2014石景山高考一模数学理(附答案)
2014年北京市石景山区高考一模数学试卷(理科)【解析版】

2014年北京市石景山区高考数学一模试卷(理科)一、选择题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.(5分)已知全集U=R,集合A={x|x2﹣2x<0},B={x|x﹣1≥0},那么A∩∁U B=()A.{x|0<x<1}B.{x|x<0}C.{x|x>2}D.{x|1<x<2} 2.(5分)下列函数中,在(0,+∞)内单调递减,并且是偶函数的是()A.y=x2B.y=x+1C.y=﹣lg|x|D.y=2x3.(5分)在的展开式中,x的系数为()A.10B.﹣10C.20D.﹣204.(5分)已知Rt△ABC中,∠C=90°,AB=5,BC=4,以BC为直径的圆交AB于D,则BD的长为()A.4B.C.D.5.(5分)在平面直角坐标系xOy中,抛物线x2=2py(p>0)上纵坐标为1的点到焦点的距离为3,则焦点到准线的距离为()A.2B.8C.D.46.(5分)已知某个三棱锥的三视图如图所示,其中正视图是等边三角形,侧视图是直角三角形,俯视图是等腰直角三角形,则此三棱锥的体积等于()A.B.C.D.7.(5分)阅读如图的程序框图,运行相应的程序,输出的结果为()A.﹣2B.C.﹣1D.28.(5分)已知动点P(x,y)在椭圆C:=1上,F为椭圆C的右焦点,若点M满足||=1且=0,则||的最小值为()A.B.3C.D.1二、填空题共6小题,每小题5分,共30分.9.(5分)已知命题p:∃x∈R,e x<0,则¬p是.10.(5分)在等比数列{a n}中,a1=2,a4=16,则数列{a n}的通项公式a n=,设b n=log2a n,则数列{b n}的前n项和S n=.11.(5分)已知圆C的极坐标方程为ρ=2,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,则圆C的直角坐标方程为,若直线l:kx+y+3=0与圆C相切,则实数k的值为.12.(5分)已知变量x,y满足约束条件,则的取值范围是.13.(5分)各大学在高考录取时采取专业志愿优先的录取原则.一考生从某大学所给的7个专业中,选择3个作为自己的第一、二、三专业志愿,其中甲、乙两个专业不能同时兼报,则该考生有种不同的填报专业志愿的方法(用数字作答).14.(5分)若存在实常数k和b,使得函数f(x)和g(x)对其定义域上的任意实数x分别满足:f(x)≥kx+b和g(x)≤kx+b,则称直线l:y=kx+b为f(x)和g(x)的“隔离直线”.已知函数f(x)=x2﹣1和函数g(x)=2lnx,那么函数f(x)和函数g(x)的隔离直线方程为.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13分)在△ABC中,角A,B,C的对边分别为a,b,c,且a<b<c,a=2b sin A.(Ⅰ)求角B的大小;(Ⅱ)若a=2,b=,求c边的长和△ABC的面积.16.(13分)经调查发现,人们长期食用含高浓度甲基汞的鱼类会引起汞中毒,其中罗非鱼体内汞含量比其它鱼偏高.现从一批数量很大的罗非鱼中随机地抽出15条作样本,经检测得各条鱼的汞含量的茎叶图(以小数点前的数字为茎,小数点后一位数字为叶)如图.《中华人民共和国环境保护法》规定食品的汞含量不得超过1.0ppm.(Ⅰ)检查人员从这15条鱼中,随机抽出3条,求3条中恰有1条汞含量超标的概率;(Ⅱ)若从这批数量很大的鱼中任选3条鱼,记ξ表示抽到的汞含量超标的鱼的条数.以此15条鱼的样本数据来估计这批数量很大的鱼的总体数据,求ξ的分布列及数学期望Eξ.17.(14分)如图,正三棱柱ABC﹣A1B1C1的底面边长是2,侧棱长是,D是AC的中点.(Ⅰ)求证:B1C∥平面A1BD;(Ⅱ)求二面角A1﹣BD﹣A的大小;(Ⅲ)在线段AA1上是否存在一点E,使得平面B1C1E⊥平面A1BD,若存在,求出AE的长;若不存在,说明理由.18.(13分)设函数f(x)=x2+ax﹣lnx(a∈R).(Ⅰ)若a=1,求函数f(x)的单调区间;(Ⅱ)若函数f(x)在区间(0,1]上是减函数,求实数a的取值范围;(Ⅲ)过坐标原点O作曲线y=f(x)的切线,证明:切点的横坐标为1.19.(14分)给定椭圆C:=1(a>b>0),称圆心在原点O,半径为的圆是椭圆C的“准圆”.若椭圆C的一个焦点为F(,0),其短轴上的一个端点到F的距离为.(Ⅰ)求椭圆C的方程和其“准圆”方程;(Ⅱ)点P是椭圆C的“准圆”上的动点,过点P作椭圆的切线l1,l2交“准圆”于点M,N.(ⅰ)当点P为“准圆”与y轴正半轴的交点时,求直线l1,l2的方程并证明l1⊥l2;(ⅱ)求证:线段MN的长为定值.20.(13分)对于数列{a n},把a1作为新数列{b n}的第一项,把a i或﹣a i(i=2,3,4,…,n)作为新数列{b n}的第i项,数列{b n}称为数列{a n}的一个生成数列.例如,数列1,2,3,4,5的一个生成数列是1,﹣2,﹣3,4,5.已知数列{b n}为数列{}(n∈N*)的生成数列,S n为数列{b n}的前n项和.(Ⅰ)写出S3的所有可能值;(Ⅱ)若生成数列{b n}满足S3n=(1﹣),求数列{b n}的通项公式;(Ⅲ)证明:对于给定的n∈N*,S n的所有可能值组成的集合为{x|x=,k∈N*,k≤2n﹣1}.2014年北京市石景山区高考数学一模试卷(理科)参考答案与试题解析一、选择题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.(5分)已知全集U=R,集合A={x|x2﹣2x<0},B={x|x﹣1≥0},那么A∩∁U B=()A.{x|0<x<1}B.{x|x<0}C.{x|x>2}D.{x|1<x<2}【解答】解:由A中的不等式变形得:x(x﹣2)<0,解得:0<x<2,即A={x|0<x<2},由B中的不等式解得:x≥1,即B={x|x≥1},∵全集U=R,∴∁U B={x|x<1},则A∩(∁U B)={x|0<x<1}.故选:A.2.(5分)下列函数中,在(0,+∞)内单调递减,并且是偶函数的是()A.y=x2B.y=x+1C.y=﹣lg|x|D.y=2x【解答】解:A.y=x2在(0,+∞)内单调递增,是偶函数,不满足条件,故A 不选;B.y=x+1在(0,+∞)内单调递增,不是偶函数,不满足条件,故B不选;C.y=﹣lg|x|在(0,+∞)内单调递减,是偶函数,满足条件,故C选;D.y=2x在(0,+∞)内单调递增,不是偶函数,不满足条件,故D不选,故选:C.3.(5分)在的展开式中,x的系数为()A.10B.﹣10C.20D.﹣20【解答】解:的二项展开式的通项为T r+1=•=•(﹣1)r x10﹣3r,令10﹣3r=1,得r=3,故x项的系数为•(﹣1)3=﹣10,故选:B.4.(5分)已知Rt△ABC中,∠C=90°,AB=5,BC=4,以BC为直径的圆交AB于D,则BD的长为()A.4B.C.D.【解答】解:Rt△ABC中,∵∠C=90°,AB=5,BC=4,∴AC==3,∵以BC为直径的圆交AB于D,∴AC是圆的切线,∴AC2=AD•AB,∴AD==,∴BD=5﹣=.故选:D.5.(5分)在平面直角坐标系xOy中,抛物线x2=2py(p>0)上纵坐标为1的点到焦点的距离为3,则焦点到准线的距离为()A.2B.8C.D.4【解答】解:∵抛物线x2=2py(p>0)的准线方程为:y=﹣,∴由抛物线的定义得:1﹣(﹣)=3,解得:p=4.即焦点到准线的距离为4,故选:D.6.(5分)已知某个三棱锥的三视图如图所示,其中正视图是等边三角形,侧视图是直角三角形,俯视图是等腰直角三角形,则此三棱锥的体积等于()A.B.C.D.【解答】解:由三视图知几何体是一个侧面与底面垂直的三棱锥,底面是斜边上的高是1的直角三角形,则两条直角边是,斜边是2,∴底面的面积是=1,与底面垂直的侧面是一个边长为2的正三角形,∴三棱锥的高是,∴三棱锥的体积是故选:B.7.(5分)阅读如图的程序框图,运行相应的程序,输出的结果为()A.﹣2B.C.﹣1D.2【解答】解:根据题意,程序框图运行的程序为,i=0,A=2,i=1,A=1﹣=,i=2,A=1﹣2=﹣1;i=3,A=1﹣(﹣1)=2,i=4,A=1﹣=,…根据规律,总结得A值是2、、﹣1,并且以3为周期的关于i的函数∵i=2015,∴A=﹣1,i=2015>2014,输出A:﹣1;故选:C.8.(5分)已知动点P(x,y)在椭圆C:=1上,F为椭圆C的右焦点,若点M满足||=1且=0,则||的最小值为()A.B.3C.D.1【解答】解:依题意知,点M在以F(3,0)为圆心,1为半径的圆上,PM为圆的切线,∴|PM|2=|PF|2﹣|MF|2,而|MF|=1,∴当PF最小时,切线长PM 最小.由图知,当点P为右顶点(5,0)时,|PF|最小,最小值为:5﹣3=2.此时|PM|==.故选:A.二、填空题共6小题,每小题5分,共30分.9.(5分)已知命题p:∃x∈R,e x<0,则¬p是∀x∈R,e x≥0.【解答】解:∵命题p:∃x∈R,e x<0是特称命题,∴¬p:∀x∈R,e x≥0,故答案为:∀x∈R,e x≥010.(5分)在等比数列{a n}中,a1=2,a4=16,则数列{a n}的通项公式a n=2n,设b n=log2a n,则数列{b n}的前n项和S n=.【解答】解:设等比数列{a n}的公比q,则q3===8,解得q=2,∴a n=a1q n﹣1=2×2n﹣1=2n,∴b n=log2a n=log22n=n,∴b1=1,∵b n=n是首项为1,公差为1的等差数列,∴S n==故答案为:2n;11.(5分)已知圆C的极坐标方程为ρ=2,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,则圆C的直角坐标方程为x2+y2=4,若直线l:kx+y+3=0与圆C相切,则实数k的值为.【解答】解:以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,根据ρ2=x2+y2,则圆C的直角坐标方程为x2+y2=4.又因为直线l:kx+y+3=0与圆C相切,则圆心(0,0)到直线kx+y+3=0的距离d==2=r,解得:.故应填:x2+y2=4;.12.(5分)已知变量x,y满足约束条件,则的取值范围是.【解答】解:满足约束条件的可行域,如下图所示:又∵表示的是可行域内一点与原点连线的斜率当x=,y=时,有最小值;当x=1,y=6时,有最大值6故答案为:13.(5分)各大学在高考录取时采取专业志愿优先的录取原则.一考生从某大学所给的7个专业中,选择3个作为自己的第一、二、三专业志愿,其中甲、乙两个专业不能同时兼报,则该考生有180种不同的填报专业志愿的方法(用数字作答).【解答】解:甲、乙都不选时,有=60种;甲、乙两个专业选1个时,有=120种,根据分类计数原理,可得共有60+120=180种不同的填报专业志愿的方法.