ENVI非监督分类:ENVI图文教程
实验四遥感图像的监督分类和非监督分类

实验四遥感图像的监督分类和⾮监督分类实验四遥感图像的⾮监督分类与监督分类⼀、实验⽬的1.⾮监督分类是对数据集中的像元依据统计数字,光谱类似度和光谱距离进⾏分类,在没有⽤户定义的条件下练习使⽤,在ENVI环境下的⾮监督分类技术有两种:迭代⾃组织数据分析技术(ISodata)和K均值算法(K-Means);2.分类过程中应注意:1)怎样确定⼀个最优的波段组合,从⽽达到最佳的分类精度,基于OIF和相关系数,协⽅差矩阵以及经验的使⽤来完成对最适合的组合的选取,分类效果的关键即在于此;2)K-Means的基本原理;3)Isodata的基本原理;4)分类结束后,被分类后的图像是⼀个新的图像,被分类类码秘填充,从⽽可以获得数据提取信息,统计不同类码数量,转化为实际⾯积,在得到后的图像上,可对不同⽬标的形态指标进⾏分析。
3.对训练区中的像元进⾏分类;4.⽤训练数据集估计查看监督分类后的统计参数;5.⽤不同⽅法进⾏监督分类,如最⼩距离法、马⽒距离法和最⼤似然法。
⼆、实验设备与材料1、软件ENVI 4.7软件2、所需材料TM数据三、实验步骤1.选择最优的波段组合ENVI主⼯具栏中File →Open image file →选择hbtmref.img打开→在Basic Tools中选择Statistics →Compute statistics选定原图,在Spectral subset中可选项全部选定→OK →OK →全选→保存→OK,则各类统计数字均可查;OIF计算,选择分类波段:1,2;2,3;1,3波段标准差分别为2.665727;3.473308;4.574609,和为10.713644。
Correlation Matrix 中1和2波段的相关系数0.964308,加上2和3波段的相关系数0.980166,再加上1和3波段的相关系数0.945880,最终等于2.890354。
⽤标准差相加的结果10.713644⽐上相关系数之和2.890354等于3.70668922。
envi7-监督与非监督分类

第二步: 第二步:样本选择
打开分类图像, Display->Overlay打开分类图像,在Display->Overlay->Region of Interest,默认ROIs为多边形, ROIs为多边形 Interest,默认ROIs为多边形,按照默认设置在影像上 定义训练样本。如下图所示, 定义训练样本。如下图所示,设置好颜色和类别名称 支持中文名称)。 (支持中文名称)。
3.2 监督分类——练习
3.2 监督分类——练习
ROIs面板中 选择Option 面板中, Option1. 在ROIs面板中,选择Option->Compute ROI Separability,计算样本的可分离性 计算样本的可分离性。 Separability,计算样本的可分离性。如下 图所示,表示各个样本类型之间的可分离性, 图所示,表示各个样本类型之间的可分离性, Jeffries用Jeffries-Matusita, Transformed Divergence参数表示 参数表示, Divergence参数表示,这两个参数的值在 0~2.0之间 大于1.9 之间, 1.9说明样本之间可分离性 0~2.0之间,大于1.9说明样本之间可分离性 属于合格样本;小于1.8 1.8, 好,属于合格样本;小于1.8,需要重新选 择样本;小于1 择样本;小于1,考虑将两类样本合成一类 样本。 样本。
遥感图像处理遥感图像处理-11
北京大学深圳研究生院
3.影像信息基本提取方法 3.影像信息基本提取方法
•3.1 3.1 •3.2 3.2 •3.3 3.3 •3.4 3.4 影像信息提取技术概述 影像增强处理 监督分类 非监督分类
3.1 影像信息提取技术概述
