)+y=7化简后得到:3y+6=7继续化简可得:3y=1最终得到解y=1/3,代回x的表达式可得x=10/3。

应用:一元一次方程在实际生活中有广泛的应用。

以下是一些常见的应用场景:1. 价格计算:在商业活动中,一元一次方程常用于求解价格。

例如,在打折优惠时,我们可以通过一元一次方程求解最终价格。

2. 时间计算:一元一次方程也可用于时间计算。

例如,在计算速度、时间和距离之间的关系时,我们可以建立一元一次方程来求解未知数。

3. 购物优惠:商场常常会进行满减优惠活动,我们可以通过一元一次方程求解购买满足条件所需的最低金额。

第1讲一元一次方程

第1讲一元一次方程

第1讲一元一次方程初步一、基本概念(1)字母乘字母,字母乘数字,字母乘括号,数字乘括号时,乘号“×”可以用“·”代替,也可以省略不写。

如,a×b可以写作a·b或ab。

如,a×13可以写作a·13或13a,不能写作a13。

这就是说,字母乘数字省略乘号时,数字只能写在字母的前面。

如,(x+y)×a可以写作(x+y)·a或(x+y)a,也可以写作a(x+y)。

如,(x+y)×4可以写作(x+y)·4或4(x+y)。

这就是说,数字乘括号省略乘号时,数字只能写在括号的前面。

注意:①数字乘数字时,乘号不能使用“·”,也不可以省略。

②加号、减号和除号不能省略。

a中,a叫做底数,n (2)乘方的定义:求n个相同因数的积的运算叫作乘方。

乘方的结果叫作幂。

在na也可以读作a的n次幂。

叫作指数(次数)。

n等式的概念(3)等式的定义:表示相等关系的式子叫作等式。

等式由以下三部分组成:等式的左边、等式的右边和等号。

根据等式的组成,我们可以判断一个式子是否是等式。

以下式子都是等式:30+20=50 a+b=88 S=π2r80-8=72 100+x=980 a=0等式有如下两个性质:性质1:等式两边加(或减)同一个数(或式子),等式仍然成立。

性质2:等式两边乘同一个数,或除以同一个不为0的数,等式仍然成立。

(4)方程的定义:含有未知数的等式叫作方程。

在方程中,通常用字母x、y、z……表示未知数。

等式和方程的关系:等式包含方程,方程是等式的部分;也就是说,方程都是等式,但等式不一定都是方程。

注意:不管是等式还是方程,都含有等号。

如,80-8=72是等式,但不是方程,因为其中不含有未知数。

又如,100+x=980既是方程,又是等式,【例题1】判断下面各式是否是等式,是的画“√”,不是的画“×”。

① 13+8x=25 ( )② 7.9x=2.5 +21 ( )③ 5x+89-3x+10 ( )④x+2<3x ( )【练习1】判断下面各式是否是方程,是的画“√”,不是的画“×”。

一元一次方程(1)第1课时

一元一次方程(1)第1课时
一元一次方程(一)
问题
汽车匀速行驶途经王家庄、青 地名 时间
山、秀水三地的时间如表所示,翠 湖在青山、秀水两地之间,距青山
王家庄
10:00
50千米,距秀水70千米,王家庄到 青山 13:00
翠湖的路程有多远?
秀水 15:00
同学们好
王家庄 10:00
50千米 70千米
青山
翠湖
13:00
秀水 15:00
x 50 50 70
3
2
思考
x千米 王家庄
50千米 70千米
青山
翠湖
秀水
10:00
13:00
15:00
对于上面的问题,你还能列出其他方程吗?如 果能,你依据的是哪个相等关系?
x 50 70 32
思考
王家庄 10:00
X千米
50千米 70千米
青山
翠湖
秀水
13:00
15:00
对于上面的问题,你还能列出其他方程吗? 如果能,你依据的是哪个相等关系?
议一议
比较列算式和列方程两种方法的特点。 列算式:用算术方法解题的计算过程,只能用已知数。
列方程:是根据问题中的相等关系列出的等式,既含 已知数又含未知数。
从算式到方程是数学的一大进步。
列方程时,要先设字母表示未知数,然后根 据问题中的相等关系,写出含有未知数的等 式——方程(equation)。
2x-1=0 x 50 50 70
3
2
2(x +16+ x)=64
上面各方程都只含有一个未知数(元)x,未知数x的指 数都是一次,这样的方程叫做一元一次方程
判断下列各式中哪些是一元一次方程.