故答案为:180.14.(5分)若存在实常数k和b,使得函数f(x)和g(x)对其定义域上的任意实数x分别满足:f(x)≥kx+b和g(x)≤kx+b,则称直线l:y=kx+b为f(x)和g(x)的“隔离直线”.已知函数f(x)=x2﹣1和函数g(x)=2lnx,那么函数f(x)和函数g(x)的隔离直线方程为y=2x﹣2.【解答】解:作出函数f(x)=x2﹣1和函数g(x)=2lnx的图象,由图象可知,两个函数的交点坐标为(1,0),要使f(x)≥kx+b和g(x)≤kx+b,则y=kx+b,必须是两个函数在(1,0)处的公共切线,即k+b=0,解得b=﹣k,函数f′(x)=2x,即k=f′(1)=2,∴b=﹣2,即隔离直线方程为y=2x﹣2,故答案为:y=2x﹣2三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13分)在△ABC中,角A,B,C的对边分别为a,b,c,且a<b<c,a=2b sin A.(Ⅰ)求角B的大小;(Ⅱ)若a=2,b=,求c边的长和△ABC的面积.【解答】解:(Ⅰ)∵a=2b sin A,∴sin A=2sin A sin B,∵0<A<π,∴sin A≠0,∴sin B=,∵0<B<π,且a<b<c,∴B=60°;(Ⅱ)∵a=2,b=,cos B=,∴由余弦定理得:()2=22+c2﹣2×2×c×,即c2﹣2c﹣3=0,解得:c=3或c=﹣1(舍),∴c=3,=ac sin B=×2×3×=.则S△ABC16.(13分)经调查发现,人们长期食用含高浓度甲基汞的鱼类会引起汞中毒,其中罗非鱼体内汞含量比其它鱼偏高.现从一批数量很大的罗非鱼中随机地抽出15条作样本,经检测得各条鱼的汞含量的茎叶图(以小数点前的数字为茎,小数点后一位数字为叶)如图.《中华人民共和国环境保护法》规定食品的汞含量不得超过1.0ppm.(Ⅰ)检查人员从这15条鱼中,随机抽出3条,求3条中恰有1条汞含量超标的概率;(Ⅱ)若从这批数量很大的鱼中任选3条鱼,记ξ表示抽到的汞含量超标的鱼的条数.以此15条鱼的样本数据来估计这批数量很大的鱼的总体数据,求ξ的分布列及数学期望Eξ.【解答】(本小题满分13分)解:(Ⅰ)记“15条鱼中任选3条恰好有1条鱼汞含量超标”为事件A,则,∴15条鱼中任选3条恰好有1条鱼汞含量超标的概率为.…(4分)(Ⅱ)依题意可知,这批罗非鱼中汞含量超标的鱼的概率,…(5分)ξ可能取0,1,2,3.…(6分)则,,,.…(10分)∴ξ的分布列如下:…(12分)∴.…(13分)17.(14分)如图,正三棱柱ABC﹣A1B1C1的底面边长是2,侧棱长是,D是AC的中点.(Ⅰ)求证:B1C∥平面A1BD;(Ⅱ)求二面角A1﹣BD﹣A的大小;(Ⅲ)在线段AA1上是否存在一点E,使得平面B1C1E⊥平面A1BD,若存在,求出AE的长;若不存在,说明理由.【解答】(本小题满分14分)(Ⅰ)证明:连结AB1交A1B于M,连结B1C,DM,因为三棱柱ABC﹣A1B1C1是正三棱柱,所以四边形AA1B1B是矩形,所以M为A1B的中点.因为D是AC的中点,所以MD是三角形AB1C的中位线,…(2分)所以MD∥B1C.…(3分)因为MD⊂平面A1BD,B1C⊄平面A1BD,所以B1C∥平面A1BD.…(4分)(Ⅱ)解:作CO⊥AB于O,所以CO⊥平面ABB1A1,所以在正三棱柱ABC﹣A1B1C1中,如图建立空间直角坐标系O﹣xyz.因为AB=2,,D是AC的中点.所以A(1,0,0),B(﹣1,0,0),,,…(5分)所以,,.设是平面A 1BD的法向量,所以即令,则y=2,z=3,所以是平面A 1BD的一个法向量.…(6分)由题意可知是平面ABD的一个法向量,…(7分)所以.…(8分)所以二面角A1﹣BD﹣A的大小为.…(9分)(Ⅲ)解:设E(1,x,0),则,设平面B1C1E的法向量,所以即令,则x 1=3,,,…(12分)又,即,解得,所以存在点E,使得平面B1C1E⊥平面A1BD且.…(14分)18.(13分)设函数f(x)=x2+ax﹣lnx(a∈R).(Ⅰ)若a=1,求函数f(x)的单调区间;(Ⅱ)若函数f(x)在区间(0,1]上是减函数,求实数a的取值范围;(Ⅲ)过坐标原点O作曲线y=f(x)的切线,证明:切点的横坐标为1.【解答】解:(Ⅰ)当a=1时,f(x)=x2+x﹣lnx(x>0),∴,当,∴f(x)的单调递减区间为,单调递增区间.(Ⅱ),∵f(x)在区间(0,1]上是减函数,∴f'(x)≤0对任意x∈(0,1]恒成立,即对任意x∈(0,1]恒成立,∴对任意x∈(0,1]恒成立,令,∴a≤g(x)min,易知g(x)在(0,1]单调递减,∴g(x)min=g(1)=﹣1.∴a≤﹣1.(Ⅲ)设切点为M(t,f(t)),,切线的斜率,又切线过原点,,即:t2+at﹣lnt=2t2+at﹣1,∴t2﹣1+lnt=0,令g(t)=t2﹣1+lnt,,∴g(t)在(0,+∞)上单调递增,又g(1)=0,所以方程t2﹣1+lnt=0有唯一解t=1.综上,切点的横坐标为1.19.(14分)给定椭圆C:=1(a>b>0),称圆心在原点O,半径为的圆是椭圆C的“准圆”.若椭圆C的一个焦点为F(,0),其短轴上的一个端点到F的距离为.(Ⅰ)求椭圆C的方程和其“准圆”方程;(Ⅱ)点P是椭圆C的“准圆”上的动点,过点P作椭圆的切线l1,l2交“准圆”于点M,N.(ⅰ)当点P为“准圆”与y轴正半轴的交点时,求直线l1,l2的方程并证明l1⊥l2;(ⅱ)求证:线段MN的长为定值.【解答】(Ⅰ)解:∵椭圆C的一个焦点为F(,0),其短轴上的一个端点到F的距离为.∴,,∴=1,∴椭圆方程为,∴准圆方程为x2+y2=4.(Ⅱ)证明:(ⅰ)∵准圆x2+y2=4与y轴正半轴的交点为P(0,2),设过点P(0,2)且与椭圆相切的直线为y=kx+2,联立得(1+3k2)x2+12kx+9=0.∵直线y=kx+2与椭圆相切,∴△=144k2﹣4×9(1+3k2)=0,解得k=±1,∴l1,l2方程为y=x+2,y=﹣x+2.∵,∴l1⊥l2.(ⅱ)①当直线l1,l2中有一条斜率不存在时,不妨设直线l1斜率不存在,则l1:,当l1:时,l1与准圆交于点,此时l2为y=1(或y=﹣1),显然直线l1,l2垂直;同理可证当l1:时,直线l1,l2垂直.②当l1,l2斜率存在时,设点P(x0,y0),其中.设经过点P(x0,y0)与椭圆相切的直线为y=t(x﹣x0)+y0,∴由得.由△=0化简整理得,∵,∴有.设l1,l2的斜率分别为t1,t2,∵l1,l2与椭圆相切,∴t1,t2满足上述方程,∴t1•t2=﹣1,即l1,l2垂直.综合①②知:∵l1,l2经过点P(x0,y0),又分别交其准圆于点M,N,且l1,l2垂直.∴线段MN为准圆x2+y2=4的直径,|MN|=4,∴线段MN的长为定值.20.(13分)对于数列{a n},把a1作为新数列{b n}的第一项,把a i或﹣a i(i=2,3,4,…,n)作为新数列{b n}的第i项,数列{b n}称为数列{a n}的一个生成数列.例如,数列1,2,3,4,5的一个生成数列是1,﹣2,﹣3,4,5.已知数列{b n}为数列{}(n∈N*)的生成数列,S n为数列{b n}的前n项和.(Ⅰ)写出S3的所有可能值;(Ⅱ)若生成数列{b n}满足S3n=(1﹣),求数列{b n}的通项公式;(Ⅲ)证明:对于给定的n∈N*,S n的所有可能值组成的集合为{x|x=,k∈N*,k≤2n﹣1}.【解答】解:(Ⅰ)由已知,,,∴,由于,∴S3可能值为.…(3分)(Ⅱ)∵,当n=1时,,当n≥2时,,∴,n∈N*,…(5分)∵{b n}是的生成数列,∴;;;∴,在以上各种组合中,当且仅当时,才成立.∴.…(8分)(Ⅲ)证明:共有2n﹣1种情形.,即,又,分子必是奇数,满足条件的奇数x共有2n﹣1个.…(10分)设数列{a n}与数列{b n}为两个生成数列,数列{a n}的前n项和为S n,数列{b n}的前n项和为T n,从第二项开始比较两个数列,设第一个不相等的项为第k项.由于,不妨设a k>0,b k<0,则=,所以,只有当数列{a n}与数列{b n}的前n项完全相同时,才有S n=T n.…(12分)∴共有2n﹣1种情形,其值各不相同.∴S n可能值必恰为,共2n﹣1个.即S n所有可能值集合为.…(13分)。
2014北京市石景山区高三(一模)数学(理)

20.( 13 分)对于数列 {a n} ,把 a1 作为新数列 {b n} 的第一项,把 ai 或﹣ ai ( i=2 , 3,4,…, n)作为新数列 {b n } 的第
4 / 15
i 项,数列 {b n} 称为数列 {a n} 的一个生成数列.例如,数列 1,2,3,4,5 的一个生成数列是 1,﹣ 2,﹣ 3,4,5.已 知数列 {b n} 为数列 { } ( n∈N* )的生成数列, Sn 为数列 {b n} 的前 n 项和.
x 分别满足: f ( x)≥ kx+b f ( x)=x 2﹣ 1 和函数 g( x)
=2lnx ,那么函数 f ( x)和函数 g( x)的隔离直线方程为
.
三、解答题共 6 小题,共 80 分.解答应写出文字说明,演算步骤或证明过程.
15.( 13 分)在△ ABC中,角 A, B, C的对边分别为 a, b, c,且 a< b< c, a=2bsinA .
7 个专业中,选择 3 个作为
自己的第一、二、三专业志愿,其中甲、乙两个专业不能同时兼报,则该考生有
种不同的填报专业志愿的方法
(用数字作答) .
14.( 5 分)若存在实常数 k 和 b,使得函数 f ( x)和 g( x)对其定义域上的任意实数 和 g( x)≤ kx+b ,则称直线 l : y=kx+b 为 f ( x)和 g( x)的“隔离直线”.已知函数
2014 北京市石景山区高三(一模)数
学(理)
一、选择题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,选出符合题目要求的一项.
1.( 5 分)已知全集 U=R,集合 A={x|x 2﹣2x< 0} ,B={x|x ﹣1≥ 0} ,那么 A∩ ?UB=(
2014年高三一模数学(文)北京市石景山区试题Word版带答案

C
………………3 分
H
A
B
高三数学(文科)试卷第 8页(共 13页)
又 EF 平面 ABC , BG 平面 ABC . EF ∥平面 ABC . (Ⅱ) ABC 为等边三角形, G 为 AC 的中点, BG AC . 又 DC 平面 ABC , BG 平面 ABC . DC BG , 又 AC DC C , BG 平面 ADC . EF ∥ BG , EF 平面 ADC , EF 平面 ADE , 平面 ADE 平面 ADC . (Ⅲ)取 BC 中点 H ,连结 AH . AB BC AC ,
高三数学(文科)试卷第 4页(共 13页)
17.(本小题满分 14 分)
如图,已知四棱锥 A BCDE , AB BC AC BE 1 , CD 2 ,
CD 平面 ABC , BE ∥ CD , F 为 AD 的中点.