遥感影像通过亮度值或像元值的高低差异 反映地物的光谱信息)及空间变化( (反映地物的光谱信息)及空间变化(反映 地物的空间信息)来表示不同地物的差异, 地物的空间信息)来表示不同地物的差异, 这是区分不同影像地物的物理基础。 这是区分不同影像地物的物理基础。 遥感影像分类就是利用计算机通过对遥感影 像中各类地物的光谱信息和空间信息进行分 选择特征, 析,选择特征,将图像中每个像元按照某种 规则或算法划分为不同的类别, 规则或算法划分为不同的类别,然后获得遥 感影像中与实际地物的对应信息, 感影像中与实际地物的对应信息,从而实现 遥感影像的分类。 遥感影像的分类。
(完整word版)ENVI监督分类与非监督分类

对照原影像将30种类型进行编号并改名字,改变颜色;进行相同类别的合并:选择Classification中的分类后处理post classification,选择合并同类别Combine Classes,选择之前的非监督分类影像,在输入的文件中依次选择要合并的类,在输出的文件中选择相同的类别,点击Add Combination,所有的类别合并完后点击确定即可。
结果与分析1、各个样本之间的可分离性.说明哪些地物类型之间较易区分,哪些类型之间难以区分。
Jeffries-Matusita(J—M距离):水稻田水浇地河流居民地草地林地工业区裸地水稻田1。
99982。
00002.00002。
00001.95252.00002。
0000水浇1。
99982.00002。
00001.94941。
98902。
00002.0000Band0。
85 0。
90 0。
88 0.93 1.00 0.97 5Band0.90 0.93 0。
92 0。
92 0。
97 1。
00 63、最大似然法进行监督分类结果:原影像最大似然法进行监督分类结果监督分类的最大似然法分类结果中,主要的地物都可以被区分出来,地物分工业区94.7494.7418/1918/19裸地100.00100。
0042/4242/425、Clump Classes和Sieve classes结果:Clump Classes3*3处理结果:Clump Classes5*5处理结果:在聚类统计的结果上很容易看出原本监督分类的生成结果中严重的椒盐现象消失了,地物类型都相对完整,但有些细节已经被消除看不清楚,3*3窗口与5*5窗口生成的结果区别就在于3*3窗口的细节较5*5窗口的更加清楚具体, 5*5窗口将周边的面积较小的地物完全合并在一起.Sieve classes结果(Number of Neighbors设为8):Sieve classes结果(Number of Neighbors设为4):对影像的过滤分析生成的结果显得椒盐现象更加严重,结果影像上出现了很多小黑点,Number of Neighbors的值设置的越小,小黑点越密集,但是经过过滤分析的影像”孤岛”现象都已经消失。
遥感软件ENVI使用方法

实验报告一、实验内容:1.遥感影像读入与裁剪;2.遥感影像融合;3.遥感影像非监督分类;4.分类结果转成矢量(shapefile)二、实验内容实验一1. 将实验所需数据复制到新建的C盘test 文件2. 打开ENVI Classi—c —file——preferences修改前三个选项,都改为C盘test3 点击file——open image file——enter data filenames 选中这九个图像文件4.弹出对话框并选B50——loadband,出图5 返回菜单,点击basic tools——layer stacking——import file 选中B10—B706.点击spatial subset——Image,框选一个范围,并修改下面两个数字7.逐步点击ok,到layer stacking parameters——reorder files 进行从小到大排序8.点击ok,选中chose——test 将文件命名为stack_b1-6162-7.img9.点击RGB Colo,r 如图依次选择B50,B40,B3010.点击display——New Display——load RGB,出图11.回到主菜单,点选Transform——Image Sharpening——HSV——display212. 在主菜单上点击Basic Tools ——rezise Data ——点选B80进行如下操作13. 