一元一次方程习题及答案

一元一次方程习题及答案

8.A
【分析】
根据一元一次方程的定义,即可得到关于 m 的方程,求解即可.
【详解】
∵关于 x 的方程(m﹣2)x|m|﹣1+3=0 是一元一次方程,∴m﹣2≠0 且|m|﹣1=1,
解得:m=﹣2.
故选 A.
【点睛】
本题考查了一元一次方程的概念和解法.一元一次方程的未知数的指数为 1.
9.D
【分析】
把方程中的分子与分母同时乘以一个数,使分母变为整数即可.
C.丙:去括号时﹐括号外面是负号﹐括号里面的项未变号
D.丁:5 不应该变为 50
7.①x﹣2= 2 ;②0.3x=1;③ x =5x﹣1;④x2﹣4x=3;⑤x=6;⑥x+2y=0;⑦7a+ 2a 1 =
x
2
6
﹣a,其中一元一次方程的个数是( )
A.3
B.4
C.5
D.6
8.若关于 x 的方程(m﹣2)x|m|﹣1+3=0 是一元一次方程,则 m 值为( )
xy
B.若 = ,则 x=y
aa
C.若 a(c2+1)=b(c2+1),则 a=b
D.若 ac=bc,则 a=b
3.方程 mx 2x 12 0 是关于 x 的一元一次方程,若此方程的解为正整数,则正整
数 m 的值有 ( ) 个.
A.2 个
B.3 个
C.4 个
D.5 个
4.下列等式的变形中,正确的是( )
x
③ =5x-1,即 9x-2=0,符合一元一次方程的定义.故③正确;
2
④x2-4x=3 的未知数的最高次数是 2,它属于一元二次方程.故④错误; ⑤x=0,符合一元一次方程的定义.故⑤正确; ⑥x+2y=0 中含有 2 个未知数,属于二元一次方程.故⑥错误. 综上所述,一元一次方程的个数是 3 个. 故选 B. 【点睛】

一元一次方程(1)练习题

一元一次方程(1)练习题

一元一次方程(1)练习题【知识要点】1.一元一次方程: 。

2.解一元一次方程(1)方程的解: 。

(2)解方程: 。

(3)解一元一次方程的步骤:【巩固提高】A 组一、选择题1. 已知下列方程:①22x x-=; ②0.31x =; ③512x x =+; ④243x x -=;⑤6x =;⑥20x y +=.其中一元一次方程的个数是( ). A .2 B .3 C .4D .52.已知关于x 的方程5(21)a x a x +=-+的解是1x =-,则a 的值是 ( ). A .-5B .-6C .-7D .83.方程3521x x +=-移项后,正确的是( ).A .3251x x +=-B . 3215x x -=-+C .3215x x -=-D . 3215x x -=-- 4.方程2412332x x -+-=-,去分母得( ). A .22(24)33(1)x x --=-+ B .)1(318422-12+-=-x x )(C .12(24)18(1)x x --=-+D .62(24)9(1)x x --=-+ 5.的值应为时,则设x q p x q x p 765,34,12=--=-=( ) A . -97 B .97 C .-79 D .79 二、填空题6.使(1)60a x --=为关于x 的一元一次方程的a =______(写出一个你喜欢的数即可).7.若3122m x y -与224n x y 在某运算中可以合并,则_____m =,_____n =. 8.根据“x 的2倍与5的和比x 的12小10”,可列方程为_______. 9.若423x =与3()5x a a x +=-有相同的解,那么1a -=_______. 10.已知x=2是关于x 的方程x 21+3k-2=0的解,则k 的值是_________。

11.已知代数式52x -的值与110互为倒数,则_____x =. 12.已知三个连续奇数的和是51,则中间的那个数是_______. 三、解答题13.解方程:(1)3(1)2(2)23x x x +-+=+ (2)4132131--=-+x x(3) x x 23231423 =⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛- (4) 131(1)(2)24234x x ---=14.小明解方程112(1)3()123x x x ---=-的步骤如下: (1)去括号,得2311x x x ---=-; (2)移项,得213x x -+=+; (3)合并同类项,得4x -=; (4)最后得4x =-.但是经过检验知道,4x =-不是原方程的根.请你检查一下,上述解题过程哪里错了?并予以改正.B 组1.解下列方程:(1)6.12.045.03=+--x x (2)2503.002.003.05.09.04.0-=+-+x x x(3)41312=-x (4)234551413121=⎭⎬⎫⎩⎨⎧+⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛+x2.已知关于x 的方程2m x -=x+3m 与21+x =3x -2的解互为倒数,求m 的值。