D
(Ⅰ)求证: EF ∥平面 ABC ;
(Ⅱ)求证:平面 ADE 平面 ACD ; (Ⅲ)求四棱锥 A BCDE 的体积.
2014 年石景山区高三统一测试
数学(文科)
本试卷共 6 页,满分为 150 分,考试时间为 120 分钟.请务必将答案答在答题卡上, 在试卷上作答无效,考试结束后上交答题卡.
第Ⅰ卷(选择题 共 40 分)
一、选择题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,选出符合题
目要求的一项.
(a1,a2 ),( a1 ,a3),( a1 ,b1) ,( a1 ,b2 ) ,( a2 ,a3) , ( a2 ,b1),( a2 ,b2 ),( a3 ,b1) ,( a3 ,b2 ) ,( b1 ,b2 ) 共10 个, ………………10 分 其中,至少有一个在[90,100) 之间的基本事件有 7 个, 故至少有一份分数在[90,100) 之间的概率是 7 0.7 . ……………13 分
【2014石景山一模】北京市石景山区2014届高三3月统一测试 数学(文)试题 Word版含答案

2014年石景山区高三统一测试数学(文科)本试卷共6页,满分为150分,考试时间为120分钟.请务必将答案答在答题卡上,在试卷上作答无效,考试结束后上交答题卡.第Ⅰ卷(选择题 共40分)一、选择题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知全集U =R ,集合{}2|20A x x x =-<,{}|10B x x =-≥,那么U A B = ð( )A .{}|01x x <<B .{}|0x x <C .{}|2x x >D .{}|12x x <<2.下列函数中,在(0)+∞,内单调递减,并且是偶函数的是( ) A .2y x = B .1y x =+ C .lg ||y x =-D .2x y =3.直线:40l x -=与圆22:+=4C x y 的位置关系是( )A .相交B .相切C .相离D .无法确定4.双曲线22221x y a b-=(00)a b >>,的渐近线方程是2y x =±,则其离心率为( )A .5B C D5.下列函数中周期为π且图象关于直线3x π=对称的函数是( ) A .2sin()23x y π=+B .2sin(2)6y x π=-C .2sin(2)6y x π=+D .2sin()23x y π=-6.正三棱柱的左视图如右图所示,则该正三棱柱的侧面积为(7.阅读右面的程序框图,运行相应的程序, 输出的结果为( )8.已知动点()P x y ,在椭圆22:12516x y C +=上,F 为椭圆C 的右焦点,若点M 满足||1MF = 且0MP MF ⋅=,则||PM 的最小值为( )A B .3C .125D .1第Ⅱ卷(非选择题 共110分)A .4B .12CD .24A .2-B .12C .1-D .2二、填空题共6小题,每小题5分,共30分. 9.i 是虚数单位,计算41ii+=+_________. 10.在等比数列}{n a 中,14=2=16a a ,,则数列}{n a 的通项公式=n a _____________,设2log n n b a =,则数列}{n b 的前n 项和=n S _____________. 11.已知命题p :0x x e ∃∈<R ,,则p ⌝是____________________.12.已知变量x y ,满足约束条件20170x y x x y -+≤⎧⎪≥⎨⎪+-≤⎩,,,则2z x y =+的最大值是_________. 13.一艘轮船在匀速行驶过程中每小时的燃料费与它速度的平方成正比,除燃料费外其它费用为每小时96元. 当速度为10海里/小时时,每小时的燃料费是6元. 若匀速行驶10海里,当这艘轮船的速度为___________海里/小时时,费用总和最小. 14.若存在实常数k 和b ,使得函数()f x 和()g x 对其定义域内的任意实数x 分别满足:()f x kx b ≥+和()g x kx b ≤+,则称直线:l y kx b =+为()f x 和()g x 的“隔离直线”.已知函数2()1f x x =-和函数()2ln g x x =,那么函数()f x 和函数()g x 的隔离直线方程为_________.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(本小题满分13分)在△ABC 中,角A B C ,,的对边分别为a b c ,,,且a b c <<2sin b A =. (Ⅰ)求角B 的大小;(Ⅱ)若2a =,b =,求c 边的长和△ABC 的面积.16.(本小题满分13分)某校高一(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如下图.(Ⅰ)求分数在[5060),的频率及全班人数; (Ⅱ)求分数在[8090),之间的频数,并计算频率分布直方图中[8090),间矩形的高;(Ⅲ)若要从分数在[80100),之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,至少有一份分数在[90100),之间的概率.17.(本小题满分14分)如图,已知四棱锥A BCDE -,1AB BC AC BE ====,2CD =,CD ⊥平面ABC ,BE ∥CD ,F 为AD 的中点.(Ⅰ)求证:EF ∥平面ABC ; (Ⅱ)求证:平面ADE ⊥平面ACD ; (Ⅲ)求四棱锥A BCDE -的体积.18.(本小题满分13分)已知函数22()2ln (0)f x x a x a =->.(Ⅰ)若()f x 在1x =处取得极值,求实数a 的值; (Ⅱ)求函数()f x 的单调区间;(Ⅲ)若()f x 在[1]e ,上没有零点,求实数a 的取值范围.19.(本小题满分14分)给定椭圆C :22221(0)x y a b a b+=>>,称圆心在原点O的圆是椭圆C 的“准圆”.若椭圆C的一个焦点为0)F ,其短轴上的一个端点到F 的CDBAF E(Ⅰ)求椭圆C 的方程和其“准圆”方程;(Ⅱ)点P 是椭圆C 的“准圆”上的动点,过点P 作椭圆的切线12l l ,交“准圆”于点M N ,. (ⅰ)当点P 为“准圆”与y求直线12l l ,的方程并证明12l l ⊥; (ⅱ)求证:线段MN 的长为定值.20.(本小题满分13分)对于数列{}n a ,把1a 作为新数列{}n b 的第一项,把i a 或i a -(234i n = ,,,,)作为新数列{}n b 的第i 项,数列{}n b 称为数列{}n a 的一个生成数列.例如,数列12345,,,,的一个生成数列是12345--,,,,.已知数列{}n b 为数列1{}()2n n *∈N 的生成数列,n S 为数列{}n b 的前n 项和. (Ⅰ)写出3S 的所有可能值;(Ⅱ)若生成数列{}n b 满足的通项公式为1312(1312nn nn k b k n k ⎧=+⎪⎪=∈⎨⎪-≠+⎪⎩N),,,,,求n S .2014年石景山区高三统一测试高三数学(文科)参考答案一、选择题:本大题共8个小题,每小题5分,共40分.二、填空题:本大题共6个小题,每小题5分,共30分.两空的题目,第一空2分,第二空3分. 三、解答题:本大题共6个小题,共80分.应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分) 解:2sinb A =,2sin sin A B A =, ………………2分因为0A π<<,所以sin 0A ≠, 所以sin B =………………4分 因为0B π<<,且a b c <<,所以60B = . ………………6分 (Ⅱ)因为2a =,b =,所以由余弦定理得22212222c c =+-⨯⨯⨯,即2230c c --=, ………………8分解得3c =或1c =-(舍),所以c 边的长为3. ………………10分11=sin 2322ABC S ac B ∆=⨯⨯=. ………………13分 16.(本小题满分13分)解:(Ⅰ)分数在[5060),的频率为0.008100.08⨯=, ………………2分 由茎叶图知:分数在[5060),之间的频数为2,所以全班人数为2250.08=. ………………4分 (Ⅱ)分数在[8090),之间的频数为25223-=; 频率分布直方图中[8090),间的矩形的高为3100.01225÷=.……………7分 (Ⅲ)将[8090),之间的3个分数编号为123a a a ,,, [90100),之间的2个分数编号为12b b ,, ………………8分在[80100),之间的试卷中任取两份的基本事件为: 1213111223()()()()()a a a a a b a b a a ,,,,,,,,,,2122313212()()()()()a b a b a b a b b b ,,,,,,,,,共10个, ………………10分 其中,至少有一个在[90100),之间的基本事件有7个, 故至少有一份分数在[90100),之间的概率是70.710=. ……………13分 17.(本小题满分14分)解:(Ⅰ)取AC 中点G ,连结FG ,BG ,F G ,分别是AD ,AC 的中点, FG ∴∥CD ,且112FG DC ==. BE ∥CD , ………………2分 FG ∴与BE 平行且相等.∴四边形BEFG 为平行四边形,EF ∴∥BG . ………………3分又EF ⊄平面ABC ,BG ⊂平面ABC .CDBAFEGHEF ∴∥平面ABC . ………………4分(Ⅱ)ABC ∆ 为等边三角形,G 为AC 的中点,BG AC ∴⊥. ………………5分又DC ⊥平面ABC ,BG ⊂平面ABC .DC BG ∴⊥, ………………6分又AC DC C = ,BG ∴⊥平面ADC . ………………7分EF ∥BG ,EF ∴⊥平面ADC , ………………8分 EF ⊂ 平面ADE ,∴平面ADE ⊥平面ADC . ………………10分(Ⅲ)取BC 中点H ,连结AH .AB BC AC == , AH BC ∴⊥.DC ⊥ 平面ABC ,AH ⊂平面ABC DC AH ∴⊥,又BC DC C = ,∴AH ⊥平面BCDE ,AH ∴是四棱锥A BCDE -的高,且AH =………………12分11(12)1332BCDE V S AH +⨯=⋅=⨯=梯形………………14分 18.(本小题满分13分)解:(Ⅰ)22()2ln (0)f x x a x a =->的定义域为(0)+∞,. ………………1分 22()2a f x x x '=-2222x a x-=2()()x a x a x +-=. ………………2分()f x 在1x =处取得极值,(1)0f '∴=,解得1a =或1a =-(舍). ………………3分当1a =时,()01x ∈,,()0f x '<;()1x ∈+∞,,()0f x '>, 所以a 的值为1. ………………4分 (Ⅱ)令()0f x '=,解得x a =或x a =-(舍). ………………5分当x 在(0)+∞,内变化时,()()f x f x ',的变化情况如下:由上表知()f x 的单调递增区间为()a +∞,,单调递减区间为(0)a ,. ……………8分 (Ⅲ)要使()f x 在[1]e ,上没有零点,只需在[1]e ,上min ()0f x >或max ()0f x <, 又(1)10f =>,只须在区间[1]e ,上min ()0f x >. (ⅰ)当a e ≥时,()f x 在区间[1]e ,上单调递减, 22min ()()20f x f e e a ==->,解得 02a <<与a e ≥矛盾. ………………10分 (ⅱ) 当1a e <<时,()f x 在区间[1)a ,上单调递减,在区间(]a e ,上单调递增, 2min ()()(12ln )0f x f a a a ==->,解得0a <<所以1a <<. ………………12分(ⅲ)当01a <≤时,()f x 在区间[1]e ,上单调递增,min ()(1)0f x f =>,满足题意. 综上,a的取值范围为0a << ………………13分19.(本小题满分14分) 解:(Ⅰ)1c a b ==∴= ,∴椭圆方程为2213x y +=, ………………2分准圆方程为224x y +=. ………………3分(Ⅱ)(ⅰ)因为准圆224x y +=与y 轴正半轴的交点为(02)P ,, 设过点(02)P ,且与椭圆相切的直线为2y kx =+, 所以由22213y kx x y =+⎧⎪⎨+=⎪⎩,,得22(13)1290k x kx +++=. 