将文件保存为b8.img14. 在RGB Color 进行B50,B40,B30排序15. 产生display3 ,出图16. 点击Transform ——Image sharpening ——HSV,选择display217. 依次确定后跳出如下对话框,将图片命名为hsv_543.img 保存18. 完成后生成新的display219. 图片点右键——Geographic Link 全部点选on20. 实验一结束,关闭所有图片实验二1.在主菜单点击Classification ——Unsupervised ——ISODATA,选择stack_b1-6162-7.img2. 弹出如下对话框,第三个数字改为5,保存文件名为iso.img3. 生成新的display4.点击主菜单上Classification ——post Classification ——Majority\Minority analysis ,如图选择iso.img,5. 弹出如下对话框之后,点选所有class ,将kernel size 数值调为76. 将文件保存,并命名为iso_maj77.img7. 生成新的display8. 在图片上单击右键——Geographic Link 全部点选on9. 继续在主菜单点击Classification ——post Classification ——Classification to vector ,选择iso_maj77.img10. 选择所有class ,output 一栏选择single layer ,保存文件,命名为iso_maj77toevf.evf11.计算机进行分析,分析完成后出现如下对话框12.选择RTV,对弹出对话框进行如下选择13. 在生成图片的菜单上选择file ——export active layer to shapefile ,选择命名为iso_maj77toshp.shp 保存。
ENVI软件基础知识以及监督 分类详细步骤

Rotation Parameters对话框:
由于主成分图像有6个波段,我选取了有代表性的前三个波段显示如下:
PC1:
PC2:
PC3:
检验主成分与原始数据之间的定量关系:
下面我们来检验各主成分到底与原始的6个波段数据之间到底是什么定量关系,我想这对我们解释各主成分的含义时很有用。我们得知主成分变换的系数矩阵是原始数据协方差矩阵的特征向量矩阵的一个转置,我们先通过统计计算得到特征向量矩阵如下(方法参照前面所述),注意数据源选择原始数据liubo07082972.img:
主成分分析(PCA)用多波段数据的一个线性变换,变换数据到一个新的坐标系统,以使数据的差异达到最大。这一技术对于增强信息含量、隔离噪声、减少数据维数非常有用。由于多波段数据经常是高度相关的,主成分变换寻找一个原点在数据均值的新的坐标系统,通过坐标轴的旋转来使数据的方差达到最大,从而生成互不相关的输出波段。主成分(PC)波段是原始波谱波段的线性合成,它们之间是互不相关的。可以计算输出主成分波段。第一主成分包含最大的数据方差百分比,第二主成分包含第二大的方差,以此类推,最后的主成分波段由于包含很小的方差(大多数由原始波谱的噪声引起),因此显示为噪声。由于数据的不相关,主成分波段可以生成更多种颜色的彩色合成图像。
该对话框参数设置如下:
在“Stats X/Y Resize Factor”文本框键入小于1的调整系数,对计算统计值的数据进行二次抽样。键入一个小于1的调整系数,以提高统计计算的速度。例如,在统计计算时,用一个0.1的调整系数将只用到十分之一的像元。若需要,键入一个输出统计文件名。点击按钮,选择基本“Covariance Matrix”或“Correlation Matrix”。
监督与非监督ENVI及ERDAS操作步骤

非监督分类1、在ERDAS中裁剪出一部分的区域进行分类,利用AOI工具进行裁剪,另存裁剪的区域。
2、在ENVI中打开裁剪的区域dsb.img在Basic Tool菜单下Region of Interest工具打开ROI Tool新建类别名,由于裁剪的区域没有森林,所以共分五类:水体、耕地、城市、裸地、草地。