人教版-数学-七年级上册-【单科状元】数学人教版七年级上册 第三章 一元一次方程(1)含答案解析

人教版-数学-七年级上册-【单科状元】数学人教版七年级上册 第三章  一元一次方程(1)含答案解析

一元一次方程1一.选择题(共9小题)1.若代数式x+4的值是2,则x等于()A.2 B.﹣2 C.6 D.﹣62.(某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在“6•1儿童节”举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.若设铅笔卖出x支,则依题意可列得的一元一次方程为()A.1.2×0.8x+2×0.9(60+x)=87 B.1.2×0.8x+2×0.9(60﹣x)=87C.2×0.9x+1.2×0.8(60+x)=87 D.2×0.9x+1.2×0.8(60﹣x)=873.已知面包店的面包一个15元,小明去此店买面包,结账时店员告诉小明:“如果你再多买一个面包就可以打九折,价钱会比现在便宜45元”,小明说:“我买这些就好了,谢谢.”根据两人的对话,判断结账时小明买了多少个面包?()A.38 B.39 C.40 D.414某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装标价是()A.350元B.400元C.450元D.500元5.一件服装以120元销售,可获利20%,则这件服装的进价是()A.100元B.105元C.108元D.118元6.某市出租车起步价是5元(3公里及3公里以内为起步价),以后每公里收费是1.6元,不足1公里按1公里收费,小明乘出租车到达目的地时计价器显示为11.4元,则此出租车行驶的路程可能为()A.5.5公里B.6.9公里C.7.5公里D.8.1公里7.下列关于x的方程一定是一元一次方程的是()A.﹣x=1 B.(a2+1)x=b C.ax=b D.=38.已知关于x的方程2x﹣m+5=0的解是x=﹣2,则m的值为()A.1 B.﹣1 C.9 D.﹣99.根据流程右边图中的程序,当输出数值y为1时,输入数值x为()二.填空题(共8小题)10.已知关于x的方程2x+a﹣5=0的解是x=2,则a的值为_________.11.方程x+5=(x+3)的解是_________.12.设a,b,c,d为实数,现规定一种新的运算=ad﹣bc,则满足等式=1的x的值为_________.13.七、八年级学生分别到雷锋、毛泽东纪念馆参观,共589人,到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人.设到雷锋纪念馆的人数为x人,可列方程为_________.14.服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的标价比进价多_________元.15.某种商品每件的标价为240元,按标价的八折销售时,每件仍能获利20%,则这种商品每件的进价为_________元.16.服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利20%,则这款服装每件的进价是_________元.17.已知x=1是方程x2﹣4x+=0的一个根,则m的值是_________.三.解答题(共9小题)18.为促进教育均能发展,A市实行“阳光分班”,某校七年级一班共有新生45人,其中男生比女生多3人,求该班男生、女生各有多少人.19.解方程:10+4(x﹣3)=2x﹣1.20.整理一批图书,如果由一个人单独做要花60小时.现先由一部分人用一小时整理,随后增加15人和他们一起又做了两小时,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少人?21.列方程解应用题:王亮的父母每天坚持走步锻炼.今天王亮的妈妈以每小时3千米的速度走了10分钟后,王亮的爸爸刚好看完球赛,马上沿着妈妈所走的路线以每小时4千米的速度追赶,求爸爸追上妈妈时所走的路程.22.列方程或方程组解应用题:现有甲、乙两个空调安装队分别为A、B两个公司安装空调,甲安装队为A公司安装66台空调,乙安装队为B公司安装60台空调,两个安装队同时开工恰好同时安装完成,甲队比乙队平均每天多安装2台空调.求甲、乙两个安装队平均每天各安装多少台空调.23.某房地产公司在全国一、二、三线城市都有房屋开发项目,在去年的房屋销售中,一线城市的销售金额占总销售金额的40%.由于两会召开国家对房价实施分类调控,今年二线、三线城市的销售金额都将比去年减少15%,因而房地产商决定加大一线城市的销售力度.若要使今年的总销售金额比去年增长5%,求今年一线城市销售金额比去年增加的百分率.24.如图,已知箭头的方向是水流的方向,一艘游艇从江心岛的右侧A点逆流航行3小时到达B点后,又继续顺流航行2小时15分钟到达C点,总共行驶了198km,已知游艇的速度是38km/h.(1)求水流的速度;(2)由于AC段在建桥,游艇用同样的速度沿原路返回共需要多少时间?25.学校举办一年一届的科技文化艺术节活动,需制作一块活动展板,请来两名工人.已知师傅单独完成需4天,徒弟单独完成需6天.(1)两个人合作需要_________天完成;(2)现由徒弟先做1天,再两个合作,问:还需几天可以完成这项工作?26.解方程:.一元一次方程1参考答案与试题解析一.选择题(共9小题)1.