因为直线2y kx =+与椭圆相切,所以2214449(13)0k k ∆=-⨯+=,解得1k =±, ………………6分所以12l l ,方程为22y x y x =+=-+,. ………………7分 121l l k k ⋅=- ,12l l ∴⊥. ………………8分(ⅱ)①当直线12l l ,中有一条斜率不存在时,不妨设直线1l 斜率不存在, 则1l:x =当1l:x =1l与准圆交于点1)1)-,此时2l 为1y =(或1y =-),显然直线12l l ,垂直; 同理可证当1l:x =12l l ,垂直. ………………10分②当12l l ,斜率存在时,设点00(,)P x y ,其中22004x y +=. 设经过点00()P x y ,与椭圆相切的直线为00()y t x x y =-+, 所以由0022()13y t x x y x y =-+⎧⎪⎨+=⎪⎩,, 得 2220000(13)6()3()30t x t y tx x y tx ++-+--=. 由0∆=化简整理得 2220000(3)210x t x y t y -++-=,因为22004x y +=,所以有2220000(3)2(3)0x t x y t x -++-=.设12l l ,的斜率分别为12t t ,,因为12l l ,与椭圆相切, 所以12t t ,满足上述方程2220000(3)2(3)0x t x y t x -++-=, 所以121t t ⋅=-,即12l l ,垂直. ………………12分 综合①②知:因为12l l ,经过点00()P x y ,,又分别交其准圆于点M N ,,且12l l , 垂直.所以线段MN 为准圆224x y +=的直径,||4MN =,所以线段MN 的长为定值. ………………14分20.(本小题满分13分) 解:(Ⅰ)由已知,112b =,1||(2)2n n b n n *=∈≥N ,, ∴231148b b =±=±,, 由于11171115111311112488248824882488++=+-=-+=--=,,,, ∴3S 可能值为13578888,,,. ………………5分(Ⅱ)∵1312(1312nn nn k b k n k ⎧=+⎪⎪=∈⎨⎪-≠+⎪⎩N),,,,. ∴3()n k k *=∈N 时,12345632313111111111()()()222222222n k k k S --=--+--++-- 14322531363111111111()()()222222222k k k --=+++-+++-+++ 32333333111111[1()][1()][1()]222222*********k k k ---=-----38111111[1()]()[1()]7824872k k =---=-. 11[1()]72n n S ∴=-.31()n k k =+∈N 时,1n n n S S a -=+111111[1()][15()]72272n n n -=-+=+ ;32()n k k =+∈N 时,11n n n S S a ++=-1111111[1()][13()]72272n n n ++=-+=+ ;*11(1)3()7215(1)31()7213(1)3 2.()72n n n n n k k S n k k n k k ⎧-=∈⎪⎪⎪∴=+=+∈⎨⎪⎪+=+∈⎪⎩N N N ,,,,, ………………13分【注:若有其它解法,请酌情给分】。
2014北京市石景山区高三(一模)数 学(理)

2014北京市石景山区高三(一模)数学(理)一、选择题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.(5分)已知全集U=R,集合A={x|x2﹣2x<0},B={x|x﹣1≥0},那么A∩∁U B=()A.{x|0<x<1} B.{x|x<0} C.{x|x>2} D.{x|1<x<2}2.(5分)下列函数中,在(0,+∞)内单调递减,并且是偶函数的是()A.y=x2B.y=x+1 C.y=﹣lg|x| D.y=2x3.(5分)在的展开式中,x的系数为()A.10 B.﹣10 C.20 D.﹣204.(5分)已知Rt△ABC中,∠C=90°,AB=5,BC=4,以BC为直径的圆交AB于D,则BD的长为()A.4 B.C.D.5.(5分)在平面直角坐标系xOy中,抛物线x2=2py(p>0)上纵坐标为1的点到焦点的距离为3,则焦点到准线的距离为()A.2 B.8 C.D.46.(5分)已知某个三棱锥的三视图如图所示,其中正视图是等边三角形,侧视图是直角三角形,俯视图是等腰直角三角形,则此三棱锥的体积等于()A.B.C.D.7.(5分)阅读如图的程序框图,运行相应的程序,输出的结果为()A.﹣2 B.C.﹣1 D.28.(5分)已知动点P(x,y)在椭圆C:=1上,F为椭圆C的右焦点,若点M满足||=1且=0,则||的最小值为()A.B.3 C.D.1二、填空题共6小题,每小题5分,共30分.9.(5分)已知命题p:∃x∈R,e x<0,则¬p是.10.(5分)在等比数列{a n}中,a1=2,a4=16,则数列{a n}的通项公式a n= ,设b n=log2a n,则数列{b n}的前n项和S n= .11.(5分)已知圆C的极坐标方程为ρ=2,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,则圆C的直角坐标方程为,若直线l:kx+y+3=0与圆C相切,则实数k的值为.12.(5分)已知变量x,y满足约束条件,则的取值范围是.13.(5分)各大学在高考录取时采取专业志愿优先的录取原则.一考生从某大学所给的7个专业中,选择3个作为自己的第一、二、三专业志愿,其中甲、乙两个专业不能同时兼报,则该考生有种不同的填报专业志愿的方法(用数字作答).14.(5分)若存在实常数k和b,使得函数f(x)和g(x)对其定义域上的任意实数x分别满足:f(x)≥kx+b 和g(x)≤kx+b,则称直线l:y=kx+b为f(x)和g(x)的“隔离直线”.已知函数f(x)=x2﹣1和函数g(x)=2lnx,那么函数f(x)和函数g(x)的隔离直线方程为.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13分)在△ABC中,角A,B,C的对边分别为a,b,c,且a<b<c,a=2bsinA.(Ⅰ)求角B的大小;(Ⅱ)若a=2,b=,求c边的长和△ABC的面积.16.(13分)经调查发现,人们长期食用含高浓度甲基汞的鱼类会引起汞中毒,其中罗非鱼体内汞含量比其它鱼偏高.现从一批数量很大的罗非鱼中随机地抽出15条作样本,经检测得各条鱼的汞含量的茎叶图(以小数点前的数字为茎,小数点后一位数字为叶)如图.《中华人民共和国环境保护法》规定食品的汞含量不得超过1.0ppm.(Ⅰ)检查人员从这15条鱼中,随机抽出3条,求3条中恰有1条汞含量超标的概率;(Ⅱ)若从这批数量很大的鱼中任选3条鱼,记ξ表示抽到的汞含量超标的鱼的条数.以此15条鱼的样本数据来估计这批数量很大的鱼的总体数据,求ξ的分布列及数学期望Eξ.17.(14分)如图,正三棱柱ABC﹣A1B1C1的底面边长是2,侧棱长是,D是AC的中点.(Ⅰ)求证:B1C∥平面A1BD;(Ⅱ)求二面角A1﹣BD﹣A的大小;(Ⅲ)在线段AA1上是否存在一点E,使得平面B1C1E⊥平面A1BD,若存在,求出AE的长;若不存在,说明理由.18.(13分)设函数f(x)=x2+ax﹣lnx(a∈R).(Ⅰ)若a=1,求函数f(x)的单调区间;(Ⅱ)若函数f(x)在区间(0,1]上是减函数,求实数a的取值范围;(Ⅲ)过坐标原点O作曲线y=f(x)的切线,证明:切点的横坐标为1.19.(14分)给定椭圆C:=1(a>b>0),称圆心在原点O,半径为的圆是椭圆C的“准圆”.若椭圆C的一个焦点为F(,0),其短轴上的一个端点到F的距离为.(Ⅰ)求椭圆C的方程和其“准圆”方程;(Ⅱ)点P是椭圆C的“准圆”上的动点,过点P作椭圆的切线l1,l2交“准圆”于点M,N.(ⅰ)当点P为“准圆”与y轴正半轴的交点时,求直线l1,l2的方程并证明l1⊥l2;(ⅱ)求证:线段MN的长为定值.20.(13分)对于数列{a n},把a1作为新数列{b n}的第一项,把a i或﹣a i(i=2,3,4,…,n)作为新数列{b n}的第i项,数列{b n}称为数列{a n}的一个生成数列.例如,数列1,2,3,4,5的一个生成数列是1,﹣2,﹣3,4,5.已知数列{b n}为数列{}(n∈N*)的生成数列,S n为数列{b n}的前n项和.(Ⅰ)写出S3的所有可能值;(Ⅱ)若生成数列{b n}满足S3n=(1﹣),求数列{b n}的通项公式;(Ⅲ)证明:对于给定的n∈N*,S n的所有可能值组成的集合为{x|x=,k∈N*,k≤2n﹣1}.数学试题答案一、选择题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.【解答】由A中的不等式变形得:x(x﹣2)<0,解得:0<x<2,即A={x|0<x<2},由B中的不等式解得:x≥1,即B={x|x≥1},∵全集U=R,∴∁U B={x|x<1},则A∩(∁U B)={x|0<x<1}.故选:A.2.【解答】A.y=x2在(0,+∞)内单调递增,是偶函数,不满足条件,故A不选;B.y=x+1在(0,+∞)内单调递增,不是偶函数,不满足条件,故B不选;C.y=﹣lg|x|在(0,+∞)内单调递减,是偶函数,满足条件,故C选;D.y=2x在(0,+∞)内单调递增,不是偶函数,不满足条件,故D不选,故选:C.3.【解答】的二项展开式的通项为T r+1=•=•(﹣1)r x10﹣3r,令10﹣3r=1,得r=3,故x项的系数为•(﹣1)3=﹣10,故选:B.4.【解答】Rt△ABC中,∵∠C=90°,AB=5,BC=4,∴AC==3,∵以BC为直径的圆交AB于D,∴AC是圆的切线,∴AC2=AD•AB,∴AD==,∴BD=5﹣=.故选:D.5.【解答】∵抛物线x2=2py(p>0)的准线方程为:y=﹣,∴由抛物线的定义得:1﹣(﹣)=3,解得:p=4.即焦点到准线的距离为4,故选:D.6.【解答】由三视图知几何体是一个侧面与底面垂直的三棱锥,底面是斜边上的高是1的直角三角形,则两条直角边是,斜边是2,∴底面的面积是=1,与底面垂直的侧面是一个边长为2的正三角形,∴三棱锥的高是,∴三棱锥的体积是故选B.7.【解答】根据题意,程序框图运行的程序为,i=0,A=2,i=1,A=1﹣=,i=2,A=1﹣2=﹣1;i=3,A=1﹣(﹣1)=2,i=4,A=1﹣=,…根据规律,总结得A值是2、、﹣1,并且以3为周期的关于i的函数∵i=2015,∴A=﹣1,i=2015>2014,输出A:﹣1;故选:C.8.【解答】依题意知,点M在以F(3,0)为圆心,1为半径的圆上,PM为圆的切线,∴|PM|2=|PF|2﹣|MF|2,而|MF|=1,∴当PF最小时,切线长PM最小.由图知,当点P为右顶点(5,0)时,|PF|最小,最小值为:5﹣3=2.此时|PM|==.故选:A.二、填空题共6小题,每小题5分,共30分.9.【解答】∵命题p:∃x∈R,e x<0是特称命题,∴¬p:∀x∈R,e x≥0,故答案为:∀x∈R,e x≥010.【解答】设等比数列{a n}的公比q,则q3===8,解得q=2,∴a n=a1q n﹣1=2×2n﹣1=2n,∴b n=log2a n=log22n=n,∴b1=1,∵b n=n是首项为1,公差为1的等差数列,∴S n==故答案为:2n;11.【解答】以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,根据ρ2=x2+y2,则圆C的直角坐标方程为x2+y2=4.又因为直线l:kx+y+3=0与圆C相切,则圆心(0,0)到直线kx+y+3=0的距离d==2=r,解得:.故应填:x2+y2=4;.12.【解答】满足约束条件的可行域,如下图所示:又∵表示的是可行域内一点与原点连线的斜率当x=,y=时,有最小值;当x=1,y=6时,有最大值6故答案为:13.【解答】甲、乙都不选时,有=60种;甲、乙两个专业选1个时,有=120种,根据分类计数原理,可得共有60+120=180种不同的填报专业志愿的方法.故答案为:180.14.【解答】作出函数f(x)=x2﹣1和函数g(x)=2lnx的图象,由图象可知,两个函数的交点坐标为(1,0),要使f(x)≥kx+b和g(x)≤kx+b,则y=kx+b,必须是两个函数在(1,0)处的公共切线,即k+b=0,解得b=﹣k,函数f′(x)=2x,即k=f′(1)=2,∴b=﹣2,即隔离直线方程为y=2x﹣2,故答案为:y=2x﹣2三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.