分别给予不同颜色。
3、在Zoom 窗口中进行采样即采集训练区。
采样前先判读熟悉影像,在采集样本时注意:采取训练区内颜色越纯越好。
4、采集完训练区后在Classification 菜单下选择Supervised ,利用Maximun Likelihood (最大似然法)进行非监督分类。
5、在分类中遇到的问题①进行第一次分类的结果是城市中的道路被归为了水体, 改进办法:更改城市的训练区样本,对城市的采样除了取建筑物的样本还应在城市的街道处采取几个样点,然后再进行第二次分类。
②第二次分类的结果是部分休耕(收割后)的耕地归为了城新建类别名市区域。
因为该影像是2000年9月14日的影像,故部分耕地已收割休耕,在原图上表现为规则的深紫色,我将其归为耕地。
改进方法:增加耕地的训练区的样本,在颜色为深紫色的的区域采取几个样本点作为耕地的训练区。
③第三次分类的结果是发现河流两岸的落地被归为了城市改进方法:增加裸地的训练区样本。
在河流两岸处选取几个样本做为裸地训练区。
第一次分类的结果:其中:水体耕地城市草地裸地第二次分类结果:其中:水体耕地城市草地裸地第三次分类结果:其中:水体耕地城市草地裸地。
ENVI4.5监督分类图文并茂超详细操作步骤

单击file—Open Image File打开图像,我的是TM7波段图像,加载5、4、3波段。
根据lay 选样本,OverLay—Region Of Interesting森林灌木、草地裸地耕地沙地其他(如水体、阴影之类的)选样本在Zoon放大窗口里选,这样可以选的更精确一些。
左键下点,右键结束因光谱值有差异,不在同一片地方选样本再在另一片地方选一下样本:正常情况下是通过别的方式选样本,如:野外调查或波峰影像上选样本,本次因条件限制就直接在图上选了。
选的差不多了,就选第二种灌木、草地样本,点的New Region按钮,选法一样,直至六类都选完:样本选完后验证样本对不对,静不精确点的Options后出现的下来菜单,选倒数第二个Compute ROI Separability点击后出现上面的对话框,选择我所要分类的图像,单击“OK”。
出现下面的对话框:,点击Select All Iterm选择全部的可分离性的样本,然后点击“OK”,出来下表:在这个表里,凡是最后的那个数值大于1.8的就说明符合要求,由此看出第一个是不符合要求的,应该是选的时候有问题(估计主要问题是灌木没有选好),按要求有问题就应该重新选,不过灌木和森林容易混淆,不容易选对,就不再重新选样本了。
只列出修改方法:在上面的对话框里选择森林,然后点击Goto,浏览每一个样本,将不好的样本删掉,再重新选一遍,然后再重新计算,直到达到要求为止。
上面是定量的评价,还有一个是定性的看:单击File,然后点击Export ROIs to Visualizer会出现,然后点击“OK”,出现,也是一样全选,点击“OK”出现n-D可视化对话框,,然后点击1、2、3、4、5、6,全选后,,单击Start,会出现一动态变化的样本聚类情况,在此只截一张图定性的看样本是否选的好,就看那个样本集中的程度,越高代表样本越好。
下面就可以分类了:点击主菜单的Classification—Supervised—Maximum Likelihood(最大似然发),出现,单击OK,出现此对话框设置如下:按着Shift全选样本,给输出分类文件命名并选择存储位置,然后点击OK输出,可用波段列表里会多出一个如图,在其上右键然后单击Load Band to New Display在新窗口加载分类图像如下:对分类图的后后处理(改名字、改颜色、分类后处理):单击Overlay—Classification叠加分类图选择分类文件点OK,勾选样本前面的On可以叠加相应的分类,如:改名字:选择每一个分类,然后去掉后面的像素数,修改完毕点OK,然后单击Edit,选择第二个即将选择的类别并到其他类别里面去,出现下面的对话框,选Zoom,在On前面勾选即被归并的类别,点击颜色即要归并入的类别,然后在Zoom里左键画线,单击第一次一次右键闭合选择某一区域,再单击一次右键及可把此区域分错类别才分类并入另一类别里如:错分成林地的草地变回成了草地。