若代数式x+4的值是2,则x等于()A. 2 B.﹣2 C.6 D.﹣6考点:解一元一次方程;代数式求值.专题:计算题.分析:根据已知条件列出关于x的一元一次方程,通过解一元一次方程来求x的值.解答:解:依题意,得x+4=2移项,得x=﹣2故选:B.点评:题实际考查解一元一次方程的解法;解一元一次方程常见的过程有去括号、移项、系数化为1等.2.某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在“6•1儿童节”举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.若设铅笔卖出x支,则依题意可列得的一元一次方程为()A. 1.2×0.8x+2×0.9(60+x)=87 B. 1.2×0.8x+2×0.9(60﹣x)=87C.2×0.9x+1.2×0.8(60+x)=87 D. 2×0.9x+1.2×0.8(60﹣x)=87考点:由实际问题抽象出一元一次方程.分析:设铅笔卖出x支,根据“铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元”,得出等量关系:x支铅笔的售价+(60﹣x)支圆珠笔的售价=87,据此列出方程即可.解答:解:设铅笔卖出x支,由题意,得1.2×0.8x+2×0.9(60﹣x)=87.故选:B.点评:考查了由实际问题抽象出一元一次方程,根据根据描述语找到等量关系是解题的关键.3.已知面包店的面包一个15元,小明去此店买面包,结账时店员告诉小明:“如果你再多买一个面包就可以打九折,价钱会比现在便宜45元”,小明说:“我买这些就好了,谢谢.”根据两人的对话,判断结账时小明买了多少个面包?()A.38 B.39 C.40 D.41考点:一元一次方程的应用.分析:设小明买了x个面包.则依据“如果你再多买一个面包就可以打九折,价钱会比现在便宜45元”列方程.解答:解:小明买了x个面包.则15x﹣15(x+1)×90%=45解得x=39故选:B.点评:本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.4.某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后A.350元B.400元C.450元D.500元考点:一元一次方程的应用.专题:销售问题.分析:设该服装标价为x元,根据售价﹣进价=利润列出方程,解出即可.解答:解:设该服装标价为x元,由题意,得0.6x﹣200=200×20%,解得:x=400.故选:B.点评:本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程.5.一件服装以120元销售,可获利20%,则这件服装的进价是()A.100元B.105元C.108元D.118元考点:一元一次方程的应用.分析:根据题意,找出相等关系为:进价×(1+20%)=120,设未知数列方程求解.解答:解:设这件服装的进价为x元,依题意得:(1+20%)x=120,解得:x=100,则这件服装的进价是100元.故选A.点评:此题考查的是一元一次方程的应用,解题的关键是找出相等关系,进价×(1+20%)=120.6.某市出租车起步价是5元(3公里及3公里以内为起步价),以后每公里收费是1.6元,不足1公里按1公里收费,小明乘出租车到达目的地时计价器显示为11.4元,则此出租车行驶的路程可能为()A. 5.5公里B.6.9公里C.7.5公里D.8.1公里考点:一元一次方程的应用.专题:行程问题.分析:设人坐车可行驶的路程最远是xkm,根据起步价5元,到达目的地后共支付车费11元得出等式求出即可.解答:解:设人坐车可行驶的路程最远是xkm,根据题意得:5+1.6(x﹣3)=11.4,解得:x=7.观察选项,只有B选项符合题意.故选:B.点评:此题主要考查了一元一次方程的应用,根据总费用得出等式是解题关键.7.下列关于x的方程一定是一元一次方程的是()A.﹣x=1 B.(a2+1)x=b C.ax=b D.=3考点:一元一次方程的定义.分析:根据一元一次方程的定义判断即可.解答:解:A、不是一元一次方程,故本选项错误;B、是一元一次方程,故本选项正确;C、当a=0时,不是一元一次方程,故本选项错误;故选B.点评:本题考查了一元一次方程的定义的应用,注意:只含有一个未知数,并且所含未知数的最高次数是1的整式方程,叫一元一次方程.8.已知关于x的方程2x﹣m+5=0的解是x=﹣2,则m的值为()A. 1 B.﹣1 C.9 D.﹣9考点:一元一次方程的解.分析:把x=﹣2代入方程,即可得到一个关于m的方程,解方程求得m的值.解答:解:把x=﹣2代入方程,得:﹣4﹣m+5=0,解得:m=1.故选A.点评:本题考查了方程的解的定义,方程的解就是能使方程左右两边相等的未知数的值.9.根据流程右边图中的程序,当输出数值y为1时,输入数值x为()A.﹣8 B.8 C.﹣8或8 D.不存在考点:解一元一次方程.专题:图表型.分析:分别把y=1代入左右两边的算式求出x的值,哪边的x的值满足取值范围,则哪边求出的x的值就是输入的x的值.解答:解:∵输出数值y为1,∴x+5=1时,解得x=﹣8,﹣x+5=1时,解得x=8,∵﹣8<1,8>1,都不符合题意,故不存在.故选D.点评:本题考查了解一元一次方程,题目比较新颖,有创意,需要先求出x的值再根据条件判断是否符合.二.