【解答】(Ⅰ)∵a=2bsinA,∴sinA=2sinAsinB,∵0<A<π,∴sinA≠0,∴sinB=,∵0<B<π,且a<b<c,∴B=60°;(Ⅱ)∵a=2,b=,cosB=,∴由余弦定理得:()2=22+c2﹣2×2×c×,即c2﹣2c﹣3=0,解得:c=3或c=﹣1(舍),∴c=3,则S△ABC=acsinB=×2×3×=.16.【解答】(Ⅰ)记“15条鱼中任选3条恰好有1条鱼汞含量超标”为事件A,则,∴15条鱼中任选3条恰好有1条鱼汞含量超标的概率为.…(4分)(Ⅱ)依题意可知,这批罗非鱼中汞含量超标的鱼的概率,…(5分)ξ可能取0,1,2,3.…(6分)则,,,.…(10分)∴ξ的分布列如下:ξ0 1 2 3P…(12分)∴.…(13分)17.【解答】(Ⅰ)证明:连结AB1交A1B于M,连结B1C,DM,因为三棱柱ABC﹣A1B1C1是正三棱柱,所以四边形AA1B1B是矩形,所以M为A1B的中点.因为D是AC的中点,所以MD是三角形AB1C的中位线,…(2分)所以MD∥B1C.…(3分)因为MD⊂平面A1BD,B1C⊄平面A1BD,所以B1C∥平面A1BD.…(4分)(Ⅱ)解:作CO⊥AB于O,所以CO⊥平面ABB1A1,所以在正三棱柱ABC﹣A1B1C1中,如图建立空间直角坐标系O﹣xyz.因为AB=2,,D是AC的中点.所以A(1,0,0),B(﹣1,0,0),,,…(5分)所以,,.设是平面A1BD的法向量,所以即令,则y=2,z=3,所以是平面A1BD的一个法向量.…(6分)由题意可知是平面ABD的一个法向量,…(7分)所以.…(8分)所以二面角A1﹣BD﹣A的大小为.…(9分)(Ⅲ)解:设E(1,x,0),则,设平面B1C1E的法向量,所以即令,则x 1=3,,,…(12分)又,即,解得,所以存在点E,使得平面B1C1E⊥平面A1BD且.…(14分)18.【解答】(Ⅰ)当a=1时,f(x)=x2+x﹣lnx(x>0),∴,当,∴f(x)的单调递减区间为,单调递增区间.(Ⅱ),∵f(x)在区间(0,1]上是减函数,∴f'(x)≤0对任意x∈(0,1]恒成立,即对任意x∈(0,1]恒成立,∴对任意x∈(0,1]恒成立,令,∴a≤g(x)min,易知g(x)在(0,1]单调递减,∴g(x)min=g(1)=﹣1.∴a≤﹣1.(Ⅲ)设切点为M(t,f(t)),,切线的斜率,又切线过原点,,即:t2+at﹣lnt=2t2+at﹣1,∴t2﹣1+lnt=0,令g(t)=t2﹣1+lnt,,∴g(t)在(0,+∞)上单调递增,又g(1)=0,所以方程t2﹣1+lnt=0有唯一解t=1.综上,切点的横坐标为1.19.【解答】(Ⅰ)解:∵椭圆C的一个焦点为F(,0),其短轴上的一个端点到F的距离为.∴,,∴=1,∴椭圆方程为,∴准圆方程为x2+y2=4.(Ⅱ)证明:(ⅰ)∵准圆x2+y2=4与y轴正半轴的交点为P(0,2),设过点P(0,2)且与椭圆相切的直线为y=kx+2,联立得(1+3k2)x2+12kx+9=0.∵直线y=kx+2与椭圆相切,∴△=144k2﹣4×9(1+3k2)=0,解得k=±1,∴l1,l2方程为y=x+2,y=﹣x+2.∵,∴l1⊥l2.(ⅱ)①当直线l1,l2中有一条斜率不存在时,不妨设直线l1斜率不存在,则l1:,当l1:时,l1与准圆交于点,此时l2为y=1(或y=﹣1),显然直线l1,l2垂直;同理可证当l1:时,直线l1,l2垂直.②当l1,l2斜率存在时,设点P(x0,y0),其中.设经过点P(x0,y0)与椭圆相切的直线为y=t(x﹣x0)+y0,∴由得.由△=0化简整理得,∵,∴有.设l1,l2的斜率分别为t1,t2,∵l1,l2与椭圆相切,∴t1,t2满足上述方程,∴t1•t2=﹣1,即l1,l2垂直.综合①②知:∵l1,l2经过点P(x0,y0),又分别交其准圆于点M,N,且l1,l2垂直.∴线段MN为准圆x2+y2=4的直径,|MN|=4,∴线段MN的长为定值.20.【解答】(Ⅰ)由已知,,,∴,由于,∴S3可能值为.…(3分)(Ⅱ)∵,当n=1时,,当n≥2时,,∴,n∈N*,…(5分)∵{b n}是的生成数列,∴;;;∴,在以上各种组合中,当且仅当时,才成立.∴.…(8分)(Ⅲ)证明:共有2n﹣1种情形.,即,又,分子必是奇数,满足条件的奇数x共有2n﹣1个.…(10分)设数列{a n}与数列{b n}为两个生成数列,数列{a n}的前n项和为S n,数列{b n}的前n项和为T n,从第二项开始比较两个数列,设第一个不相等的项为第k项.由于,不妨设a k>0,b k<0,则=,所以,只有当数列{a n}与数列{b n}的前n项完全相同时,才有S n=T n.…(12分)∴共有2n﹣1种情形,其值各不相同.∴S n可能值必恰为,共2n﹣1个.即S n所有可能值集合为.…(13分)。
山东省2014届理科一轮复习试题选编15平面向量的平行与垂直

山东省2014届理科数学一轮复习试题选编15:平面向量的平行与垂直一、选择题1 .(江西省上高二中2012届高三第五次月考(数学理))已知A(2,-2)、B(4,3),向量p的坐标为(2k-1,7)且//p AB,则k 的值为( )A .910-B .910C .1910-D .1910【答案】 D .2 .(山东省实验中学2013届高三第一次诊断性测试数学(理)试题)已知向量(0,1),(2,a b c k a b c k ===+=若与垂直则( )A .—3B .—2C .lD .-l【答案】A【解析】因为2a b c +与垂直,所以有2=0a b c + (),即2=0a c b c + ,0=,解得3k =-,选A .3 .(山东省莱芜五中2013届高三4月模拟数学(理)试题)已知向量(1,2),m x =-+ (3,21),n y =-若m n ⊥ ,则18()16xy+的最小值为 ( )A .2B .4C .D .【答案】C4 .(2013辽宁高考数学(文))已知点()()1,3,4,1,A B -则与向量AB同方向的单位向量为 ( )A .3455⎛⎫ ⎪⎝⎭,-B .4355⎛⎫ ⎪⎝⎭,-C .3455⎛⎫- ⎪⎝⎭,D .4355⎛⎫- ⎪⎝⎭,【答案】A (3,4)AB =- ,所以||5AB = ,这样同方向的单位向量是134(,)555AB =-5 .在四边形ABCD 中,,AB DC = 且0AC AD =,则四边形ABCD 是 ( )A .矩形B .菱形C .直角梯形D .等腰梯形【答案】B6 .过ABC ∆的重心G 作一直线分别交AB 、AC 于D 、E ,若0,,≠==xy AC y AE AB x AD ,则yx 11+的值为 ( )A .1B .2C .3D .4【答案】C .错误人数40/94提示:设BC 的中点为F ,yx y x3131)11(31)(3132+=+=+==,由点E G D ,,共线可知31113131=+⇒=+yx y x 7 .(山东省滨州市2013届高三第一次(3月)模拟考试数学(理)试题)已知向量(1,2)=a ,(,6)x =b ,且a ∥b ,则x 的值为 ( )A .1B .2C .3D .4【答案】C 因为a ∥b ,所以1620x ⨯-=,解得3x =,选C .8 .(2013陕西高考数学(文))已知向量 (1,),(,2)a m b m ==, 若a //b , 则实数m 等于( )A .BC .D .0【答案】 C 解:.221,//),2,(),,1(±=⇒⋅=⋅∴==m m m b a m b m a 且 ,所以选C9 .(2012年广西北海市高中毕业班第一次质量检测数学(理)试题及答案)给定两个向量)4,3(=,)1,2(=,若)//()(x -+,则x 的值等于( )A .23 B .1- C .1D .23-【答案】A .10.(2013辽宁高考数学(理))已知点()()1,3,4,1,A B AB -则与向量同方向的单位向量为( )A .3455⎛⎫ ⎪⎝⎭,-B .4355⎛⎫ ⎪⎝⎭,-C .3455⎛⎫- ⎪⎝⎭,D .4355⎛⎫- ⎪⎝⎭,【答案】 A 解:(3,4)AB =- ,所以||5AB = ,这样同方向的单位向量是134(,)555AB =-11.(2012年高考(四川理))设a 、b 都是非零向量,下列四个条件中,使||||a ba b =成立的充分条件是( )A .a b =-B .//a bC .2a b =D .//a b 且||||a b =【答案】 [答案]D[解析]若使||||a ba b = 成立,则方向相同,与b a 选项中只有D 能保证,故选D .[点评]本题考查的是向量相等条件⇔模相等且方向相同.学习向量知识时需注意易考易错零向量,其模为0且方向任意. 12.(山东省菏泽市2013届高三5月份模拟考试数学(理)试题)已知向量a=(1,2),b=(1,0),c=(3,4),若λ为实数,且()b a c λ+⊥,则λ= ( )A .311-B .113-C .12D .35 【答案】A13.(2011年上海市普通高等学校春季招生考试数学卷)若向量()2,0a =,()1,1b =,则下列结论正确的是( )A .1a b ⋅=B .a b =C .()a b b -⊥D .//a b【答案】 【解】2a b ⋅= ,A 不正确;2a = ,b = ,则a b ≠,B 不正确;()1,1a b -=-,()()()1,11,10a b b -⋅=-⋅= ,所以()a b b -⊥ ,C 正确;不存在实数λ,使a b λ=,D 不正确.故选C .14.(山东省莱钢高中2013届高三4月模拟检测数学理试题 )已知向量a ()()4,3,1,2==-b ,若向量k +a b,则k 的值为 ( )B .7C D 【答案】A15.(2013大纲版高考数学(理))已知向量()()1,1,2,2m n λλ=+=+ ,若()()m n m n +⊥-,则=λ( )A .4-B .3-C .2-D .-1【答案】B .()()2222||||0(1)1[(2)4]3m n m n m n λλλ+⊥-⇒-=⇒++-++⇒=-16.已知等差数列{}n a 的前n 项和为n S ,若56OB a OA a OC =+(O 为坐标原点),且,,A B C 三点共线(该直线不过点O ),则10S 等于 ( )A .4B .5C .6D .10【答案】B .提示:依题意有165=+a a ,故5)(5210)(6510110=+=⨯+=a a a a S17.(山东省莱芜市莱芜二中2013届高三4月模拟考试数学(理)试题)设向量(1,sin )θ=a ,(3sin ,1)θ=b ,且//a b ,则cos2θ等于 ( )A .31-B.32-C.32D.31 【答案】D 二、填空题18.(山东省2013届高三高考模拟卷(一)理科数学)已知向量)3,2(=a ,)2,1(=b ,且b a ,满足)()(b a b a -⊥+λ,则实数=λ_______.【答案】 35-【解析】由)3,2(=a ,)2,1(=b ,得++=+3,2(λλb a )2λ,)1,1(=-b a ,因为)()(b a b a -⊥+λ,所以0)()(=-∙+b a b a λ,即01)23(1)2(=⨯++⨯+λλ,解得35-=λ.19.(山东省日照市2013届高三12月份阶段训练数学(理)试题)已知向量()()1,1,2,a b k =-=,且//a b ,则实数k =____________【答案】2- 【解析】因为 //a b,所以120k --⨯=,解得2k =-.20.(2013山东高考数学(文))在平面直角坐标系xOy 中,已知(1,)OA t =- ,(2,2)OB = ,若90oABO ∠=,则实数t 的值为______【答案】答案:5.解析:∵ ,(1)OA t =- ,,(22)OB = ,∴(2,2)AB OB OA =-=(1,)(3,2)t t --=-,又∵90ABO ∠=,∴AB OB ⊥,∴232(2)0AB OB t ⋅=⨯+⨯-= ,解得5t =.21.(2012年石景山区高三数学一模理科)设向量)cos 3,1(),1,(cos θθ==b a,且b a //,则θ2cos =________.【答案】 31-22.(2012年高考(安徽文))设向量(1,2),(1,1),(2,)a m b m c m ==+= ,若()a c +⊥b ,则a = _____. 【答案】【解析】a =1(3,3),()3(1)302a c m a cb m m m a +=+=++=⇔=-⇒=23.已知O 是坐标原点,,A B 是坐标平面上的两点,且向量(1,2)OA =- ,(3,)OB m =.若△AOB 是直角三角形,则m =_________.【答案】32或4; 24.(2013上海春季数学(理))已知向量(1 )a k =,,(9 6)b k =- ,.若//a b ,则实数 k = __________ 【答案】 34-25.(山西省实验中学仿真演练试卷理)1e 、2e 是互相垂直的两个单位向量,且向量122e e + 与12e ke -也相互垂直,则k =_____________. 