envi遥感图像监督分类与非监督分类

envi遥感图像监督分类监督分类,又称训练分类法,用被确认类别的样本像元去识别其他未知类别像元的过程。
它就是在分类之前通过目视判读和野外调查,对遥感图像上某些样区中影像地物的类别属性有了先验知识,对每一种类别选取一定数量的训练样本,计算机计算每种训练样区的统计或其他信息,同时用这些种子类别对判决函数进行训练,使其符合于对各种子类别分类的要求,随后用训练好的判决函数去对其他待分数据进行分类。
使每个像元和训练样本作比较,按不同的规则将其划分到和其最相似的样本类,以此完成对整个图像的分类。
遥感影像的监督分类一般包括以下6个步骤,如下图所示:详细操作步骤第一步:类别定义/特征判别根据分类目的、影像数据自身的特征和分类区收集的信息确定分类系统;对影像进行特征判断,评价图像质量,决定是否需要进行影像增强等预处理。
这个过程主要是一个目视查看的过程,为后面样本的选择打下基础。
启动ENVI5.1,打开待分类数据:can_tmr.img。
以R:TM Band 5,G: TM Band 4,B:TM Band 3波段组合显示。
通过目视可分辨六类地物:林地、草地/灌木、耕地、裸地、沙地、其他六类。
第二步:样本选择(1)在图层管理器Layer Manager中,can_tmr.img图层上右键,选择"New Region Of Interest",打开Region of Interest (ROI) Tool面板,下面学习利用选择样本。
1)在Region of Interest (ROI) Tool面板上,设置以下参数:ROI Name:林地ROI Color:2)默认ROIs绘制类型为多边形,在影像上辨别林地区域并单击鼠标左键开始绘制多边形样本,一个多边形绘制结束后,双击鼠标左键或者点击鼠标右键,选择Complete and Accept Polygon,完成一个多边形样本的选择;3)同样方法,在图像别的区域绘制其他样本,样本尽量均匀分布在整个图像上;4)这样就为林地选好了训练样本。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ENVI非监督分类:ENVI图文教程
ENVI非监督分类的流程
(1) 根据具体项目需求先整体上分析一下分类的影像,确定好需要分类出几类。
(2) 选择适合的分类算法。
(3) 对分类出来的类别进行定义、合并、删除。
(4) 分类后处理。
(5) 结果验证。
ENVI非监督分类的算法
非监督分类仅仅用统计方法对数据集中的像元进行分类,它不需要用户定义任何训练分类器。
Unsupervised Classificatio n 菜单为你提供了:
(1)Iso Data(迭代自组织数据分析技术)
(2)K-Means(K-MEANS算法)两种非监督分类技术。
单个菜单具体内容如下所述。
Isodata
Isodata 非监督分类计算数据空间中均匀分布的类均值,然后用最小距离技术将剩余像元迭代聚集。
每次迭代重新计算了均值,且用这一新的均值对像元进行再分类。
重复分类是分割、融合和删除是基于输入的阈值参数的。
除非限定了标准差和距离的阈值(这时,如果一些像元不满足选择的标准,他们就无法参与分类),所有像元都被归到与其最临近的一类里。
这一过程持续到每一类的像元数变化少于选择的像元变化阈值或已经到了迭代的最多次数。
详情参见:Tou, J. T. and R. C. Gonzalez, 1974. Pattern Recognition Principles, Addison-Wesley Publishing Company, Reading, Massachusetts.
执行Isodata(独立数据)非监督分类:
(1)打开影像数据(打开影像数据的方法参考上节内容),在这我们使用的是练习数据位置参考下图。
(2)读取波段值(R:4,G:3,B:2),结果如下图。
(3)选择Classification > Unsupervised > Isodata.
