一元一次方程的应用数字问题和图形问题

合集下载

一元一次方程应用题(很系统,附答案)

一元一次方程应用题(很系统,附答案)

一元一次方程应用题一、行程问题行程问题的基本关系:路程=速度×时间,1. 相遇问题:速度和×相遇时间=路程和甲、乙二人分别从A 、B 两地相向而行,甲的速度是200米/分钟,乙的速度是300米/分钟,已知A 、B 两地相距1000米,问甲、乙二人经过多长时间能相遇?200x+300x=1000 x=22. 追赶问题:速度差×追赶时间=追赶距离1. 甲、乙二人分别从A 、B 两地同向而行,甲的速度是200米/分钟,乙的速度是300米/分钟,已知A 、B 两地相距1000米,问几分钟后乙能追上甲?直线追击 200x+1000=300x x=102. .甲乙两站相距300km ,一列慢车从甲站开往乙站,每小时行40km ,一列快车从乙站开往甲站,每小时行80km ,已知慢车先行1.5h ,快车再开出,问快车开出多少小时后与慢车相遇? 40*1.5+40x+80x=3003. 汽车上坡时每小时走28千米,下坡时每小时走35千米,去时,下坡比上坡路的2倍还少14千米,原路返回比去时多用12分钟,求去时上、下坡路程各多少千米?去 :上坡路程x 下坡路程y352860123528x y y x +=++ 回 :上坡路程y 上坡路程x3. 环行问题:环行问题的基本关系:同时同地同向而行,第一次相遇:快者路程-慢者路程=环行周长.同时同地背向而行,第一次相遇:甲路程+乙路程=环形周长.1 王丛和张兰绕环行跑道行走,跑道长400米,王丛的速度是200米/分钟,张兰的速度是300米/分钟,二人如从同地同时同向而行,经过几分钟二人相遇?跑慢的路程+一圈=跑快的 200X+400=300X X=42 甲乙两个人在400米的环形跑道上同时同点出发,甲的速度是6米/秒,乙的速度4米/秒,乙跑几分钟后,甲可超过乙一圈?乙跑几圈后,甲可超过乙一圈?4X+400=6X X=2004X+400=6X X=200 200*4=800 800/400=2圈3 有一火车以每分钟600米的速度要过完第一、第二两座铁桥,过第二铁桥比过第一铁桥需多5秒,又知第二铁桥的长度比第一铁桥长度的2倍短50米,试求各铁桥的长.解:设第一铁桥的长为x 米,那么第二铁桥的长为(2x-50)米,•过完 第一铁桥所需的时间为600x 分 过完第二铁桥所需的时间为250600x -分. 依题意,可列出方程600x +560=250600x - 解方程得x=100∴2x-50=2×100-50=1504.·顺(逆)风(水)行驶问题顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度一架飞机在两城之间飞行,顺风需要4小时,逆风需要4.5小时;测得风速为45千米/时,求两城之间的距离。

一元一次方程解应用题的几种常见题型

一元一次方程解应用题的几种常见题型

一元一次方程解应用题的几种常见题型列一元一次方程解应用题是七年级数学教学中的一大重点,而列一元一次方程解应用题又是学生从小学升入中学后第一次接触到用代数的方法处理应用题。

