色谱质谱联用 气质联用
气质联用

第一章气相色谱-质谱联用技术气质联用仪是分析仪器中较早实现联用技术的仪器,自1957年J.C.Holmes和F.A.Morrell首次实现气相色谱和质谱联用以后,这一技术得到了长足的发展。
在所有联用技术中气质联用,即GC/MS发展最完善,应用最广泛。
目前从事有机物分析的实验室几乎都把GC/MS作为主要的定性确认手段之一,同时GC/MS也被用于定量分析。
另一方面,目前市售的有机质谱仪,不论是磁质谱、四极杆质谱、离子阱质谱还是飞行时间质谱(TOF),傅立叶变换质谱(FTMS)等均能和气相色谱联用。
还有一些其他的气相色谱和质谱连接的方式,如气相色谱-燃烧炉-同位素比质谱等。
GC/MS 已经成为分析复杂混合物最为有效的手段之一。
气质联用法是将气-液色谱和质谱的特点结合起来的一种用于确定测试样品中不同物质的定性定量分析方法,其具有GC的高分辨率和质谱的高灵敏度。
气相色谱将混合物中的组分按时间分离开来,而质谱则提供确认每个组分结构的信息。
气相色谱和质谱由接口相连。
气质联用法广泛应用于药品检测、环境分析、火灾调查、炸药成分研究、生物样品中药物与代谢产物定性定量分析及未知样品成分的确定。
气质联用法也被用于机场安检中,用于行李中或随身携带物品的检测。
气质联用仪系统一般有下图所示的部分组成。
图1.1 气质联用仪组成框图气质联用仪根据其要完成的工作被设计成不同的类型和大小。
由于在现代质谱仪中最常用的质量分析器是四极杆型的,所以,在本章中将主要介绍这种将不同质量离子碎片分离的方法。
第一节气相色谱仪简介气相色谱仪,通过对欲检测混合物中组分有不同保留性能的气相色谱色谱柱,使各组分分离,依次导入检测器,以得到各组分的检测信号。
按照导入检测器的先后次序,经过对比,可以区别出是什么组分,根据峰高度或峰面积可以计算出各组分含量。
通常采用的检测器有:热导检测器,火焰离子化检测器,氦离子化检测器,超声波检测器,光离子化检测器,电子捕获检测器,火焰光度检测器,电化学检测器,质谱检测器等。
GC(气相色谱)及GC-MS(气质联用)使用规则

GC(气相色谱)及GC-MS(气质联用)使用规则
一.开机
1.GC-MS(气质联用)除停电外长期运行。
若遇停电,管理员负责提前关机。
2.GC每天管理员负责打开钢瓶,检查并调节分压表(压力气体流量)包括:载气(氮气
小于0.5M Pa),燃气(氢气小于0.3M Pa),助燃气(空气小于0.5M Pa)。
3.打开仪器左上角的载气,燃气和助燃气旋钮(开到尽头)。
点火时检测器温度必需高于
200o C
二.进样
4.样品不能含有金属催化剂、无机盐、酸、碱、水等,样品必须经过预处理(沉淀,过滤,
过柱等)。
样品的沸点不能超过300o C。
溶剂建议使用丙酮、乙酸乙酯和乙醚(禁止使用含卤素的溶剂,如:DCM等)
5.每次进样量请不要超过5微升。
6.使用完毕后请及时填写使用记录。
类容包括:使用人姓名、使用时间、仪器情况、样品
名称等。
7.每次使用完毕后请及时清洗进样器。
请将清洗液打入废液瓶中。
8.在每天第一次进样前,请空走一针。
9.如发现仪器有任何异常情况,请及时与管理人员联系。
10.请保持桌面整洁,如果有固体垃圾产生,请及时将其倒入垃圾桶中。
每次打完请将样品
管、样品架拿走,否则没收。
三.关机
11.关机时,先将燃气和助气旋钮关闭,再将燃气和助气钢瓶关闭。
将后进样、柱箱和前检
测的温度降为50o C后关闭总电源。
12.最后关闭载气钢瓶。
气质联用[整理版]
![气质联用[整理版]](https://img.taocdn.com/s3/m/89a8314676232f60ddccda38376baf1ffc4fe388.png)
第一章气相色谱-质谱联用技术气质联用仪是分析仪器中较早实现联用技术的仪器,自1957年J.C.Holmes和F.A.Morrell首次实现气相色谱和质谱联用以后,这一技术得到了长足的发展。
在所有联用技术中气质联用,即GC/MS发展最完善,应用最广泛。
目前从事有机物分析的实验室几乎都把GC/MS作为主要的定性确认手段之一,同时GC/MS也被用于定量分析。
另一方面,目前市售的有机质谱仪,不论是磁质谱、四极杆质谱、离子阱质谱还是飞行时间质谱(TOF),傅立叶变换质谱(FTMS)等均能和气相色谱联用。
还有一些其他的气相色谱和质谱连接的方式,如气相色谱-燃烧炉-同位素比质谱等。
GC/MS 已经成为分析复杂混合物最为有效的手段之一。
气质联用法是将气-液色谱和质谱的特点结合起来的一种用于确定测试样品中不同物质的定性定量分析方法,其具有GC的高分辨率和质谱的高灵敏度。
气相色谱将混合物中的组分按时间分离开来,而质谱则提供确认每个组分结构的信息。
气相色谱和质谱由接口相连。
气质联用法广泛应用于药品检测、环境分析、火灾调查、炸药成分研究、生物样品中药物与代谢产物定性定量分析及未知样品成分的确定。
气质联用法也被用于机场安检中,用于行李中或随身携带物品的检测。
气质联用仪系统一般有下图所示的部分组成。
图1.1 气质联用仪组成框图气质联用仪根据其要完成的工作被设计成不同的类型和大小。
由于在现代质谱仪中最常用的质量分析器是四极杆型的,所以,在本章中将主要介绍这种将不同质量离子碎片分离的方法。
第一节气相色谱仪简介气相色谱仪,通过对欲检测混合物中组分有不同保留性能的气相色谱色谱柱,使各组分分离,依次导入检测器,以得到各组分的检测信号。
按照导入检测器的先后次序,经过对比,可以区别出是什么组分,根据峰高度或峰面积可以计算出各组分含量。
通常采用的检测器有:热导检测器,火焰离子化检测器,氦离子化检测器,超声波检测器,光离子化检测器,电子捕获检测器,火焰光度检测器,电化学检测器,质谱检测器等。
气质联用仪原理