填空题(共8小题)10.已知关于x的方程2x+a﹣5=0的解是x=2,则a的值为1.考点:一元一次方程的解.分析:把x=2代入方程即可得到一个关于a的方程,解方程即可求解解答:解:把x=2代入方程,得:4+a﹣5=0,解得:a=1.故答案是:1.11.方程x+5=(x+3)的解是x=﹣7.考点:解一元一次方程.专题:计算题.分析:方程去分母,移项合并,将x系数化为1,即可求出解.解答:解:去分母得:2x+10=x+3,解得:x=﹣7.故答案为:x=﹣7点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,即可求出解.12.设a,b,c,d为实数,现规定一种新的运算=ad﹣bc,则满足等式=1的x的值为﹣10.考点:解一元一次方程.专题:新定义.分析:根据题中的新定义化简已知方程,求出方程的解即可得到x的值.解答:解:根据题中的新定义得:﹣=1,去分母得:3x﹣4x﹣4=6,移项合并得:﹣x=10,解得:x=﹣10,故答案为:﹣10.点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.13.七、八年级学生分别到雷锋、毛泽东纪念馆参观,共589人,到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人.设到雷锋纪念馆的人数为x人,可列方程为2x+56=589﹣x.考点:由实际问题抽象出一元一次方程.专题:应用题.分析:设到雷锋纪念馆的人数为x人,则到毛泽东纪念馆的人数为(589﹣x)人,根据到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人.列方程即可.解答:解:设到雷锋纪念馆的人数为x人,则到毛泽东纪念馆的人数为(589﹣x)人,由题意得,2x+56=589﹣x.故答案为:2x+56=589﹣x.点评:本题考查了由实际问题抽象出一元一次方程,解答本题的关键是读懂题意,设出未知数,列出方程.14.服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的标价比进价多120元.考点:一元一次方程的应用.专题:销售问题.分析:设这款服装每件的进价为x元,根据利润=售价﹣进价建立方程求出x的值就可以求出结论.解答:解:设这款服装每件的进价为x元,由题意,得解得:x=180.∴标价比进价多300﹣180=120元.故答案为:120.点评:本题考查了列一元一次方程解实际问题的运用,销售问题的数量关系利润=售价﹣进价的运用,解答时根据销售问题的数量关系建立方程是关键.15.某种商品每件的标价为240元,按标价的八折销售时,每件仍能获利20%,则这种商品每件的进价为160元.考点:一元一次方程的应用.专题:销售问题.分析:设这种商品每件的进价为x元,根据按标价的八折销售时,仍可获利20%,列方程求解.解答:解:设这种商品每件的进价为x元,由题意得,240×0.8﹣x=20%x,解得:x=160,即每件商品的进价为160元.故答案为:160.点评:本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出等量关系,列方程求解.16.服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利20%,则这款服装每件的进价是200元.考点:一元一次方程的应用.专题:销售问题.分析:设这款服装每件的进价为x元,根据利润=售价﹣进价建立方程求出x的值就可以求出结论.解答:解:设这款服装每件的进价为x元,由题意,得300×0.8﹣x=20%x,解得:x=200.故答案是:200.点评:本题考查了列一元一次方程解实际问题的运用,销售问题的数量关系利润=售价﹣进价的运用,解答时根据销售问题的数量关系建立方程是关键.17.已知x=1是方程x2﹣4x+=0的一个根,则m的值是6.考点:一元一次方程的解.专题:计算题.分析:把x=1代入原方程,即可得出m的值.解答:解:把x=1代入原方程得,1﹣4+=0,解得,m=6.故答案为6.点评:此题考查了一元一次不等式的解法和一元一次方程的解,将x的值代入,即可求得m的值.三.解答题(共9小题)18.为促进教育均能发展,A市实行“阳光分班”,某校七年级一班共有新生45人,其中男生比女生多3人,求该班男生、女生各有多少人.考点:一元一次方程的应用.专题:应用题.分析:设女生x人,则男生为(x+3)人.再利用总人数为45人,即可得出等式求出即可.解答:解:设女生x人,则男生为(x+3)人.依题意得x+x+3=45,解得,x=21,男生为:x+3=24.答:该班男生、女生分别是24人、21人.点评:此题主要考查了一元一次方程的应用,根据已知得出表示出男女生人数是解题关键.19.解方程:10+4(x﹣3)=2x﹣1.考点:解一元一次方程.专题:计算题.分析:方程去括号,移项合并,将x系数化为1,即可求出解.解答:解:去括号得:10+4x﹣12=2x﹣1,移项合并得:2x=1,解得:x=.点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.20.整理一批图书,如果由一个人单独做要花60小时.现先由一部分人用一小时整理,随后增加15人和他们一起又做了两小时,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少人?