因此,认真学好这一知识,对于今后学习整个中学阶段的列方程(组)解应用题大有帮助。

因此将列一元一次方程解应用题的几种常见题型及其特点归纳下来,如下:(1)和、差、倍、分问题。

此问题中常用“多、少、大、小、几分之几”或“增加、减少、缩小”等等词语体现等量关系。

审题时要抓住,确定标准量与比校量,并注意每个词的细微差别。

(2)等积变形问题。

此类问题的关键在“等积”上,是等量关系的所在,必须掌握常见几何图形的面积、体积公式。

“等积变形”是以形状改变而体积不变为前提。

常用等量关系为:①形状面积变了,周长没变;②原料体积=成品体积。

(3)调配问题。

从调配后的数量关系中找等量关系,常见是“和、差、倍、分”关系,要注意调配对象流动的方向和数量。

这类问题要搞清人数的变化,常见题型有:①既有调入又有调出;②只有调入没有调出,调入部分变化,其余不变;③只有调出没有调入,调出部分变化,其余不变。

(4)行程问题。

要掌握行程中的基本关系:路程=速度×时间。

相遇问题(相向而行),这类问题的相等关系是:各人走路之和等于总路程或同时走时两人所走的时间相等为等量关系。

甲走的路程+乙走的路程=全路程追及问题(同向而行),这类问题的等量关系是:两人的路程差等于追及的路程或以追及时间为等量关系。

①同时不同地:甲的时间=乙的时间甲走的路程-乙走的路程=原来甲、乙相距的路程②同地不同时;甲的时间=乙的时间-时间差甲的路程=乙的路程环形跑道上的相遇和追及问题:同地反向而行的等量关系是两人走的路程和等于一圈的路程;同地同向而行的等量关系是两人所走的路程差等于一圈的路程。

船(飞机)航行问题:相对运动的合速度关系是:顺水(风)速度=静水(无风)中速度+水(风)流速度;逆水(风)速度=静水(无风)中速度-水(风)流速度。

一元一次方程的应用(题型归纳)

一元一次方程的应用(题型归纳)
进出问题
将进出数值表示为未知数设x,列出方程解x。
工作效率
将某项工作的效率与时间表示为未知数设x,列 出方程解x。
混合物含量
将每种物质的量表示为未知数设x,列出方程解x。
简单的平移和旋转问题
横坐标加减常数 纵坐标加减常数 关于坐标轴翻转 关于x轴翻转 关于y轴翻转
x±a y±b (x,y)→(y,x) (x,y)→(x,-y) (x,y)→(-x,y)
展开思路
举一反三,尝试从其他角度思考 问题的解决方法。
多种解法对比
尝试多种不同的解题方法进行校 验和验证,选择最优解。
关于人口增长、下降和变化的问题
1
人口增长问题
根据增长率设定未知数,并根据相关数
人口下降问题
2
据列出方程求解。
根据下降率设定未知数,并根据相关数 据列出方程求解。
运动员试训问题的解题思路
代数式/代数式组中的一元一次方程
系数为未知数
将系数表示为未知数x,列出方程求解。
系数为常数
将常数表示为未知数x,列出方程解未知数。
单价和总价问题的解题思路
单价计算 总价计算
总价除以数量 单价乘以数量
根据题目条件将总价或单价设为未知数x,列出方程求解。
单利和复利问题的解题思路
单利
根据单利的计算公式将未知数设为x,列出方程求 解。
3
消元系数
将未知数系数化为1,得到类似x=d的解。
文字题型解题思路
阅读题干
认真读题,理解题意,将问题转 化为一元一次方程。
设定未知数
设定符合题意的未知数,表示题 目中的未知量。
列出方程
根据题意列出方程,运用前几步 解方程求解。
数字应用题型解题思路

洋葱学园一元一次方程的应用(图形与数字)

洋葱学园一元一次方程的应用(图形与数字)

