初中数学总复习《几何三大变化—旋转》讲义

合集下载

初三专题复习几何变换之旋转辅导讲义

初三专题复习几何变换之旋转辅导讲义

几何变换之旋转【中考剖析:】内容要求考点旋转了解图形的旋转,理解对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等的性质;会识别中心对称图形; 能按要求作出简单平面图形旋转后的图形,能依据旋转前后的图形,指出旋转中心和旋转角.图形旋转后求角度、线段关系、长度、周长、面积【专题结构:】一、旋转有关概念1、旋转:把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角,如果图形上的点P经过旋转变为点'P,那么这两个点叫做这个旋转的的对应点.(如图)2、旋转问题应把握三元素:旋转中心、旋转角度和旋转方向.3、旋转的性质:旋转后的图形与原图形是全等的,对应的旋转角度相等.二、中心对称1、中心对称的有关概念:把一个图形绕着某一点旋转180 ,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做中心对称点,这两个图形中的对应点叫做关于中心的对称点(如图)三、共顶点旋转模型(证明基本思想SAS)P'Q'QPODCBAO共顶点等边三角形共顶点等腰直角三角形共顶点等腰三角形四、旋转前后具有以下性质1、对应线段相等,对应角相等2、对应点位置的排列次序相同3、任意两条对应线段所在的直线夹角都等于旋转角【例题精讲:】 一、对旋转的初步认识【例1】正方形网格中,ABC ∆为格点三角形(顶点都是格点),将ABC ∆绕点A 按逆时针方向旋转90︒得到11AB C ∆.⑴在正方形网格中,作出11AB C ∆;(不要求写作法)⑵设网格小正方形的边长为1cm ,用阴影表示出旋转过程中线段BC 所扫过的图形,然后求出它的面积.(结果保留)【巩固】在下图的网格中按要求画出图象,并回答问题.π⑴先画出ABC ∆向下平移5格后的111A B C ∆,再画出ABC ∆以O 点为旋转中心,沿顺时针方向旋转90︒后的222A B C ∆;⑵在与同学交流时,你打算如何描述⑴中所画的222A B C ∆的位置?【例2】如图所示,ABC ∆是直角三角形,BC 是斜边,将ABP ∆绕点A 逆时针旋转后,能与'ACP ∆重合, 如果2AP =,那么'PP =______.【巩固】如图,将矩形ABCD 绕点A 顺时针旋转90︒后,得到矩形'''AB C D ,如果22CD DA ==,那么 'CC =_________.【例3】如图,在Rt ABC ∆中,AB AC =,D 、E 是斜边BC 上两点,且45DAE ∠=︒,将ADC ∆绕点A 顺时针旋转90︒后,得到AFB ∆,连接EF ,下列结论:①AED AEF ∆∆≌; ②ABE ACD ∆∆∽; ③BE DC DE +=; ④222BE DC DE += 其中正确的是( )A .②④;B .①④;C .②③;D .①③.D'C'B'D CB A二、大角夹半角模型在大角夹半角模型中比较常见的是90和 45, 120和 60.【例4】正方形ABCD 中,点E 在CD 上,点F 在BC 上,15=∠EAD , 30=∠FAB ,=AD 3,求AEF ∆的面积.【巩固】正方形ABCD 中,点E 在DC 延长线上,点F 在CB 延长线上, 45=∠EAF , 请问现在EF 、DE 、BF 又有什么数量关系?【例5】四边形ABCD 是由等边ABC ∆和顶角为120的等腰ABD ∆拼成,将一个角顶点放在D 处,将 60角绕D 点旋转,该60角两边分别交直线BC 、AC 于M 、N .交直线AB 于E 、F 两点,FEDCBA(1)当E 、F 分别在边AB 上时(如图1),求证:MN AN BM =+;【巩固】条件如例5,当E 、F 分别在边BA 的延长线上时如图2,求线段BM 、AN 、MN 之间又有怎样的数量关系?【例6】如图所示,ABC ∆是边长为1的正三角形,BDC ∆是顶角为120的等腰三角形,以D 为顶点作一个60的MDN ∠,点M 、N 分别在AB 、AC 上,求AMN ∆的周长.三、等边三角形的“Y ”字型模型【例7】如图,是等边内一点,若,,,求的度数.【巩固】如图,P 是等边ABC ∆中的一个点,2,23,4PA PB PC ===,则ABC ∆的边长是 .