【答案】2三、解答题26.四边形ABCD 中,)3,2(),,(),1,6(--===CD y x BC AB(1)若//,试求x 与y 满足的关系式;(2)满足(1)的同时又有⊥,求y x ,的值及四边形ABCD 的面积.【答案】解:),(y x BC = )2,4()2,4()(+---=-+-=++-=-=y x y x CD BC AB AD DA(1)// 则有0)4()2(=--⋅-+-⋅x y y x 化简得:02=+y x (2))1,6(++=+=y x BC AB AC)3,2(--=+=y x CD BC BD又BD AC ⊥ 则 0)3()1()2()6(=-⋅++-⋅+y y x x 化简有:0152422=--++y x y x联立⎩⎨⎧=--++=+015240222y x y x y x 解得⎩⎨⎧=-=36y x 或⎩⎨⎧-==12y xDA BC // BD AC ⊥ 则四边形ABCD 为对角线互相垂直的梯形当⎩⎨⎧=-=36y x )0,8()4,0(-==此时1621==S ABCD 当⎩⎨⎧-==12y x )4,0()0,8(-==此时1621==S ABCD 27.已知向量=)2,1(,=)2,3(- .⑴求||+与||-;⑵ 当k 为何值时,向量b a k +与b a 3+垂直?⑶ 当k 为何值时,向量k +与3+平行?并确定此时它们是同向还是反向?【答案】因为)2,3(),2,1(-==b a 所以5||2=a ,13||=b ,1=∙b a ,(1)52||==+b a , 4||==-b a ;(2)当向量b a k +与b a 3+垂直时,则有∙+)(b a k 0)3(=+b a ,03)13(2=+∙++b b a k a k ,即039)13(5=+++k k 解得5-=k 所以当5-=k 时,向量b a k +与b a 3+垂直;(3)当向量k +与3+平行时,则存在λ使)3(k +=+λ成立,于是⎩⎨⎧==13λλk 解得31=k ,当31=k 时,)3(3131b a b a b a k +=+=+,所以31=k 时向量k +与3+平行且它们同向.。
北京市石景山区2014届下学期高三年级一模考试数学试卷(文科)

北京市石景山区2014届下学期高三年级一模考试数学试卷(文科,有答案)满分为150分,考试时间为120分钟。
第Ⅰ卷(选择题 共40分)一、选择题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,选出符合题目要求的一项。
1. 已知全集U=R ,集合A={x|x 2-2x<0},B={x|x -1≥0},那么A ∩U B=( ) A. {x|0<x<1} B. {x|x<0} C. {x|x>2} D. {x|1<x<2}2. 下列函数中,在(0,+∞)内单调递减,并且是偶函数的是( ) A. y=x 2 B. y=x+l C. y=-lg|x| D. y=2x3. 直线043:=-+y x l 与圆4:22=+y x C 的位置关系是( ) A. 相交B. 相切C. 相离D. 无法确定4. 双曲线)00(12222>>=-b a by a x ,的渐近线方程是y=±2x ,则其离心率为( )A. 5B.25C.3D.55. 下列函数中周期为π且图象关于直线x=3π对称的函数是( ) A. )32sin(2π+=x y B. )62sin(2π-=x yC. )62sin(2π+=x yD. )32sin(2π-=x y6. 正三棱柱的左视图如图所示,则该正三棱柱的侧面积为( )A. 4B. 12C.334 D. 247. 阅读下面的程序框图,运行相应的程序,输出的结果为( )A. -2B.21C. -1D. 28. 已知动点P (x ,y )在椭圆11625:22=+y x C 上,F 为椭圆C 的右焦点,若点M=1且MF MP ·=0的最小值为( )A. 3B. 3C.512D. 1第Ⅱ卷(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
9. i 是虚数单位,计算=++ii14 。
10. 在等比数列{a n }中。
2014年高三一模数学(理)北京市西城区试题Word版带答案.doc

北京市西城区2014年高三一模试卷数 学(理科) 2014.4第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设全集U =R ,集合2{|0}A x x =<≤,{|1}B x x =<,则集合()UA B =( )(A )(,2]-∞(B )(,1]-∞(C )(2,)+∞(D )[2,)+∞2. 已知平面向量(2,1)=-a ,(1,1)=b ,(5,1)=-c . 若()//k +a b c ,则实数k 的值为( ) (A )2(B )12(C )114(D )114-3.在极坐标系中,过点π(2,)2且与极轴平行的直线方程是( ) (A )2ρ=(B )2θπ=(C )cos 2ρθ= (D )sin =2ρθ4.执行如图所示的程序框图,如果输入2,2a b ==,那么输出的a 值为( ) (A )4 (B )16 (C )256 (D )3log 165.下列函数中,对于任意x ∈R ,同时满足条件()()f x f x =-和(π)()f x f x -=的函数是( ) (A )()sin =f x x (C )()cos =f x x (B )()sin cos =f x x x (D )22()cos sin =-f x x x6. “8m <”是“方程221108x y m m -=--表示双曲线”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件7.某企业为节能减排,用9万元购进一台新设备用于生产. 第一年需运营费用2万元,从第二年起,每年运营费用均比上一年增加2万元,该设备每年生产的收入均为11万元. 设该设备使用了()n n *∈N 年后,年平均盈利额达到最大值(盈利额等于收入减去成本),则n 等于( ) (A )3 (B )4(C )5(D )68. 如图,设P 为正四面体A BCD -表面(含棱)上与顶点不重合的一点,由点P 到四个顶点的距离组成的集合记为M ,如果集合M 中有且只有2个元素,那么符合条件的点P 有( )(A ) 4个 (B )6个(C )10个(D )14个BADC. P第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9.设复数1ii 2ix y -=++,其中,x y ∈R ,则x y +=______. 10. 若抛物线2:2C y px =的焦点在直线240x y +-=上,则p =_____;C 的准线方程为_____.11.已知一个正三棱柱的所有棱长均等于2,它的俯视图是一个边长为2的正三角形,那么它的侧(左)视图面积的最小值是________.12.若不等式组1,0,26,ax y x y x y ⎧⎪⎪⎨+⎪⎪+⎩≥≥≤≤表示的平面区域是一个四边形,则实数a 的取值范围是_______.13. 科技活动后,3名辅导教师和他们所指导的3名获奖学生合影留念(每名教师只指导一名学生),要求6人排成一排,且学生要与其指导教师相邻,那么不同的站法种数是______. (用数字作答)14.如图,在直角梯形ABCD 中,//AB CD ,AB BC ⊥,2AB =,1CD =,(0)BC a a =>,P 为线段AD (含端点)上一个动点,设AP xAD =,PB PC y ⋅=,对于函数()y f x =,给出以下三个结论:○1 当2a =时,函数()f x 的值域为[1,4]; ○2 (0,)a ∀∈+∞,都有(1)1f =成立;○3 (0,)a ∀∈+∞,函数()f x 的最大值都等于4. 其中所有正确结论的序号是_________.A BD CP三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c . 已知222b c a bc +=+.(Ⅰ)求A 的大小;(Ⅱ)如果cos =B ,2b =,求△ABC 的面积.16.(本小题满分13分)在某批次的某种灯泡中,随机地抽取200个样品,并对其寿命进行追踪调查,将结果列成频率分布表如下. 根据寿命将灯泡分成优等品、正品和次品三个等级,其中寿命大于或等于500天的灯泡是优等品,寿命小于300天的灯泡是次品,其余的灯泡是正品.(Ⅰ)根据频率分布表中的数据,写出a ,b 的值;(Ⅱ)某人从灯泡样品中随机地购买了()*∈n n N 个,如果这n 个灯泡的等级情况恰好与按.三个..等级分层抽样......所得的结果相同,求n 的最小值; (Ⅲ)某人从这个批次的灯泡中随机地购买了3个进行使用,若以上述频率作为概率,用X 表示此人所购买的灯泡中次品的个数,求X 的分布列和数学期望.17.(本小题满分14分)如图,在四棱柱1111ABCD A BC D -中,底面ABCD 和侧面11BCC B 都是矩形,E 是CD 的中点,1D E CD ⊥,22AB BC ==.(Ⅰ)求证:1⊥BC D E ; (Ⅱ)求证:1B C // 平面1BED ;(Ⅲ)若平面11BCC B 与平面1BED 所成的锐二面角的大小为π3,求线段1D E 的长度.18.(本小题满分13分)已知函数2ln ,,()23,,x x x a f x x x x a >⎧⎪=⎨-+-⎪⎩≤ 其中0a ≥.(Ⅰ)当0a =时,求函数()f x 的图象在点(1,(1))f 处的切线方程;(Ⅱ)如果对于任意12,x x ∈R ,且12x x <,都有12()()f x f x <,求a 的取值范围.19.(本小题满分14分)已知椭圆2212x W y +=:,直线l 与W 相交于,M N 两点,l 与x 轴、y 轴分别相交于C 、D 两点,O 为坐标原点.(Ⅰ)若直线l 的方程为210x y +-=,求OCD ∆外接圆的方程;(Ⅱ)判断是否存在直线l ,使得,C D 是线段MN 的两个三等分点,若存在,求出直线l 的方程;若不存在,说明理由.120.(本小题满分13分)在数列{}n a 中,1()n a n n*=∈N . 从数列{}n a 中选出(3)k k ≥项并按原顺序组成的新数列记为{}n b ,并称{}n b 为数列{}n a 的k 项子列. 例如数列1111,,,2358为{}n a 的一个4项子列.(Ⅰ)试写出数列{}n a 的一个3项子列,并使其为等差数列;(Ⅱ)如果{}n b 为数列{}n a 的一个5项子列,且{}n b 为等差数列,证明:{}n b 的公差d 满足108d -<<; (Ⅲ)如果{}n c 为数列{}n a 的一个(3)m m ≥项子列,且{}n c 为等比数列,证明:1231122m m c c c c -++++-≤.北京市西城区2014年高三一模试卷参考答案及评分标准高三数学(理科) 2014.4一、选择题:本大题共8小题,每小题5分,共40分.1.C 2.B 3.D 4.C 5.D 6.A 7.A 8.C 二、填空题:本大题共6小题,每小题5分,共30分. 9.25-10.8 4x =-11. 12.(3,5) 13.4814.○2,○3注:第10题第一问2分,第二问3分. 第14题若有错选、多选不得分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)(Ⅰ)解:因为 222b c a bc +=+,所以 2221cos 22b c a A bc +-==, ……………… 3分又因为 (0,π)∈A ,所以 π3A =. ……………… 5分(Ⅱ)解:因为 cos =B ,(0,π)∈B ,所以 sin B ==. ………………7分 由正弦定理sin sin =a bA B , ………………9分 得 sin 3sin ==b Aa B. ………………10分因为 222b c a bc +=+,所以 2250--=c c ,解得 1=c 因为 0>c ,所以 1=c . ………………11分故△ABC 的面积1sin 22S bc A ==. ………………13分16.(本小题满分13分)(Ⅰ)解:0.15a =,30b =. ……………… 2分(Ⅱ)解:由表可知:灯泡样品中优等品有50个,正品有100个,次品有50个,所以优等品、正品和次品的比例为50:100:501:2:1=. ……………… 4分 所以按分层抽样法,购买灯泡数24()*=++=∈n k k k k k N ,所以n 的最小值为4. ……………… 6分 (Ⅲ)解:X 的所有取值为0,1,2,3. ……………… 7分由题意,购买一个灯泡,且这个灯泡是次品的概率为0.10.150.25+=, ……… 8分 从本批次灯泡中购买3个,可看成3次独立重复试验, 所以033127(0)C (1)464P X ==⨯-=, 1231127(1)C (1)4464P X ==⨯⨯-=, 2213119(2)C ()(1)4464P X ==⨯-=,33311(3)C ()464P X ==⨯=. ……………… 11分 所以随机变量X 的分布列为:………………12分所以X 的数学期望2727913()0123646464644E X =⨯+⨯+⨯+⨯=. (13)分(注:写出1(3,)4X B ,3311()C ()(1)44k kk P X k -==-,0,1,2,3k =. 