(4)出现Classification Input File 对话框,进行标准文件选择或输入文件的子集和掩模。
(5)点击“OK”,显示ISODATA Parameters 对话框。
ISODATA Parameters 对话框
在ISODATA Parameters 对话框中可以利用的选项包括:即将被限定的分类数的范围输入,像元变化阈值(0~100%),被用来对数据进行分类的最多迭代次数,分割、合并和删除分类阈值以及可选的距离阈值。
1 输入被限定的类数范围(最小值和最大值)。
用到类数范围是由于独立数据算法是基于输入的阈值进行拆分与合并的,并不遵循一个固定的类数。
2 在合适文本框里,输入迭代次数的最大值和一个变化阈值(0~100%)。
当每一类的像元数变化小于阈值时,用变化阈值来结束迭代过程。
当达到阈值或迭代达到了最多次数时,分类结束。
3 在合适文本框里,键入形成一类需要的最少像元数。
如果一类中的像元数小于构成一类的最少像元数,则这一类就要被删除,其中的像元被归到距离最近的类里。
4 在“Maximum Class Stdv”文本框里,键入最大分类标准差(用十进制)。
如果一类的标准差比这一阈值大,则这一类将被拆分成两类。
5 在合适文本框里,键入类均值之间的最小距离和合并成对的最多数。
如果类均值之间的距离小于输入的最小值,则这一类就会被合并。
被合并后的成对类的最大数由合并成对的菜蔬最大值设定。
6 随意设置类均值左右的标准差和最大允许距离误差,分别在“Maximum Stdev From Mean:”和“Maximum Distance Error:”文本框里,键入数值。
如果这些可选参数的数值都已经输入,分类就用两者中较小的一个判定将参与分类的像元。
如果两个参数都没有输入,则所有像元都将被分类。
7 选用“File”或“Memory”输出。
如果选用“File”输出,在标有“Enter Output File Name”的文本框里键入要输出的文件名;或用“Choose”按钮选择一个输出文件名。
8 点击“OK”,开始进行独立数据分类。
图像中每一个波段将计算统计值,屏幕上出现一条状态信息,显示操作的进展过程。
这一信息随着分类器的每一次迭代在0 到100% 之间循环。
(6)各个参数选默认值,分类结果如下:
K-Means
K-Means 非监督分类计算数据空间上均匀分布的最初类均值,然后用最短距离技术重复地把像元聚集到最近的类里。
每次迭代重新计算了均值,且用这一新的均值对像元进行再分类。
除非限定了标准差和距离的阈值(这时,如果一些像元不满足选择的标准,他们就无法参与分类),所有像元都被归到与其最临近的一类里。
这一过程持续到每一类的像元数变化少于选择的像元变化阈值或已经到了迭代的最多次数。
详情参见:
For technical details, see: Tou, J. T. and R. C. Gonzalez, 1974. Pattern Recognition
Principles, Addison-Wesley Publishing Company, Reading, Massachusetts.
ENVI中执行K-Means非监督分类的步骤:
(1)打开影像数据(打开影像数据的方法参考上节内容),在这我们使用的是练习数据位置参考下图。
(2)读取波段值(R:4,G:3,B:2),结果如下图。
(3)选择Classification > Unsupervised > K-Means。
(4)出现Classification Input File 对话框时,进行标准文件选择或输入文件的子集和掩模。
(5)点击“OK”,显示K-Means Parameters 对话框。
K-Means Parameters 对话框
在K-Means 参数对话框里的可选项包括:由聚类程序限定的分类数的选择,像元变化阈值(0~100%),用于分类的迭代最多次数以及可选项距离阈值。
1 在相应文本框里,键入分类数以及迭代的最多次数。
2 键入一个变化阈值(0~100%),用于当每一类像元数变化小于阈值时结束迭代过程。
达到阈值或迭代达到最多次数时分类结束。
3 随意设置类均值左右的标准差和最大允许距离误差(用十进制),分别在“Maximum Stdev From Mean:”和“Maximum Distance Error:”文本框里,键入数值。
如果这些可选参数的数值都已经输入,分类就用两者中较小的一个判定将参与分类的像元。
如果两个参数都没有输入,则所有像元都将被分类。
4 选用“File”或“Memory”输出。
如果选用“File”输出,在标有“Enter Output File Name”的文本框里键入要输出的文件名;或用“Choose”按钮选择一个输出文件名。
5 点击“OK”,开始进行K-Means 分类。
图像的每一个波段将进行计算统计,出现一条状态信息,显示操作处理进度。
这些信息在分类器每次迭代时循环显示。