洋葱学园一元一次方程的应用(图形与数字)(1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,•然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检验,写答案:检验所求出的未知数的值是否是方程的解,•是否符合实际,检验后写出答案.2.和差倍分问题增长量=旧有量×增长率现在量=旧有量+增长量3.等积变形问题常用几何图形的面积、体积、周长计算公式,依据形虽变,但体积维持不变.①圆柱体的体积公式 v=底面积×高=s·h=πr2h②长方体的体积 v=短×阔×低=abc4.数字问题通常可以设立个位数字为a,十位数字为b,百位数字为c.十位数可表示为10b+a,百位数可表示为c+10b+a.然后把握住数字间或新数、原数之间的关系打听等量关系列方程.5.市场经济问题(1)商品利润=商品售价-商品成本价 (2)商品利润率=商品利润/商品成本价×%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.6.行程问题:路程=速度×时间时间=路程÷速度速度=路程÷时间(1)相遇问题:快行距+慢行距=原距(2)赴援问题:慢行距-慢行距=原距(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.7.工程问题:工作量=工作效率×工作时间完成某项任务的各工作量的和=总工作量=18.储蓄问题利润=每个期数内的利息/本金×% 利息=本金×利率×期数习题:1.将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?求解:设甲、乙一起搞还须要x小时就可以顺利完成工作.根据题意,得1/6×1/2+(1/6+1/4)x=1解这个方程,得x=11/511/5小时=2小时12分后答:甲、乙一起做还需2小时12分才能完成工作.2.兄弟二人今年分别为15岁和9岁,多少年后兄的年龄就是弟的年龄的2倍?解:设x年后,兄的年龄是弟的年龄的2倍,则x年后兄的年龄就是15+x,弟的年龄就是9+x.由题意,得2×(9+x)=15+x18+2x=15+x,2x-x=15-18∴x=-3请问:3年前兄的年龄就是弟的年龄的2倍.(点拨:-3年的意义,并不是没有意义,而是指以今年为起点前的3年,是与3•年后具有相反意义的量)3.将一个装满水的内部长、阔、低分别为毫米,毫米和80•毫米的长方体铁盒中的水,放入一个内径为毫米的圆柱形水桶中,刚好烧透,谋圆柱形水桶的高(准确至0.1毫米,π≈3.14).解:设圆柱形水桶的高为x毫米,依题意,得π·(/2)2x=××80x≈.3请问:圆柱形水桶的高约为.3毫米.4.有一火车以每分钟米的速度要过完第一、第二两座铁桥,过第二铁桥比过第一铁桥需多5秒,又知第二铁桥的长度比第一铁桥长度的2倍短50米,试求各铁桥的长..求解:设立第一铁桥的短为x米,那么第二铁桥的短为(2x-50)米,•过回去第一铁桥所需的时间为x/分后.过完第二铁桥所需的时间为2x-50/分.依题意,可以列举方程x/ + 5/60 = 2x-50/解方程x+50=2x-50得x=∴2x-50=2×-50=答:第一铁桥长米,第二铁桥长米。

一元一次方程常见应用题型及解法

一元一次方程常见应用题型及解法

一元一次方程常见应用题:
一、行程问题:路程=速度×时间
1:相遇问题:甲路程+乙路程=总路程
2:追及问题:a、不同时同地出发:快者(追者)走的路程=慢者(前者)走的路程
b、同时不同地出发:慢者走的路程+两者距离=快者走的路程
3、水流问题:顺水行的路程=逆水行的路程
提前写出:顺水速度=静水速度+水流速度
逆水速度=静水速度-水流速度
二、工程问题:工作总量=工作效率×工作时间工作效率与单独工作的时间互为倒数
各部分工作量之和=1
三、利润率、销售问题:
商品利润=商品售价-商品进价=商品进价×商品利润率
商品利润率=商品利润/商品进价×100%
售价=进价×(1+利润率)
注:进价
售价=实际销售价格
标价=定价=原价=预计售价=原销售价
四、数字问题:
设一个两位数的十位上的数字和个位上的数字分别为a、b,则这个两位数表示为10a+b 五、按比例分配问题:
甲:乙:丙=a:b:c 全部数量=各种成分的数量之和(设一份为χ)
六、配套问题
“加工的两种物品成比例”
七、分配问题
“总量不变”
八、积分问题
比赛总场数=胜场总数+平场总数+负场总数
比赛总积分=胜场总积分+平场总积分+负场总积分九、规律问题
●3个规律数字:设中间的数为χ
●月历中的问题
月历中每一行上相邻的两数,右边的数比左边的数大1;
月历中的每一列上相邻的两数,下边的数比上边的数大7 十、方案决策问题
选择最优的方案就要把每种方案的结果算出来,进行比较。

一元一次方程应用专题十大题型(包括数轴上动点问题)

一元一次方程应用专题十大题型(包括数轴上动点问题)