请酌情给分)17.(本小题满分14分)(Ⅰ)证明:因为底面ABCD 和侧面11BCC B 是矩形,所以 BC CD ⊥,1BC CC ⊥, 又因为 1=CDCC C ,所以 BC ⊥平面11DCC D , ………………2分因为 1D E ⊂平面11DCC D , 所以1BC D E ⊥. ………………4分(Ⅱ)证明:因为 1111//, BB DD BB DD =,所以四边形11D DBB 是平行四边形. 连接1DB 交1D B 于点F ,连接EF ,则F 为1DB 的中点. 在1∆B CD 中,因为DE CE =,1DF B F =,所以1//EF B C . ………………6分又因为 1⊄B C 平面1BED ,⊂EF 平面1BED ,所以 1//BC 平面1BED . (8)(Ⅲ)解:由(Ⅰ)可知1BC D E ⊥, 又因为 1D E CD ⊥,BCCD C =,1所以 1D E ⊥平面ABCD . ………………9分设G 为AB 的中点,以E 为原点,EG ,EC ,1ED 所在直线分别为x 轴,y 轴,z 轴 如图建立空间直角坐标系,设1D E a =,则11(0,0,0), (1,1,0), (0,0,), (0,1,0), (1,2,), (1,0,0)E B D a C B a G . 设平面1BED 法向量为(,,)x y z =n , 因为1(1,1,0), (0,0,)EB ED a ==,由10,0,EB ED ⎧⋅=⎪⎨⋅=⎪⎩n n得0,0.x y z +=⎧⎨=⎩令1x=,得(1,1,0)=-n . ………………11分 设平面11BCC B 法向量为111(,,)x y z =m , 因为1(1,0,0), (1,1,)CB CB a ==,由10,0,CB CB ⎧⋅=⎪⎨⋅=⎪⎩m m得11110,0.x x y az =⎧⎨++=⎩令11z =,得(0,,1)a =-m . ………………12分 由平面11BCC B 与平面1BED 所成的锐二面角的大小为π3, 得||π|cos ,|cos 3⋅<>===m n m n m n , ………………13分解得1a =. ………………14分18.(本小题满分13分)(Ⅰ)解:由题意,得()(ln )ln 1f x x x x ''==+,其中0x >, ……………… 2分所以 (1)1f '=, 又因为(1)0f =,所以函数()f x 的图象在点(1,(1))f 处的切线方程为1y x =-. ……………… 4分(Ⅱ)解:先考察函数2()23g x x x =-+-,x ∈R 的图象,配方得2()(1)2g x x =---, ……………… 5分所以函数()g x 在(,1)-∞上单调递增,在(1,)+∞单调递减,且max ()(1)2g x g ==-.……………… 6分因为对于任意12,x x ∈R ,且12x x <,都有12()()f x f x <成立,所以 1a ≤. ……………… 8分以下考察函数()ln h x x x =,(0,)x ∈+∞的图象, 则 ()ln 1h x x '=+,令()ln 10h x x '=+=,解得1e=x . ……………… 9分随着x 变化时,()h x 和()h x '的变化情况如下:即函数()h x 在1(0,)e上单调递减,在1(,)e+∞上单调递增,且min 11()()e e==-h x h . ……………… 11分因为对于任意12,x x ∈R ,且12x x <,都有12()()f x f x <成立,所以 1e≥a . ……………… 12分因为 12e->-(即min max ()()h x g x >), 所以a 的取值范围为1,e[1]. ……………… 13分19.(本小题满分14分)(Ⅰ)证明:因为直线l 的方程为210x y +-=,所以与x 轴的交点(1,0)C ,与y 轴的交点1(0,)2D . ……………… 1分则线段CD 的中点11(,)24,||CD ==……………… 3分 即OCD ∆外接圆的圆心为11(,)24,半径为1||2CD =, 所以OCD ∆外接圆的方程为22115()()2416x y -+-=. ……………… 5分(Ⅱ)解:结论:存在直线l ,使得,C D 是线段MN 的两个三等分点.理由如下:由题意,设直线l 的方程为(0)y kx m km =+≠,11(,)M x y ,22(,)N x y , 则 (,0)mC k-,(0,)D m , ……………… 6分 由方程组2212y kx m x y =+⎧⎪⎨+=⎪⎩ 得222(12)4220k x kmx m +++-=, ……………… 7分 所以 2216880k m ∆=-+>, (*) ……………… 8分由韦达定理,得122412km x x k -+=+, 21222212m x x k -=+. ……………… 9分由,C D 是线段MN 的两个三等分点,得线段MN 的中点与线段CD 的中点重合. 所以 1224120km x x k m k-+==+-, (10)分解得2k =±. ……………… 11分由,C D 是线段MN 的两个三等分点,得||3||MN CD =.所以12|x x -= ……………… 12分即12||3||mx x k-==,解得 m = ……………… 13分 验证知(*)成立.所以存在直线l ,使得,C D 是线段MN 的两个三等分点,此时直线l 的方程为y x =或y x =±. ……………… 14分20.(本小题满分13分)(Ⅰ)解:答案不唯一. 如3项子列12,13,16; ……………… 2分 (Ⅱ)证明:由题意,知1234510b b b b b >>>>>≥,所以 210d b b =-<. ……………… 3分 若 11b = ,由{}n b 为{}n a 的一个5项子列,得212b ≤, 所以 2111122d b b =--=-≤. 因为 514b b d =+,50b >,所以 515411d b b b =-=->-,即14d >-. 这与12d -≤矛盾. 所以 11b ≠. 所以 112b ≤, ……………… 6分因为 514b b d =+,50b >, 所以 51511422d b b b =-->-≥,即18d >-, 综上,得108d -<<. ……………… 7分(Ⅲ)证明:由题意,设{}n c 的公比为q ,则 211231(1)m m c c c c c q q q -++++=++++.因为{}n c 为{}n a 的一个m 项子列, 所以 q 为正有理数,且1q <,111()c a a*=∈N ≤. 设 (,Kq K L L*=∈N ,且,K L 互质,2L ≥). 当1K =时,因为 112q L =≤,所以 211231(1)m m c c c c c q q q -++++=++++211111()()222≤-++++m , 112()2-=-m ,所以 112312()2m m c c c c -++++-≤. ……………… 10分当1K ≠时,因为 11111m m m m K c c q a L---==⨯是{}n a 中的项,且,K L 互质,所以 1*()-=⨯∈m a K M M N ,所以 211231(1)m m c c c c c q q q -++++=++++1232111111()----=++++m m m m M K K L K LL. 因为 2L ≥,*K M ∈N ,,所以 21112311111()()2()2222m m m c c c c --++++++++=-≤. 综上, 1231122m m c c c c -++++-≤. ……………… 13分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年石景山区高三统一测试数学(理科)第Ⅰ卷(选择题 共40分)一、选择题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知全集U =R ,集合{}2|20A x x x =-<,{}|10B x x =-≥,那么U A B = ð( )A .{}|01x x <<B .{}|0x x <C .{}|2x x >D .{}|12x x <<2.下列函数中,在(0)+∞,内单调递减,并且是偶函数的是( ) A .2y x =B .1y x =+C .lg ||y x =-D .2x y =3.在251()x x-的展开式中,x 的系数为( )A .10B .10-C .20D .20-4.已知Rt △ABC 中,o 9054C AB BC ∠===,,,以BC 为直径的圆交AB 于D则BD 的长为( )5.在平面直角坐标系xOy 中,抛物线22(0)x py p =>上纵坐标为1的点到焦点的距离为3,则焦点到准线的距离为( )A .2B .8CD .46.右图是某个三棱锥的三视图,其中主视图是等边三角形,左视图是直角三角形,俯视图是等腰直角三角形,则该三棱锥的体积是( )7.阅读右面的程序框图,运行相应的程序,输出的结果为( A .2- B .12C .1-D .2A .4B .95C .125D .165A .12B .3CD ACB 主视图左视图8.已知动点()P x y ,在椭圆22:12516x y C +=上,F 为椭圆C 的右焦点,若点M 满足||1MF = 且0MP MF ⋅=,则||PM 的最小值为( )AB .3C .125D .1第Ⅱ卷(非选择题 共110分)二、填空题共6小题,每小题5分,共30分. 9.已知命题p :0x x e ∃∈<R ,,则p ⌝是____________________.10.在等比数列}{n a 中,14=2=16a a ,,则数列}{n a 的通项公式=n a _____________,设2log n n b a =,则数列}{n b 的前n 项和=n S _____________.11.已知圆C 的极坐标方程为=2ρ,以极点为原点,极轴为x 轴的正半轴建立平面直角坐标系,则圆C 的直角坐标方程为_______________,若直线:30l kx y ++=与圆C 相切,则实数k 的值为_____________.12.已知变量x y ,满足约束条件20170x y x x y -+≤⎧⎪≥⎨⎪+-≤⎩,,,则x y 的取值范围是_________.13.各大学在高考录取时采取专业志愿优先的录取原则.一考生从某大学所给的7个专业中,选择3个作为自己的第一、二、三专业志愿,其中甲、乙两个专业不能同时兼报,则该考生有_____________种不同的填报专业志愿的方法(用数字作答).14.若存在实常数k 和b ,使得函数()f x 和()g x 对其定义域上的任意实数x 分别满足:()f x kx b ≥+和()g x kx b ≤+,则称直线:l y kx b =+为()f x 和()g x 的“隔离直线”.已知函数2()1f x x =-和函数()2ln g x x =,那么函数()f x 和函数()g x 的隔离直线方程为_________.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)在△ABC 中,角A B C ,,的对边分别为a b c ,,,且a b c <<2sin b A =. (Ⅰ)求角B 的大小;(Ⅱ)若2a =,b =c 边的长和△ABC 的面积.16.(本小题满分13分)经调查发现,人们长期食用含高浓度甲基汞的鱼类会引起汞中毒,其中罗非鱼体内汞含量比其它鱼偏高.现从一批数量很大的罗非鱼中随机地抽出15条作样本,经检测得各条鱼的汞含量的茎叶图(以小数点前的数字为茎,小数点后一位数字为叶)如下:《中华人民共和国环境保护法》规定食品的汞含量不得超过1.0ppm.(Ⅰ)检查人员从这15条鱼中,随机抽出3条,求3条中恰有1条汞含量超标的概率;(Ⅱ)若从这批数量很大的鱼........中任选3条鱼,记ξ表示抽到的汞含量超标的鱼的条数.以此15条鱼的样本数据来估计...这批数量很大的鱼的总体数据,求ξ的分布列及数学期望Eξ.01235567889135567罗非鱼的汞含量(ppm)17.