【例8】如图ABC ∆三边长分别是17BC =,18CA =,19AB =,过ABC ∆内的点P 向ABC ∆三边分别作垂线PD PE PF ,,,且=27BD CE AE ++,求BD BF +的长度.【例9】如图,在凸四边形ABCD 中,30,60ABC ADC ∠=∠=,,AD DC =证明:222BD AB BC =+.P ABC ∆3AP =4PB =5PC =APB ∠PCBADCBA【课后作业:】1、如图,将边长为2的两个互相重合的正方形纸片按住其中一个不动,另一个绕点B 顺时针旋转一个角度,若使重叠部分面积为433,则这个旋转的角度为多少?2、如图,四边形ABCD 是正方形,F 是BA 延长线上的点,ADF ∆旋转一定角度后得到ABE ∆,如果4AF =,7AB =. ⑴指出旋转中心和旋转角度; ⑵求DE 的长度.3、矩形的对角线相交于点O ,过点O 的直线交AD ,BC 于点E ,F ,2AB =,3BC =,则图中阴影部分的面积为_____4、正方形ABCD 中的ABP ∆绕点B 顺时针旋转能与'CBP ∆重合,若4BP =,求点P 所走过的路径长.HA'CAOFEDA5、(2012•珠海)如图,把正方形ABCD 绕点C 按顺时针方向旋转45得到正方形'''CD B A (此时,点'B 落在对角线AC 上,点'A 落在CD 的延长线上),''B A 交AD 于点E ,连接'AA 、CE .求:直线CE 是线段'AA 的垂直平分线.6、如图,四边形ABCD 中, 135ABC ∠=︒,120BCD ∠=︒,AB5BC =6CD =,求AD7、正方形ABCD 中,对角线AC 与BD 交于O ,点E 在BD 上,AE 平分DAC ∠. 求证:EO AD AC-=2.P'DCBA8、如图,点M 为正三角形ABD 的边AB 所在直线上的任意一点(点B 除外),作60DMN ∠=︒,射线MN 与DBA ∠外角的平分线交于点N ,DM 与MN 有怎样的数量关系?四、等腰直角三角形的“Y ”字型旋转【例1】如图,P 是正方形ABCD 内一点, 135=∠APB ,2=BP ,1=AP .求PC 的长.【巩固】如图,在正方形ABCD 内有一点P ,且2=BP ,5=AP ,1=PC ,求BPC ∠度数大小和正方形ABCD 的边长.【例2】在ABC ∆中,90,,A AB AC D ∠==为斜边上任一点,求证:2222BD CD AD +=.【巩固】 D ,E 是等腰直角三角形ABC 斜边BC 所在直线上的两点,满足135=∠DAE ,求证:222DE BE CD =+.【例3】四边形ABCD 被对角线BD 分为等腰直角ABD ∆和直角CBD ∆,其中A ∠和C ∠都是直角,另一条对角线AC 的长度为2,求四边形ABCD 的面积.【巩固】如图,以ABC Rt ∆的斜边BC 为一边,在ABC ∆的同侧作正方形BCEF ,设正方形的中心为O ,连结AO ,如果4=AB ,7=AO ,求AC 的长.DCBA五、三角形中的费马点【例4】若P 为ABC ∆所在平面上一点,且 120=∠=∠=∠CPA BPC APB ,则点P 叫做ABC ∆的费马点.(1)若点P 为锐角三角形ABC 的费马点,且︒=∠60ABC ,3=PA ,4=PC ,则PB 的值为______,(2)如图,在锐角三角形ABC 外侧作等边三角形'ACB ,连接'BB ,求证:'BB 过ABC ∆的费马点P ,且'BB PC PB PA ++=.【例5】如图,四边形ABCD 是正方形,ABE ∆是等边三角形,M 为对角线BD (不含B 点)上任意一点,将BM 绕点B 逆时针旋转︒60得到BN ,连接EN 、AM 、CM . (1)求证:AMB ∆≅ENB∆;(2)①当M 点在何处时,CM AM +的值最小;②当M 点在何处时,CM BM AM ++的值最小,并说明理由; (3)当CM BM AM ++的最小值为时,求正方形的边长.【课后作业:】1、如图,P 是正方形ABCD 内一点,a 2=BP ,a AP =,a 3=PC )(0a >.求:(1)APB ∠的度数.(2)正方形的面积.2、已知:2=PA ,4=PB ,以AB 为一边作正方形ABCD ,使P 、D 两点落在直线AB 的两侧.(1)如图,当︒=∠45APB 时,求AB 及PD 的长;(2)当∠APB 变化,且其它条件不变时,求PD 的最大值,及相应∠APB 的大小.3、已知正方形ABCD 内一点,E 到A 、B 、C 三点的距离之和的最小值为 62+,则此正方形的边长为_______.。