考点:一元一次方程的应用.专题:工程问题.分析:等量关系为:所求人数1小时的工作量+所有人2小时的工作量=1,把相关数值代入即可求解.解答:解:设先安排整理的人员有x人,依题意得:.解得:x=10.答:先安排整理的人员有10人.点评:解决本题的关键是得到工作量1的等量关系;易错点是得到相应的人数及对应的工作时间.21.列方程解应用题:王亮的父母每天坚持走步锻炼.今天王亮的妈妈以每小时3千米的速度走了10分钟后,王亮的爸爸刚好看完球赛,马上沿着妈妈所走的路线以每小时4千米的速度追赶,求爸爸追上妈妈时所走的路程.考点:一元一次方程的应用.分析:设爸爸追上妈妈时所走的路程为x千米,爸爸追上妈妈所走的路程相等,时间的差是10分钟,即妈妈所用时间﹣爸爸所用时间=10分钟,据此相等关系即可列方程求解.解答:解:设爸爸追上妈妈时所走的路程为x千米.根据题意,得:.解得:x=2.答:爸爸追上妈妈时所走的路程为2千米.点评:本题考查了列方程解应用题,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.22.列方程或方程组解应用题:现有甲、乙两个空调安装队分别为A、B两个公司安装空调,甲安装队为A公司安装66台空调,乙安装队为B公司安装60台空调,两个安装队同时开工恰好同时安装完成,甲队比乙队平均每天多安装2台空调.求甲、乙两个安装队平均每天各安装多少台空调.考点:一元一次方程的应用.分析:设乙安装队每天安装x台空调,则甲安装队每天安装(x+2)台空调,根据两个安装队同时开工恰好同时安装完成,即所用的时间相等,即可列方程求解.解答:解:设乙安装队每天安装x台空调,则甲安装队每天安装(x+2)台空调,根据题意得:=,解方程得:x=20,经检验x=20是方程的解,并且符合实际.∴x+2=22.答:甲安装队每天安装22台空调,乙安装队每天安装20台空调.点评:本题考查了列方程解应用题,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.23.某房地产公司在全国一、二、三线城市都有房屋开发项目,在去年的房屋销售中,一线城市的销售金额占总销售金额的40%.由于两会召开国家对房价实施分类调控,今年二线、三线城市的销售金额都将比去年减少15%,因而房地产商决定加大一线城市的销售力度.若要使今年的总销售金额比去年增长5%,求今年一线城市销售金额比去年增加的百分率.考点:一元一次方程的应用.分析:本题中的相等关系是:今年一线城市的销售金额增长的百分数﹣今年二线、三线城市的销售金额减少的百分数=今年的总销售金额比去年增长的5%,设今年一线城市销售金额应比去年增加x,根据上面的相等关系列方程求解.解答:解:设今年一线城市销售金额比去年增加x,根据题意得40%x﹣(1﹣40%)×15%=5%,解得:x=35%.答:今年一线城市销售金额比去年增加35%.点评:本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.24.如图,已知箭头的方向是水流的方向,一艘游艇从江心岛的右侧A点逆流航行3小时到达B点后,又继续顺流航行2小时15分钟到达C点,总共行驶了198km,已知游艇的速度是38km/h.(1)求水流的速度;(2)由于AC段在建桥,游艇用同样的速度沿原路返回共需要多少时间?分析:(1)设水流速度为x km/h,则游艇的顺流速度为(x+38)km/h,游艇的逆流航行速度为(38﹣x)km/h.根据“总共行驶了198km”列方程;(2)AB段的路程为3×36=108(km),BC段的路程为.则往返时间=两段时间之和.解答:解:(1)设水流速度为x km/h,则游艇的顺流速度为(x+38)km/h,游艇的逆流航行速度为(38﹣x)km/h.据题意可得,.解得x=2.∴水流的速度为2km/h.(2)由(1)可知,顺流航行速度为40km/h,逆流航行的速度为36km/h.∴AB段的路程为3×36=108(km),BC段的路程为.故原路返回时间为:.答:游艇用同样的速度原路返回共需要5小时12分.点评:本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.25.学校举办一年一届的科技文化艺术节活动,需制作一块活动展板,请来两名工人.已知师傅单独完成需4天,徒弟单独完成需6天.(1)两个人合作需要 2.4天完成;(2)现由徒弟先做1天,再两个合作,问:还需几天可以完成这项工作?考点:一元一次方程的应用.分析:(1)完成工作的工作量为1,根据工作时间=工作总量÷工作效率和,列式即可求解.(2)设徒弟先做1天,再两人合作还需x天完成,根据等量关系:完成工作的工作总量为1,列出方程即可求解.解答:解:(1)1÷(+)=1÷=2.4(天).答:两个人合作需要2.4天完成;(2)设还需x天可以完成这项工作,由题意可得:+=1,解得:x=2.答:还需2天可以完成这项工作.故答案为:2.4.点评:考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.26.解方程:.考点:解一元一次方程.专题:计算题.分析:方程去括号,移项合并,将x系数化为1,即可求出解.解答:解:方程去括号得:3x+2=8+x,移项合并得:2x=6,解得:x=3.点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