一元一次方程应用专题十大题型(包括数轴上动点问题)一元一次方程应用题十大类型一:配套问题配套问题1. 某车间有52名工人生产甲、乙两种零件,每人每小时平均能生产15个甲种零件或18个乙种零件,1个甲种零件配4个乙种零件,则分配多少名工人生产甲种零件,多少名工人生产乙种零件,恰好使每小时生产的甲、乙两种零件零件配套?2. 加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮刚好配成1套,那么需要分别安排多少名工人生产大小齿轮,才能每天加工的大小齿轮刚好配套?二.利润问题1.某商场购进一批服装,每件服装的进价为200元,由于换季,商城决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装的标价是多少?2.某商店以每件150元的价格卖出两件不同的商品,其中一件盈利25%,另一件亏损25%,则该商场总的盈亏情况()A.亏损20元B.盈利30元C. 亏损50元D.不赢不亏三. 比赛积分问题1.小明参加竞赛活动,试卷由50道选择题组成,评分标准规定:选对一题得3分,不选得0分,选错一题倒扣1分.已知小明有5题没选,得103分,则他选错了_______道题.趣味应用题 '五羊杯'竞赛题2. 50名学生中,会讲英语的有36人,会讲日语的有20人,即不会讲英语也不会讲日语的有8人,即会讲英语又会讲日语的有_______人.四工程问题1. 一件工作,甲单独做20小时完成,乙单独做12小时完成,现在先由甲单独做4小时,剩下的部分由甲乙合作,需要几小时完成?2. 某工厂原计划用26小时生产一批零件,后因每小时多生产5个,用24小时不但完成了任务,而且还比原计划多生产了60个,问原计划生产多少个零件.五.行程问题1. 相遇问题例:A,B两地相距450km,甲乙两车分别从A,B两地同时出发,相向而行.已知甲车得速度为120km/h,乙车得速度为80km/h,经过t h两车相距50km,则t的值是____________.2.追及问题例:甲、乙两人练习跑步,甲每秒跑7m,乙每秒跑6.5m,甲让乙先跑5m.设 x s 后甲追上乙,则可列方程_________.3.小李骑自行车从甲地到乙地,出发40分钟后,小王骑自行车从甲地出发,两人同时到达乙地,已知小李骑自行车的速度是15千米/时,小王骑电动车的速度时小李骑自行车的速度的3倍.求甲乙两地的距离.4.小李骑自行车从A地到B地,小明骑自行车从B地到A地,两人都匀速前进.已知两人在上午8点同时出发,到上午10点两人相距36千米,到中午12时,两人又相距36千米,求A,B两地间的路程.5.甲乙两动点分别从正方形ABCD的顶点A,C同时沿正方形的边开始移动,甲点依次顺时针方向环形,乙点依次逆时针环形,若乙的速度是甲的速度的4倍,则他们第2000次相遇在边()。

一元一次方程解应用题分类全

一元一次方程解应用题分类全

(一)和差倍分问题1、已知甲数是乙数的3倍多12,甲乙两数的和是60,求乙数。

2、某厂今年的产值是去年产值的3倍少25万,今年和去年产值总和是75万,求今年该厂的产值。

3、两筐鸭梨共重154千克,其中第一筐比第二筐的2倍少14千克,求两筐鸭梨各有多少千克?4、初一(1)班举办了一次集邮展览。

展出的邮票比平均每人3张多24张,比平均每人4张少26张。

这个班级有多少学生?一共展出了多少邮票?5、初一(4)班课外乒乓球小组买了两副乒乓球板,如果每人付9元,那么多了5元,如果每人付8元,那么还缺2元,请你根据以上情境提出问题,并列方程求解.6、某校住校生分配宿舍,如果每间住5人,则有2人无处住;如果每间住6人,则可以多住8人。

问该校有多少住校生?有多少间宿舍?7、学校准备拿出2000元资金给22名“希望杯”竞赛获奖学生买奖品,一等奖每人200元奖品,二等奖每人50元奖品,求得到一等奖和二等奖的学生分别是多少人?8、有某种三色冰淇淋50克,咖啡色、红色和白色配料的比是2:3:5,•这种三色冰淇淋中咖啡色、红色和白色配料分别是多少克?(二)调配问题1、甲、乙两个工程队分别有80人和60人,为了支援乙队,需要从甲队调出一部分人进乙队,使乙队的人数比甲队人数的2倍多5人,问从甲队调出的人数应是多少?2、甲乙两运输队,甲队32人,乙队28人,若从乙队调走一些人到甲队,那么甲队人数恰好是乙队人数的2倍,问:从乙队调走了多少人到甲队?3、甲处劳动的有29人,在乙处劳动的有17人,现在赶工期,总公司另调20人去支援,使在甲处的人数为在乙处人数的2倍,应分别调往甲处、乙处各多少人?4、甲、乙两书架各有若干本书,如果从乙架拿100本放到甲架上,那么甲架上的书比乙架上所剩的书多5倍,如果从甲架上拿100本书放到乙架上,两架所有书相等。