九年级数学旋转知识点总结

九年级数学旋转知识点总结

九年级数学旋转知识点总结九年级数学旋转知识点总结九年级数学中的旋转知识点是学生在几何学中学习的重要内容之一。

通过对平面图形的旋转操作,学生可以更好地理解和应用几何学原理,培养空间想象力和逻辑思维能力。

本文将对九年级数学中的旋转知识点进行总结,并对其相关概念和常见题型进行详细讲解。

一、旋转基本概念1. 旋转的定义:旋转是指将一个图形围绕某一点进行转动,保持图形形状和大小不变的操作。

2. 旋转中的基本概念:(1) 旋转中心:图形旋转的固定点。

(2) 旋转角度:旋转的角度大小,通常用度数表示。

(3) 旋转方向:图形旋转时顺时针或逆时针的方向。

二、旋转的基本性质1. 旋转的角度:一个图形旋转后,原形与变形之间的对应点与旋转中心的连线所成的角度大小是相等的,即旋转角度相等。

2. 旋转角的正负:顺时针旋转角度为负值,逆时针旋转角度为正值。

3. 旋转的性质:旋转操作不改变图形的形状和大小,保持图形的对称性。

三、旋转的常见图形1. 旋转的平面图形:点、线、线段、角、三角形、四边形等。

2. 旋转的空间图形:圆、球体等。

四、旋转的常见题型及解题方法1. 旋转图形的对称性:通过旋转可以得到与原图形相似的新图形,根据旋转中的对称性可以快速判断图形的对称性质。

2. 旋转图形的等角性:利用旋转的角度和方向,可以验证等角图形的特点,如全等三角形、相似四边形等。

3. 旋转图形的变换:根据给定的旋转中心、角度和方向,进行图形的旋转操作,并分析新图形的特征。

4. 旋转图形的坐标表示:对于平面坐标系中的点、线段、图形等,可以通过旋转公式计算其新的坐标位置。

五、旋转的应用1. 平面图形的构造:通过将已知的图形旋转得到新的图形,进行几何图形的构造。

2. 图形的变换:旋转是一种常用的图形变换方法,可以改变图形的朝向和位置。

3. 证明与推理:利用旋转的性质,可以推导证明几何命题、解决几何问题,提高数学的证明和推理能力。

总之,九年级数学中的旋转知识点是几何学中的重要内容,旋转的基本概念、性质和常见图形需要学生进行深入理解和掌握。

七年级数学立体图形旋转知识点

七年级数学立体图形旋转知识点

七年级数学立体图形旋转知识点立体图形是数学中一个非常重要的概念,对于初学者来说,学习它有助于提高空间思维能力和解决实际问题的能力。

其中,旋转是立体图形的一个基本知识点。

在这篇文章中,我们将详细解释七年级数学中立体图形旋转的知识点,力求帮助大家更好地理解它们。

什么是旋转?旋转可以理解为是将一个物体绕着一个轴旋转的过程。

我们可以通过旋转立体图形来形成不同的图案,也可以通过旋转来改变立体图形的形状。

在数学中,我们通常将旋转定义为“沿着一个直线或者轴转动一个几何图形”。

旋转的种类在立体图形的旋转中,有三种不同的旋转方式:绕x轴、绕y 轴和绕z轴。

其中,绕x轴是指将图形沿与x轴垂直的直线旋转,绕y轴是指将图形沿与y轴垂直的直线旋转,绕z轴是指将图形沿与z轴垂直的直线旋转。

旋转的角度旋转的角度表示旋转的幅度。

正常情况下,我们通常将旋转的角度设定在90度、180度、270度、360度等等。

当我们通过旋转来转换图形时,旋转角度可以根据实际需求进行调整,比如可以通过旋转90度来形成一个正方体等。

旋转的效果通过旋转,我们可以将一个平面图形或者立体图形转变成另一个图形。

具体来说,旋转可以带来以下的变化:1、对称性:当我们将一个物体绕着一个轴旋转时,它会保持与原位置的对称性。

这种对称性可以用来构建很多美丽的图案。

2、变形:当我们将一个物体绕着一个轴旋转时,它的形状会发生变化。

这种变化可以通过不同的旋转方式和旋转角度来进行调整。

3、拼接:通过将多个图形旋转后进行拼接,可以形成一个更加复杂、更具有立体感的图形。

这种方法被广泛应用于产品设计等领域。

旋转的实际应用通过学习立体图形的旋转,我们可以应用它们到各种不同的领域。

比如,真实的生活中我们常常看到的各种产品大小规格的根本在于立体图形的旋转。

通过旋转,我们可以将一个物体从一维或者二维变成三维,这样会更加符合实际的需求。

除此之外,旋转还可以应用到建筑、城市规划、产品设计和艺术设计等领域。

数学旋转的知识点

数学旋转的知识点

数学旋转的知识点数学中的旋转是一种基本的几何变换,它可以使我们更好地理解和解决各种问题。