问题:一辆客车和一辆卡车同时A地出发沿同 一公路同一方法行驶,客车的行驶速度是 70km/h,卡车的行驶速度是60 km/h,客车比 卡车早1h 经过B地,A,B两地间的路程是多少?
解:如果设A,B两地相距xkm,那么客车从A
地到B地的行驶时间为 ,货车从A地到B
地的行驶时间为

根据客车比卡车少用1h,可得等式:
首页



9 11
2 当x=___时,方程 2x+1=5成立.
首页
试一试
分别把0、1、2、3、4代入2x-1=5,哪一个能 使方程成立:
-1 x=0时,方程的左边=___ ,右边=___. 5 x=1时,方程的左边=___1 ,右边=___. 5 x=2时,方程的左边=___3 ,右边=___. 5 x=3时,方程的左边=___5 ,右边=___. 5 x=4时,方程的左边=___7 ,右边=___. 5 所以x=3时,能使方程成立. x=3是方程2x-1=5的解.
分析实际问题中的数量关系,利用其中的相等关系列出方程, 是用数学解决实际问题的一种方法。
看看下列方程它们具有什么共同特点 4χ=24, 1700+150x=2450,
x 50 x 70 0.52x-(1-0.52)x=80 , 3 5
上面各方程只含有一个未知数(元),未知数的次数都是1 (次),这样的方程叫做一元一次方程。 下列式子哪些是一元一次方程?不是一元一次方程的,要 说明理由. (1)9x=2 √ (2)x+2y=0 x (3)x2-1=0 x (4) x=0 √ ( 5) x (6) ax=b(a、b是常数) √
解:(2)把X=4代入方程的左边
2X-3=2×4-3=5 左边=右边 所以x=4是原方程的解
把X=3代入方程的右边 5X-3=5×4-15=5
使方程等号两边相等的未知数的值叫方将数值代入方程左边进行计算, 2.将数值代入方程右边进行计算, 3.比较左右两边的值,若左边=右边,则是方程 的解,反之,则不是.
一元一次方程满足的条件:1、它们只含有一个未知数;
2、未知数的次数是1; 3、等式两边都是整式。
小试身手
1.下列各式中,哪些是一元一次方程? (1) 5x=0 (2)1+3x
(3)y² =4+y
1 4X ( 5) X
(4)x+y=5 (6) 3m+2=1–m
练习4:
若方程 3x4m-7+5=0 是一元一次
小时.
列方程 1 700+150χ=2 450。
我探究,我发现
例1 根据下列问题,设未知数并列方程: (1)用一根长24cm的铁丝围成一个正方形,正方形的边长是多 少? (2)一台计算机已使用1 700小时,预计每月再使用150小时,经 过多少月这台计算机的使用时间达到规定的检修时间2 450小时? (3)某校女生占全体学生数的52﹪,比男生多80人,这个学校 有多少学生? 解:(3)设这个学校的学生为x,那么女生数为0.52χ,男生数 为(1-0.52)χ. 列方程 0.52χ-(1-0.52)χ=80。 上面分析的过程可以表示如下:(列方程解应用题的一般步骤) 设未知数 找等量关系 实际问题 列方程
问题:一辆客车和一辆卡车同时A地出发沿同 一公路同一方法行驶,客车的行驶速度是 70km/h,卡车的行驶速度是60 km/h,客车比 卡车早1h 经过B地,A,B两地间的路程是多少? 算术方法解决应怎样列算式:
1、相同的时间客车比卡车多走60km 卡车 客车
A
B
60km 2、客车每小时比卡车多走10km 3、客车走了6小时 60 ×70=420 算式表示为: 10 4、A,B两地相距420km
2
⑶ 方程12﹙x-3﹚-1=2x+3的解是x=3. ×
你能概括出