(本小题满分14分)如图,正三棱柱111ABC A B C -的底面边长是2D 是AC 的中点. (Ⅰ)求证:1B C ∥平面1A BD ; (Ⅱ)求二面角1A BD A --的大小;(Ⅲ)在线段1AA 上是否存在一点E ,使得平面11B C E ⊥平面1A BD ,若存在,求出AE 的长;若不存在,说明理由.A1A1B1CCDB18.(本小题满分13分)设函数2()ln ()f x x ax x a =+-∈R . (Ⅰ)若1a =,求函数()f x 的单调区间;(Ⅱ)若函数()f x 在区间(01],上是减函数,求实数a 的取值范围; (Ⅲ)过坐标原点O 作曲线)(x f y =的切线,证明:切点的横坐标为1.19.(本小题满分14分)给定椭圆C :22221(0)x y a b a b+=>>,称圆心在原点O ,C 的“准圆”.若椭圆C的一个焦点为0)F ,,其短轴上的一个端点到F. (Ⅰ)求椭圆C 的方程和其“准圆”方程;(Ⅱ)点P 是椭圆C 的“准圆”上的动点,过点P 作椭圆的切线12l l ,交“准圆”于点M N ,. (ⅰ)当点P 为“准圆”与y 轴正半轴的交点时,求直线12l l ,的方程并证明12l l ⊥; (ⅱ)求证:线段MN 的长为定值.20.(本小题满分13分)对于数列{}n a ,把1a 作为新数列{}n b 的第一项,把i a 或i a -(234i n = ,,,,)作为新数列{}n b 的第i 项,数列{}n b 称为数列{}n a 的一个生成数列.例如,数列12345,,,,的一个生成数列是12345--,,,,.已知数列{}n b 为数列1{}()2n n *∈N 的生成数列,n S 为数列{}n b 的前n 项和. (Ⅰ)写出3S 的所有可能值; (Ⅱ)若生成数列{}n b 满足311(1)78n n S =-,求数列{}n b 的通项公式; (Ⅲ)证明:对于给定的n *∈N ,n S 的所有可能值组成的集合为121{|2}2n n k x x k k *--=∈≤N ,,.2014年石景山区高三统一测试 高三数学(理科)参考答案二、填空题:本大题共6个小题,每小题5分,共30分.两空的题目,第一空2分,第二空3分.三、解答题:本大题共6个小题,共80分.应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分) 解:2sin b A =,2sin sin A B A =, …………………………2分因为0A π<<,所以sin 0A ≠,所以sin 2B =, ………………………… 4分 因为0B π<<,且a b c <<,所以60B = . …………………………6分 (Ⅱ)因为2a =,b=所以由余弦定理得22212222c c =+-⨯⨯⨯,即2230c c --=,解得3c =或1c =-(舍),所以c 边的长为3. …………………………10分11=sin 232222ABC S ac B ∆=⨯⨯⨯=. …………………………13分 16.(本小题满分13分)解:(Ⅰ)记“15条鱼中任选3条恰好有1条鱼汞含量超标”为事件A ,则1251031545()91C C P A C ==,∴15条鱼中任选3条恰好有1条鱼汞含量超标的概率为4591. …………………………4分 (Ⅱ)依题意可知,这批罗非鱼中汞含量超标的鱼的概率51()153P B ==, ………………5分 ξ可能取0,1,2,3. …………………………6分则30318(0)1327P C ξ⎛⎫==-= ⎪⎝⎭ ,213114(1)1339P C ξ⎛⎫==⨯⨯-=⎪⎝⎭, 223112(2)1339P C ξ⎛⎫⎛⎫==⨯-= ⎪⎪⎝⎭⎝⎭,33311(3)327P C ξ⎛⎫=== ⎪⎝⎭.……………………10分分所以842101231279927E ξ=⨯+⨯+⨯+⨯=. …………………………13分 17.(本小题满分14分)(Ⅰ)证明:连结1AB 交1A B 于M ,连结1B C DM ,, 因为三棱柱111ABC A B C -是正三棱柱, 所以四边形11AA B B 是矩形, 所以M 为1A B 的中点.因为D 是AC 的中点,所以MD 是三角形1AB C 的中位线,…………………………2分所以MD ∥1B C . …………………………3分 因为MD ⊂平面1A BD ,1B C ⊄平面1A BD ,所以1B C ∥平面1A BD . …………………………4分 (Ⅱ)解:作CO AB ⊥于O ,所以CO ⊥平面11ABB A ,所以在正三棱柱111ABC A B C -中如图建立空间直角坐标系O xyz -.因为2AB =,1AA =D 是AC 的中点.所以(100)A ,,,(100)B -,,,(00C ,,1(1A 所以1(02D ,,,3(022BD = ,,, 1(20)BA =.设()n x y z =,,是平面1A BD 的法向量,所以100n BD n BA ⎧⋅=⎪⎨⋅=⎪⎩ ,,即30220x z x ⎧+=⎪⎨⎪+=⎩,, 令x =2y =,3z =, 所以(23)n =,是平面1A BD 的一个法向量. …………………………6分 由题意可知1(00)AA =是平面ABD 的一个法向量, …………………………7分所以11cos 2n AA <>== ,. …………………………8分所以二面角1A BD A --的大小为π. …………………………9分 (Ⅲ)设(10)E x ,,,则1(1C E x =- ,11(10C B,,=-- 设平面11B C E 的法向量1111()n x y z ,,=, 所以111100n C E n C B,,⎧⋅=⎪⎨⋅=⎪⎩即11111)00x x y x ,,⎧-+=⎪⎨-=⎪⎩ 令1z =13x =,1y =,MA1A 1B1CBCD1(3n =-, …………………………12分又10n n ⋅=,即0--=,解得x =所以存在点E ,使得平面11B C E ⊥平面1A BD 且AE = …………………………14分 18.(本小题满分13分)解: (Ⅰ)1a =时, 2()ln (0)f x x ax xx =+->,1(21)(1)()21x x f x x x x-+'∴=+-=, …………………………1分 11(0)()0()()022x f x x f x ''∈<∈+∞>,,,,,,()f x 的减区间为1(0)2,,增区间1()2+∞,. …………………………3分(Ⅱ)1()2f x x a x'=+-()f x 在区间(01],上是减函数, ()0f x '∴≤对任意(01]x ∈,恒成立,即120x a x +-≤对任意(01]x ∈,恒成立, …………………………5分 12a x x ∴≤-对任意(01]x ∈,恒成立, 令1()2g x x x=-,min ()a g x ∴≤, …………………………7分易知()g x 在(01],单调递减,min ()(1)1g x g ∴==-. 1a ∴≤-. …………………………8分(Ⅲ)设切点为(())M t f t ,,1()2f x x a x'=+-, 切线的斜率12k t a t=+-,又切线过原点()f t k t=,()22212ln 211ln 0f t t a t at t t at t t t t=+-+-=+-∴-+=,即:, 存在性:1t =满足方程21ln 0t t -+=,所以,1t =是方程21ln 0t t -+=的根. …………………………11分再证唯一性:设()21ln t t t ϕ=-+,()1'20t t tϕ=+>,()t ϕ在(0,)+∞单调递增,且()1=0ϕ,所以方程21ln 0t t -+=有唯一解.综上,切点的横坐标为1. …………………………13分19.(本小题满分14分)解:(Ⅰ)1c a b ==∴= ,∴椭圆方程为2213x y +=, ………………………………2分准圆方程为224x y +=. ………………………………3分(Ⅱ)(ⅰ)因为准圆224x y +=与y 轴正半轴的交点为(02)P ,, 设过点(02)P ,且与椭圆相切的直线为2y kx =+, 所以由22213y kx x y =+⎧⎪⎨+=⎪⎩,,得22(13)1290k x kx +++=. 因为直线2y kx =+与椭圆相切,所以2214449(13)0k k ∆=-⨯+=,解得1k =±, ………………………………6分所以12l l ,方程为22y x y x =+=-+,. ………………………………7分 121l l k k ⋅=- ,12l l ∴⊥. ………………………………8分(ⅱ)①当直线12l l ,中有一条斜率不存在时,不妨设直线1l 斜率不存在, 则1l:x =当1l:x =1l与准圆交于点1)1)-,此时2l 为1y =(或1y =-),显然直线12l l ,垂直; 同理可证当1l:x =12l l ,垂直. ………………………………10分 ②当12l l ,斜率存在时,设点00()P x y ,,其中22004x y +=. 设经过点00()P x y ,与椭圆相切的直线为00()y t x x y =-+, 所以由0022()13y t x x y x y =-+⎧⎪⎨+=⎪⎩,, 得 2220000(13)6()3()30t x t y tx x y tx ++-+--=.由0∆=化简整理得 2220000(3)210x t x y t y -++-=, 因为22004x y +=,所以有2220000(3)2(3)0x t x y t x -++-=.设12l l ,的斜率分别为12t t ,,因为12l l ,与椭圆相切, 所以12t t ,满足上述方程2220000(3)2(3)0x t x y t x -++-=, 所以121t t ⋅=-,即12l l ,垂直. ………………………………12分 综合①②知:因为12l l ,经过点00(,)P x y ,又分别交其准圆于点M N ,,且12l l , 垂直. 所以线段MN 为准圆224x y +=的直径, ||4MN =,所以线段MN 的长为定值. ………………………………14分20.(本小题满分13分)解:(Ⅰ)由已知,112b =,1||(,2)2n n b n n *=∈≥N , ∴231148b b =±=±,, 由于1117111511131111,2488248824882488++=+-=-+=--=,,,∴3S 可能值为13578888,,,. …………………………3分(Ⅱ)∵311(1)78n n S =-, 当1n =时,1233111(1)788a a a S ++==-=, 当2n ≥时,32313333111111(1)(1)78788n n n n n n n n a a a S S ----++=-=---=,3231318n n n n a a a --∴++=,*n ∈N , …………………………5分∵{}n b 是1()2n n *⎧⎫∈⎨⎬⎩⎭N 的生成数列,∴323212n n b --=±;313112n n b --=±;3312n n b =±;∴323133231311111(421)()22288n n n n n n n n b b b n *----++=±±±=±±±=∈N ,在以上各种组合中,当且仅当32313421()888n n n n n n b b b n *--==-=-∈N ,,时,才成立. ∴132213 2.2nn nn k b k n k *⎧=-⎪⎪=∈⎨⎪-≠-⎪⎩N ,,(),. …………………………8分(Ⅲ)2311112222n n S =±±±± 共有12n -种情形.23231111111122222222n n n S ----≤≤++++ ,即12122n n n n S -≤≤, 又12322212n n n n nS ---±±±±= ,分子必是奇数, 满足条件121222n n n nx -≤≤的奇数x 共有12n -个. …………………………10分 设数列{}n a 与数列{}n b 为两个生成数列,数列{}n a 的前n 项和为n S ,数列{}n b 的前n 项和为n T ,从第二项开始比较两个数列,设第一个不相等的项为第k 项.由于1||||2k k k a b ==,不妨设00k k a b ><,, 则11()()n n k k n k k n S T a a a b b b ++-=+++-+++12111122()2222k k k n ++≤⨯-⨯+++ 1111122()02222k k n n -=⨯-⨯-=>, 所以,只有当数列{}n a 与数列{}n b 的前n 项完全相同时,才有n n S T =.……12分∴2311112222n n S =±±±± 共有12n -种情形,其值各不相同.∴n S 可能值必恰为135212222n n n n n - ,,,,,共12n -个.即n S 所有可能值集合为121{|2}2n n k x x k k *--=∈≤N ,,. …………………………13分【注:若有其它解法,请酌情给分】。