在这篇文章中,我将为您介绍数学旋转的几个重要知识点,帮助您更好地理解和应用它们。

一、旋转的基本概念在数学中,旋转是指围绕一个中心点按照一定的角度将物体或坐标系转动。

旋转可以是顺时针或逆时针方向,角度可以是正数或负数。

二、旋转矩阵旋转可以用一个矩阵来表示,这个矩阵被称为旋转矩阵。

一个二维平面上的旋转矩阵可以写成如下形式:cosθ -sinθsinθ cosθ其中,θ表示旋转的角度。

对于三维空间中的旋转,旋转矩阵会稍有不同。

三、旋转的性质旋转具有一些重要的性质,这些性质有助于我们更好地理解和应用旋转。

1.旋转是保角的:旋转不改变物体之间的角度关系,两个物体的夹角在旋转前后保持不变。

2.旋转是保距的:旋转不改变物体上两点之间的距离,两点间的距离在旋转前后保持不变。

3.旋转是可逆的:旋转可以通过逆向旋转来恢复到原来的状态。

四、旋转的应用旋转在数学和其他科学领域有着广泛的应用。

1.几何学:旋转可以用来解决各种几何问题,如求解物体的位置和姿态,计算点、直线和曲线的旋转等。

2.物理学:旋转在物理学中也有着重要的应用,如刚体转动、天体运动等。

3.计算机图形学:旋转是计算机图形学中的基本操作之一,用于实现物体的旋转、变形和动画效果。

4.人工智能:旋转在人工智能领域也有着广泛的应用,如图像处理、模式识别和机器人导航等。

五、旋转的实例下面给出一个简单的旋转实例,以帮助读者更好地理解旋转的应用。

假设有一个平面上的点A(2, 3),我们要将这个点绕原点逆时针旋转60度。

根据旋转矩阵的公式,我们可以得到旋转后的坐标B(x, y),计算过程如下:x = 2 * cos60° - 3 * sin60° = 1y = 2 * sin60° + 3 * cos60° = 4.196所以,点A(2, 3)绕原点逆时针旋转60度后的坐标为B(1, 4.196)。

九年级旋转专题讲义

九年级旋转专题讲义

九年级旋转专题讲义旋转专题讲义(九年级)一、基础知识1. 旋转的定义:在平面内,一个图形绕着某一点转动一定的角度而不改变其位置的运动称为旋转。

这个定点称为旋转中心,转动的角度称为旋转角。

2. 旋转的性质:(1)旋转中心到图形上任意一点的距离在旋转前后保持不变。

(2)图形上任意两点绕旋转中心按同一方向旋转相等的角度后,对应点到旋转中心的距离相等。

(3)图形上任意两点绕旋转中心按相反方向旋转相等的角度后,对应点到旋转中心的距离相等,但方向相反。

二、常见题型及解题方法1. 确定旋转角:在题目中,常常会给出一些图形经过某种运动后的位置,需要确定这些图形是绕哪个点按什么方向旋转了多少度。

此时可以通过观察图形变化前后的位置,找出旋转中心和旋转角。

2. 求解旋转问题:在求解与旋转相关的问题时,常常需要利用旋转的性质,通过已知条件推导出其他未知条件。

例如,在求解几何图形的面积或周长时,可以通过旋转将不规则图形转化为规则图形,从而方便计算。

3. 判断是否为旋转对称图形:在判断一个图形是否为旋转对称图形时,可以通过观察图形是否能够绕某点按一定角度旋转后与自身重合来确定。

如果可以,则该图形是旋转对称图形。

4. 求解旋转对称图形的中心和角度:在求解旋转对称图形的中心和角度时,可以通过观察图形自身旋转的过程,找出旋转中心和旋转角度。

例如,在求解正多边形的中心和角度时,可以通过将多边形的各顶点绕中心点按相同的方向旋转相同的角度后与自身重合来确定。

三、典型例题解析例1:在正方形ABCD中,E为CD的中点,F为BC上一点,且CF=3BF。

将△ADE绕点A按逆时针方向旋转90°得到△ABG。

则下列结论:①AF=AG;②BF=BG;③AF=FG;④△AFD≌△GFC中,正确的有()A. ①②B. ②③C. ③④D. ①④分析:根据题意,通过全等三角形的判定与性质分别判断即可。

解答:①∵△ADE绕点A按逆时针方向旋转90°得到△ABG,∴AF=AG,故①正确;②∵CF=3BF,E为CD的中点,∴BF=DF=CG=BG,故②正确;③在△AFD与△GFC中,∵AD=AG,DF=CG,AF=FG,∴△AFD≌△GFC (SSS),∴∠AFC=∠AFD=90°+∠DFA,又∵∠AFC+∠AFD+∠DFA=180°,∴AF≠FG,故③错误;④由③得:AF≠FG,故④错误;故选A。