如何检验一个数是不是方程的解的步骤吗?
首页
讲解概念:
检验括号里的数是不是方程的解 2x-3=5x-15(x=3,x=4)
解:(1)把X=3代入方程的左边
2X-3=2×3-3=3
把X=3代入方程的右边 5X-3=5×3-15=0
左边≠右边 所以x=3不是原方程的解
讨论交流
算术方法: 列出的算式表示解题的计算过程,其中只能 用已知数.对于较复杂的问题,列算式比较困难. 列方程(代数方法): 方程是根据题中的等量关系列出的 等式.其中既含已知数,又含未未知数.使问题的已知量 与未知量之间的关系很容易表示,解决问题就比较方便.
所以,从算术到方程是数学的进步.
我探究,我发现
小结:1、使方程左右两边的值相等的未知
数的值叫做方程的解。 2、求出使方程左右两边都相等的未 知数的值的过程叫做解方程。
探究点二 一元一次方程的解
天平左盘中放置两个小球和一个1克的 砝码,右盘中放置一个5克的砝码,天平处 于平衡。 你能列出恰当的方程吗?
2x+1=5
首页
做一做
填表:
x
1
2
3
4
5
2x+1
方程,则 m= 2
.
小试身手
2、方程 3x 2 6 是一元一次方程,则 a=_____,3a-3= _____ 3 2 3、方程(a+6)x2 +3x-8=7是关于x的一元一次方 程,则a= _____ -6 。
a 1
教材第80页倒数第2、3自然段。
学习辅导: 1、什么叫方程的解? 2、什么叫解方程?
方程3x-2=4x-3呢?
首页
知识要点
能使方程左右两边相等的未知数的 值叫做 方程的解 。
X=3 例如:方程2x-1=5的解是___. X=1 方程3x-2=4x-3的解是___.
求方程的解的过程叫做 解方程 。
首页
典例精析
⑴ x=2是方程x-10=4x的解。 ×
√ ⑵ x=3和x=-3都是方程 x 9 0 的解。
解:设某数为x,则 (1)4x-3=x (2)(1/3x-15)×3=2 (3)5x+2=17 (4)3/4x+1/2x=5
三、课堂小结
1.一元一次方程的概念: 只含有一个未知数,未知数的次数是1,等号两 边都是整式,这样的方程叫做一元一次方程. 2.方程的解: 解方程就是求出使方程中等号两边相等的未知数 的值,这个数就是未知数的解.
首页
数学应用
例1
根据下列条件列出方程: (1)某数比它大4倍小3; (2)某数的1/3与15的差的3倍等于2; (3)比某数的5倍大2 的数是17; (4)某数的3/4与它的1/2的和为5. 提示:做上面的题时请注意怎样设未知数, 怎样建立等量关系,特别注意关键字“大、 小、多、少”,“和、差、倍、分”的含义.
讲解概念
1.什么叫等式: 用等号来表示相等关系的式子。不 含有>、<、≥、≤、≈、≠等符号。 2.什么叫方程: 含有未知数的等式叫方程。 判断方程的两个关键要素: ①有未知数 ②是等式
判断下列式子是不是方程,正确打“√”,错误打“x ”. (1) 1+2=3 (x ) (4) x+2≥1 (x ) (2) 1+2x=4 (√ ) (5) x+y=2 (√ ) (3) x+1-3 (x ) (6) x2-1=0 (√ )
例1 根据下列问题,设未知数并列方程: (1)用一根长24cm的铁丝围成一个正方形,正 1)设正方形的边长为χcm, 方形的边长是多少? 解:( 列方程
4χ=24。
(2)一台计算机已使用1 700小时,预计每月再使 用150小时,经过多少月这台计算机的使用时间达 到规定的检修时间2 450小时?
解(2)设χ月后这台计算机的使用时间达到2450小时,那么在x月后使用了150χ
相关文档
最新文档