问原来每架上各有多少书?(三)配套问题1、现有白铁皮28张,每张白铁皮可做甲件5个或乙件6个,若3个甲件及2个乙件配套,问如何下料正好使机件配套2、某车间22名工人参加生产一种螺母和螺丝。

初一数学上册一元一次方程的应用12种经典题型汇总

初一数学上册一元一次方程的应用12种经典题型汇总

初一数学上册一元一次方程的应用12种经典题型汇总题型1:增长率问题某石油进口国这个月的石油进口量比上个月减少了5%,由于国际油价上涨,这个月进口石油的费用反而比上个月增加了14%.求这个月的石油价格相对上个月的增长率?解:设这个月的石油价格相对上个月的增长率为x.根据题意,得(1+x)x(1-5%)=1+14%解得x=0.2=20%答:这个月的石油价格相对上个月的增长率20%题型2:配套问题某服装厂要做一批某种型号的学生校服,已知某种布料每3m长可做2件上衣或3条裤子,一件上衣和一条裤子为一套,计划用600m长的这种布料做学生校服,应分别用多少米布料做上衣和裤子,才能恰好配套?解:设用x m布料做上衣,则用(600-x)m布料做裤子,则上衣共做2x/3件,裤子共做(600-x)条因为一件上衣配一条裤子,所以2x/3=600-x.解得x=360.所以600-360=240(m)答:应用360m布料做上衣,240m布料做裤子.题型3:销售问题某商品的进价是2000元,标价为3000元,商店将以利润率为5%的售价打折出售此商品,则该商店打几折出售此商品?解:设利润率为5%时售价为x元.根据题意(x-2000)/2000·100%=5%解得x=2100.所以2100/3000=7/10答:该商店打7折出售此商品.题型4:储蓄问题李明以两种方式储蓄了500元钱,一种方式储蓄的年利率是5%,另一种是4%,一年后共得利息23元5角,求两种储蓄各存了多少元钱?解:设年利率是5%的储蓄存了x元,则年利率是4%的储蓄存了(500-x)元.根据题意,得x·5%·1+(500-x)·4%·1=23.5解得x=350所以500-x=500-350=150答:年利率是5%和4%的储蓄分别存了350元和150元.题型5:等积变形问题用直径为4cm的圆钢,铸造3个直径为2cm,高为16cm的圆柱形零件,求需要截取多长的圆钢.解:设需要截取x cm长的圆钢.根据题意,得4·π·(4/2)^2=3·π·(2/2)^2·16解得x=12答:需要截取12cm长的圆钢。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
数字问题和图形问题
一、日历中的数字问题
问题1在某月份的日历中,任意圈出一竖列上相邻的三个数。

① 设中间一个数字为x ,则这三个数为 ,和为____。

② 设最小数为y ,则其余两个数为_________。

③ 设最大数为z ,则其余两个数为_________。

④ 若三个数的和为60,请列出一个方程_________。

⑤ 这三个数的和应在范围是_ ________。

问题2如图,是某年某月的日历。

现框出6个数,
使其成一个平行四边形,且这六个数字和
为84。

是否可能?若能,请求出这六个数;
若不能,请说明理由。

练习1如图,是某年某月的日历。

现框出5个数。

(1)这5个数字和能为85吗?
若能,请求出这5个数;
若不能,请说明理由。

(2)这5个数字和能为35吗?
若能,请求出这5个数; 若不能,请说明理由。

练习2、将自然数1至2007如图排列,用一个正方形
框出16个数。

①这16个数的和是____;
②用一个正方形框出16个数的和分别等于
2000,2004,是否可能?若不能,请说明理由; 若有可能,请求出这16个数中的最小数和 最大数。