九年级数学上册知识点总结旋转

九年级数学上册知识点总结旋转

九年级数学上册知识点总结旋转一、内容概览九年级数学上册的知识点总结中,关于旋转的内容是个特别有意思的部分。

在这里我们为大家梳理一下这个章节的主要内容,让大家有个整体的把握。

首先旋转是个啥?简单来说旋转就是物体围绕一个点转动,在数学里这个点叫做旋转中心,转动的角度就是旋转角。

旋转不仅让图形有了动态美,还帮助我们理解很多生活中物体的运动规律。

比如门开关、风车的转动,都是旋转的例子。

那么在九年级数学上册中,我们主要学习哪些旋转相关的知识点呢?首先是旋转的基本性质,就像我们旋转一个物体时,它的每个点都会围绕旋转中心转动,形成一个固定的轨迹。

这个轨迹就是圆,所以旋转的一个重要性质就是点与圆的关系。

了解这一点,可以帮助我们更好地理解和计算旋转问题。

接下来我们会学习如何在平面内将一个图形旋转,这其中涉及到的知识点包括图形的变换和坐标系的应用。

学会了这些,我们就能轻松地画出旋转后的图形了。

还有关于旋转对称的知识也非常重要,一些图形在旋转后能够重合,这就是旋转对称。

了解这些知识,可以帮助我们更好地欣赏图形的美丽和数学中的对称美。

我们还会学习如何利用旋转来解决一些实际问题,比如几何图形的位置关系等。

这些都是需要我们掌握的重点内容,总之掌握了这些知识点不仅能更好地理解数学知识,也能在实际生活中灵活应用哦!那就让我们深入了解下每个具体的知识点吧!1. 旋转知识点在数学学习中的重要性九年级数学上册的知识点中,旋转是一个相当重要的部分。

你可能已经意识到,旋转在我们日常生活中无处不在,它不仅在数学学习中占据一席之地,更与我们生活的世界紧密相连。

想象一下你在玩转魔方的时候,每一个小方块都是在做旋转动作。

学习旋转知识点,就像是在学习如何“读懂”这个世界的一个小窍门。

不仅如此旋转知识点的学习还能帮助你培养空间想象能力,通过学习旋转,你可以更好地理解和想象一个物体在空间中的运动轨迹和位置变化。

这种能力不仅在解决数学问题时会派上用场,更能帮助你理解日常生活中的许多事物。

【中考数学专题】三大变换之旋转(三垂直模型)

【中考数学专题】三大变换之旋转(三垂直模型)

【中考数学专题】三大变换之旋转(三垂直模型)上一篇我们了解了关于手拉手模型的一些内容,同样作为模型,但“三垂直”的定位和“手拉手”并不相同,“手拉手”本身可以作为问题,而“三垂直”更多地作为一种方法来帮助解决问题,因而我们要了解的侧重点也会有所调整,依然有三点:(1)三垂直模型的构成;(2)什么条件下考虑构造三垂直;(3)构造三垂直能带来什么.01三垂直模型的构成△ABC是等腰直角三角形,一条直线过点C,分别过A、B向该直线作垂线,垂足分别为D、E,则△ADC≌△CEB.【小结】尝试用文字来描述三垂直模型:一条直线经过等腰直角三角形的直角顶点,过另外两个顶点分别向该直线作垂线,即可得三垂直模型.(等腰、直角、作垂直)【思考】“等腰、直角、作垂直”在证明全等中所发挥的作用是什么?等腰——可得一组对应边相等;直角+作垂直——可得两组角对应相等.【弱化条件】(1)如果没有等腰?依然可以构造三垂直,只不过得到的是三垂直相似,而非三垂直全等.如图,有△ADC∽△CEB.特别地,若点C为BD中点,则△ADC∽△CEB∽△ACB.(2)如果没有直角?直角与作垂直是配套的,最终的结果是有三个直角,其价值不在于它们是特殊角,而是它们都相等,所以即便没有直角,换成三个相等的角亦可,即“一线三等角”模型举个关于一线三等角的例题:2018遵义中考-对称章节里见过看个例子就可以了,今儿不聊一线三等角的事.02什么条件下构造三垂直?根据问题一的分析已经很明显了,可以没有等腰,但需要有直角,当然如果是等腰直角那就再好不过了.那看到有直角就考虑构造三垂直?当然也不是,起码问题得和直角相关,并且这个直角是斜着的.引例1-几何图中的构造三垂直引例2-坐标系中的构造三垂直【小结】尤其是在坐标系中,构造三垂直可以帮助计算点坐标或直线解析式,并且触发条件除了直角之外,也可以是其他确定的角,比如45°角.引例3-45°角构造三垂直全等【小结】设计坐标系中构造三垂直,尽可能让直角顶点是已知点,会简便计算,如上题中的第一种作图优于第二种.除了45°之外,坐标系中出现其他的确定角,亦可构造三垂直.引例4-已知角构造三垂直相似这其实本身不应该是一个问题,而是对前文的思考.三垂直是如何帮助我们解决问题的?构造三垂直全等,一方面可以得到相等线段,在几何图形中作等量代换.另外在坐标系中构造三垂直全等,可实现“化斜为直”,用水平或竖直线段刻画图中的点与线,会更方便计算.继续来看相关中考真题:2019宜昌中考2017苏州园区模拟2019十堰中考2019无锡中考2019沈阳中考2016河南中考(居然有备用卷)【写在最后】知其然,知其所以然;知其用,知其何以用.来源:有一点数学,作者刘岳。

【数学】九年级上数学旋转讲义供参考

【数学】九年级上数学旋转讲义供参考

【关键字】数学旋转第一部分:知识点1、旋转的定义:把一个平面图形绕平面内转动就叫做图形的旋转。

旋转的三要素:旋转;旋转;旋转旋转的基本性质:(1)对应点到的距离相等。

(2)每一组对应点与旋转中心所连线段的夹角相等都等于(3)旋转前后的两个图形是2、旋转作图基本步骤:明确旋转三要素:______________、______________、_______________找出原图形中的各顶点在新图形中的对应点的位置。

按原图形中各顶点的排列规律,将这些对应点连成一个新的图形。

3、中心对称:把一个图形绕着某一个点旋转,如果它能够与重合,那么就说关于这个点对称或中心对称。

这个点叫做对称中心。

性质:(1)中心对称的两个图形,对称点所连线段都经过,而且被对称中心。

(2)中心对称的两个图形是图形。

4、中心对称图形:把一个图形绕着某一个点旋转,如果旋转后的图形能够与完全重合,那么这个图形叫做中心对称图形。

中心对称、中心对称图形是两个不同的概念,它们既有区别又有联系。

区别:中心对称是针对图形而言的,而中心对称图形指是图形。

联系:把中心对称的两个图形看成一个“整体”,则成为。

把中心对称图形的两个部分看成“两个图形”,则它们。

5、利用尺规作关于中心对称的图形:明确对称中心的位置利用“对应点的连线被对称中心平分”的特性,分别找出原图形中各个关键点的对应点按原图形中各点的次序,将各对应点连接起来6、点(x,y)关于x轴对称后是(, )点(, )关于y轴对称后是(-x,y)点(x,y)关于原点对称后是(,)第二部分:例题剖析例题1、如图,根据要求画图.(1)把△ABC向右平移5个方格,画出平移的图形.(2)以点B为旋转中心,把△ABC顺时针方向旋转90度,画出旋转后的图形.例题2、如图,已知P是正方形ABCD内一点,PA=1,PB=2,PC=3,以点B为旋转中心,将△ABP 沿顺时针方向旋转,使点A与点C重合,这时P点旋转到G点.(1)请画出旋转后的图形,并说明此时△ABP以点B为旋转中心旋转了多少度?(2)求出PG的长度;(3)请你猜想△PGC的形状,并说明理由.第三部分:典型例题例题1、如图,在画有方格图的平面直角坐标系中,△ABC的三个顶点均在格点上.(1)填空:△ABC是________三角形,它的面积等于_______平方单位;(2)将△ACB绕点B顺时针方向旋转90°,在方格图中用直尺画出旋转后对应的△A′C′B,则A′点的坐标是(,),C′点的坐标是(,).【变式练习】1、如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(-2,-1)、B(-1,1)、C(0,-2).(1)点B关于坐标原点O对称的点的坐标为_______(2)将△ABC绕点C顺时针旋转90°,画出旋转后得到的△A1B1C;(3)求过点B1的反比率函数的解析式.2、如图,在由边长为的小正方形组成的方格纸中,有两个全等的三角形,即和.(1)请你指出在方格纸内如何运用平移、旋转变换,将重合到上;(2)在方格纸中将经过怎样的变换后可以与成中心对称图形?画出变换后的三角形并标出对称中心.例题2、如图,在Rt△ABC中,∠ABC=90°,点D在BC的延长线上,且BD=AB,过点B作BE⊥AC,与BD的垂线DE交于点E.(1)求证:△ABC≌△BDE;(2)△BDE可由△ABC旋转得到,利用尺规作出旋转中心O(保留作图痕迹,不写作法)【变式练习】1、如图,已知△ABC和△A″B″C″及点O.⑴画出△ABC关于点O对称的△A′B′C′;⑵若△A″B″C″与△A′B′C′关于点O′对称,请确定点O′的位置;⑶探究线段OO′与线段CC″之间的关系,并说明理由.例题3、△ABC是等边三角形,D是BC上一点,△ABD经旋转后到达△ACE的位置.(1)旋转中心是哪一点?(2)旋转了多少度?(3)若M 是AB 的中点,那么经过上述旋转后,点M 转到了什么位置?【变式练习】1、如图,四边形ABCD 的∠BAD=∠C=90º,AB=AD,AE ⊥BC 于E,BEA ∆旋转后能与DFA ∆重合。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、在平面直角坐标系中,已知抛物线 经过点A ,0)、B(0,3)、C(1,0)三点.
求:(1)求抛物线的解析式和顶顺时针旋转 ,与直线 交于点N.在直线DN上是否存在点M,使得∠MON= .若存在,求出点M的坐标;若不存在,请说明理由;
(3)点P、Q分别是抛物线 和直线 上的点,当四边形OBPQ是直角梯形时,求出点Q的坐标.