练习3、已知有4个数,其中每3个数的和分别为17,21,25,30。

求这4个数。

二、数字问题
(1).一个两位数,个位上的数字为b ,十位上的数字是a ,用代数式表示这个两位数.
(2).一个三位数,百位、十位、个位上的数字分别是a ,b ,c ,用代数式表示这个三位数.
问题3一个三位数,其各位数字之和为16,十位数字是个位数字和百位数字的和;若把个位数字与百位数字对调,那么新数比原数大594,求原数。

练习:1.一个两位数,个位上的数是5,十位上的数是x ,那么这个两位数可以表示为 ______ ;如果把个位与十位上的数位置对调,所得的两位数将是 ______ ;
2.一个两位数,个位与十位上的数的差是5,如果个位上的数是a ,则这个两位数可以表示成 ______ ;又,如果十位数上的数是b ,那么这个两位数又可表示成 ______ .
3.一个两位数,个位和十位上的数字之和是14,如果把个位上的数和十位上的数的位置对调,则所得两位数比原来的两位数小18,求原来的两位数.
4.一个两位数,十位上的数与个位上的数的和是13,如果原来的数加上27等于十位上的数字与个位上的数字对调后的两位数,求原来的两位数.
5、 有一个三位数,十位上的数比百位上的数大2,个位上的数比十位上的数大2,若将百位上的数与个位上的数调换,则新数较原数的2倍大150,求原来的三位数是多少?
6.一个三位数,它的百位上的数比十位上的数的2倍大1,个位上的数比十位上的数的3倍少1;若把这个三位数的百位上的数和个位上的数对调一下,所得的三位数比原来大99,求原三位数.
2
三、图形中的一元一次方程 问题1 用一张长2米,宽1米的席子围成一个圆筒,摆在地上作粮囤。

有两种围法:第一是用2米作高;第二种是用1米作高。

这两种围法那种容量更大?为什么? 练习1.一张覆盖在圆柱形罐头侧面的商标纸,展开是一个周长为88cm 的正方形(不计接口部分),这个罐头的容积是 (精确到1立方厘米, 取3.14). 练习2、把一块长、宽、高分别为5cm 、4cm 、3cm 的长方体铁块,浸入半径为4cm 的圆柱形玻璃杯中(盛有水),水面将增高多少?(不外溢) 练习3.在一个底面直径为3cm ,高为22cm 的量筒内装满水,再将筒内的水到入底面直径为7cm ,高为9cm 的烧杯内,能否完全装下?若装不下,筒内水还剩多高?若能装下,求杯内水面的高度. 问题2 用一根长10米的铁丝围成一个长方形. (1)使得长方形的长比宽多1.4米,此时长方形的长、 宽各为多少米?面积呢? (2)使得长方形的长比宽多0.8米,此时长方形的长为( )米,宽为( )米。

面积为( )平方米。

(3)若长与宽相等,此时正方形边长为( )米,面积为( )平方米。

(4)若用10米长的铁丝围成一个圆,则半径约为( )米,面积为( )平方米, 有何结论? 练习1 某人把170 cm 长的一段铁丝分成两段,分别做成一个正方形和一个长方形的模型, 如果长方形的宽与正方形的边长相等,且长方形的宽长之比为4:5,求正方形和长方形的边长.
练习2.已知8块相同的地砖拼成如图的矩形,矩形的宽为80cm ,求每一块地砖的面积。

练习3、用8个同样大小的小矩形可以拼成图1形状,当拼成图2正方形形状时,中间的小正方形面积为1cm ²。

求小矩形的长和宽。

(图1) (图2) 家庭作业 1、某一年的5月份中,有5个星期五,它们的日期数之和为80,那么,这个月
的1号是星期_______。

2、如果12月8日是星期六,那么12月26日是星期几?本月星期日有哪些日期? 3、一个两位数,十位上的数与个位上的数的和是15,如果原来的数加上27等于十位上的数字与个位上的数字对调后的两位数,求原来的两位数. 4、求证:把一个数的十位上的数字与个位上的数字对调后的两位数,与原来的两位数相加的和是11的倍数,与原来的两位数相减的差是9的倍数。

5、如图,由六个正方形A 、B 、C 、D 、E 、F 恰好拼成一个矩形,中间正方形F 的面积为 1cm ²,求矩形的面积。

相关文档
最新文档