长方形AEFG的宽长 将长方形AEFG绕点A顺时针旋转15°得到长方形AMNH(如图2),这时BD与MN相交于点O.(1)求 的度数; (2)在图2中,求D、N两点间的距离;
(3)若把长方形AMNH绕点A再顺时针旋转15°得到长方形ARTZ,请问此时点B在矩形ARTZ的内部、外部、还是边上?并说明理由.
初中数学总复习——几何三大变化——旋转
轴对称、平移、旋转是平面几何的三大变换。旋转变换是指在同一平面内,将一个图形(含点、线、面)整体绕一固定点旋转一个定角,这样的图形变换叫做图形的旋转变换,简称旋转。旋转由旋转中心、旋转的方向和角度决定。经过旋转,旋转前后图形的形状、大小不变,只是位置发生改变;旋转前、后图形的对应点到旋转中心的距离相等,即旋转中心在对应点所连线段的垂直平分线上; 旋转前、后的图形对应点与旋转中心所连线段的夹角等于旋转角。
在初中数学以及日常生活中有着大量的旋转变换的知识,是中考数学的必考内容。
结合2011和2012年全国各地中考的实例,我们从下面九方面探讨旋转变换:(1)中心对称和中心对称图形;(2)构造旋转图形;(3)有关点的旋转;(4)有关直线(线段)的旋转;(5)有关等腰(边)三角形的旋转;(6)有关直角三角形的旋转;(7)有关平行四边形、矩形、菱形的旋转;(8)有关正方形的旋转;(9)有关其它图形的旋转。
为4;③ ∠AOB=150°;④ ; ⑤ .其中
正确的结论是【 】A.①②③⑤B.①②③④
C.①②③④⑤D.①②③
3、如图1,在等边△ABC中,点D是边AC的中点,点P是线段DC上的动点(点P与点C不重合),连结BP. 将△ABP绕点P按顺时针方向旋转α角(0°<α<180°),得到△A1B1P,连结AA1,射线AA1分别交射线PB、射线B1B于点E、F.
的度数是,线段OC的长为;
当直线l顺时针旋转550到直线l2的位置时(如图2),点A关于直线l2的对称点为D,则∠BOD
的度数是;
直线l顺时针旋转n0(0<n≤900),在这个运动过程中,点A关于直线l的对称点所经过的路径
长为(用含n的代数式表示)。
1、如图,在平面直角坐标系中,已知点A( ,0),B(0, ),如果将线段AB绕点B顺时针旋转90°至CB,那么点C的坐标是:( )A. B. C. D.
【六、有关直角三角形的旋转:】
例1、如图,把一个斜边长为2且含有300角的直角三角板ABC绕直角顶点C顺时针旋转900到△A1B1C,则在旋转过程中这个三角板扫过的图形的面积是:( )
A.πB. C. D.
例2、如图,P是等腰直角△ABC外一点,把BP绕点B顺时针旋转90°到BP′,已知∠AP′B=135°,P′A:P′C=1:3,则P′A:PB=:( )
(2)设点C关于点(4,2)的对称点是点P,若△PAB的面积等于5,求 值.
1、在直角坐标系中,已知点A(0,1),B(-4,4),将点B绕点A顺时针方向旋转90°得到点C;顶点在坐标原点的拋物线经过点B.(1)求抛物线的解析式和点C的坐标;
(2)抛物线上一动点P,设点P到x轴的距离为d1,点P到点A的距离为d2,试说明d2=d1+1;
A.(- ,-l)B.(-2,0)
C.(-l,- )或(-2,0)
D.(- ,-1)或(-2,0)
例2、在直角坐标系中,C(2,3),C′(-4,3),C″(2,1),D(-4,1),
A(0, )B( ,O)( 0).
(1)结合坐标系用坐标填空:点C与C′关于点对称; 点C与C″关于点对称; 点C与D关于点对称
(3)在图(2)中,若AB=AC=10,BC=12,当△DEF的面积等于△ABC的面积的 时,求线段EF的长.
2、如图,O是正△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:① △BO′A可以由△BOC绕点B逆时针旋转60°得到;② 点O与O′的距离
(3)① 设点P的坐标为(1, ),试写出b关于 的函数关系式和变量 的取值范围。
② 求出当△PBC为等腰三角形时点P的坐标。
【五、有关等腰(边)三角形的旋转:】
例1、如图1,在等边三角形ABC中,AB=6,D是BC上一点,且BC=3BD,△ABD绕点A旋转后得到△ACE,则CE的
长度为.
图1图2图3
请你以选取的格点为顶点再画出一个三角形,且分别满足下列条件:
(1)图①中所画的三角形与 ABC组成的图形是轴对称图形。
(2)图②中所画的三角形与 ABC组成的图形是中心对称图形。
(3)图③中所画的三角形与 ABC的面积相等,但不全等。
图①图②图③
【三、有关点的旋转:】
例1、如图,A( ,1),B(1, ).将△AOB绕点O旋转l500得到△A′OB′,则此时点A的对应点A′的坐标为:( )
A.1: B.1:2C. :2D.1:
例3、如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合.将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.
(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;
(3)在(2)的条件下,请探究当点P位于何处时,△PAC的周长有最小值,并求出△PAC的周长的最小值.
【四、有关直线(线段)的旋转:】
例1、平面直角坐标系中,O为坐标原点,点A的坐标为( ,1),将OA绕原点按逆时针方向旋转30°得OB,则点B的坐标为:( )A. (1, )B. ( -1, )C. (0,2)D. (2,0)
A.( , )B.( , )
C.( , )D.( , )
例3、如图,平行四边形ABCD绕点A逆时针旋转30°得到平行四边形AB′C′D′
(点B′与点B是对应点,点C′与点C是对应点,点D′与点D是对应点),
点B′恰好落在BC边上则∠C=度
1、(2012湖南怀化10分)如图1,四边形ABCD是边长为 的正方形,
例3、如图,四边形ABCD中,∠BAD=∠BCD=900,AB=AD,若四边形ABCD的面积是24cm2则AC长是cm.
1、如图,三个边长均为2的正方形重叠在一起,O1、O2是其中两个正方形的中心,则阴影部分的面积是.
2、如图所示,在7×6的正方形网格中,选取14个格点,以其中三个格点为顶点一画出 ABC,
(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=a,CQ= 时,
P、Q两点间的距离 (用含a的代数式表示).
1、孔明是一个喜欢探究钻研的同学,他在和同学们一起研究某条抛物线 的性质时,将一把直角三角板的直角顶点置于平面直角坐标系的原点O,两直角边与该抛物线交于A、B两点,请解答以下问题:
把一个图形绕着某一定点旋转一个角度360°/n(n为大于1的正整数)后,与初始的图形重合,这种图形就叫做旋转对称图形,这个定点就叫做旋转对称中心,旋转的角度叫做旋转角。
特别地,中心对称也是旋转对称的一种的特别形式。把一个图形绕着某一点旋转180°,如果它能与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形的对应点叫做关于中心的对称点。如果把一个图形绕某一点旋转180度后能与自身重合,这个图形是中心对称图形。
(1)如图1,当0°<α<60°时,在α角变化过程中,△BEF与△AEP始终存在关系(填“相似”或“全等”),并说明理由;
(2)如图2,设∠ABP=β. 当60°<α<180°时,在α角变化过程中,是否存在△BEF与△AEP全等?若存在,求出α与β之间的数量关系;若不存在,请说明理由;
(3)如图3,当α=60°时,点E、F与点B重合. 已知AB=4,设DP= ,△A1BB1的面积为S, 求S关于 的函数关系式.
3、如图,点A在 轴上,点B在 轴上,且OA=OB=1,经过原点O的直线L交线段AB于点C,过C作OC的垂线,与直线 =1相交于点P,现将直线L绕O点旋转,使交点C从A向B运动但C点必须在第一象限内,并记AC的长为 ,分析此图后,对下列问题作出探究:
(1)当△AOC和△BCP全等时,求出t的值。
(2)通过动手测量线段OC和CP的长来判断它们之间的大小关系?并证明你得到的结论。
图1 图2
【八、有关正方形的旋转:】
例1、如图,两个边长相等的正方形ABCD和EFGH,正方形EFGH的顶点E固定在正方形ABCD的对称中心位置,正方形EFGH绕点E顺时针方向旋转,设它们重叠部分的面积为S,旋转的角度为θ,S与θ的函数关系的大致图象是:( )
A. B. C. D.
例2、如图,E、F分别是正方形ABCD的边BC、CD上的点,BE=CF,连接AE、BF.
A. B. C. D.
2、小明、小辉两家所在位置关于学校中心对称。如果小明家距学校2公里,那么他们两家相距公里;
【二、构造旋转图形:】
例1、在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形.该小正方形的序号是:( )A.①B.②C.③D.④
例2、如图,方格纸中的每个小方格是边长为1个单位长度的正方形.① 画出将Rt△ABC向右平移5个单位长度后的Rt△A1B1C1;② 再将Rt△A1B1C1绕点C1顺时针旋转90°,画出旋转后的Rt△A2B2C1,并求出旋转过程中线段A1C1所扫过的面积(结果保留π).
【七、有关平行四边形、矩形、菱形的旋转:】
例1、 如图,在矩形ABCD中,AB=1,AD=2,将AD绕点A顺时针旋转,
相关文档
最新文档