气质联用仪原理气质联用仪是一种高效的分析仪器,它将气相色谱和质谱两种分析技术结合在一起,可以实现对复杂混合物的快速、高灵敏度的分析。
气质联用仪的原理是基于气相色谱和质谱的原理,通过两种技术的联用,可以得到更加准确、可靠的分析结果。
首先,气相色谱是一种对气体或挥发性液体中的化合物进行分离和定性定量分析的技术。
其原理是利用气相色谱柱对样品中的化合物进行分离,然后通过检测器对分离后的化合物进行检测和定量分析。
气相色谱的分离效果取决于柱的性质和样品中化合物的特性,因此可以实现对复杂混合物的分离和定性。
其次,质谱是一种对化合物进行分子结构分析和定性定量分析的技术。
其原理是将化合物中的分子通过碰撞解离成离子,并根据离子的质量比对化合物的分子结构进行分析。
质谱可以提供化合物的分子量、分子结构和碎片离子信息,因此可以对复杂混合物中的化合物进行准确的鉴定和定量分析。
气质联用仪的原理是将气相色谱和质谱两种技术结合在一起,通过气相色谱对样品中的化合物进行分离,然后将分离后的化合物送入质谱进行检测和分析。
这样可以充分发挥两种技术的优势,实现对复杂混合物的高效分析。
在气质联用仪中,气相色谱柱的选择和质谱检测器的参数设置是非常关键的。
气相色谱柱的选择需要根据样品的性质和化合物的特性进行选择,以保证样品中的化合物能够得到有效的分离。
质谱检测器的参数设置需要根据样品中化合物的性质和分子结构进行优化,以保证对化合物的准确检测和分析。
总之,气质联用仪是一种高效的分析仪器,其原理是基于气相色谱和质谱的原理,通过两种技术的联用,可以实现对复杂混合物的快速、高灵敏度的分析。
在实际应用中,需要根据样品的性质和分析要求进行合理的仪器选择和参数设置,以保证分析结果的准确性和可靠性。
通过不断的技术创新和方法优化,气质联用仪在化学、生物、环境等领域的分析应用中将会发挥越来越重要的作用。
气相色谱-质谱(GC-MS)联用技术及其应用(精)

气相色谱-质谱(GC-MS )联用技术及其应用摘要:气相色谱法—质谱(GC-MS )联用技术是一种结合气相色谱和质谱的特性,在试样中鉴别不同物质的方法。
其在环境中的应用主要包括药物检测(主要用于监督药物的滥用)、火灾调查、环境分析、爆炸调查和未知样品的测定。
本文主要列举了GC-MS 在职业卫生检测、医药、农药残留检测、食品、刑事鉴识和社会安全方面的应用。
关键词:GC-MS ,应用,药物检测,环境1 气相色谱-质谱(GC-MS )联用气相色谱法–质谱法联用(Gas chromatography–mass spectrometry,简称气质联用,英文缩写GC-MS )是一种结合气相色谱和质谱的特性,在试样中鉴别不同物质的方法。
GC-MS 的使用包括药物检测(主要用于监督药物的滥用)、火灾调查、环境分析、爆炸调查和未知样品的测定。
GC-MS 也用于为保障机场安全测定行李和人体中的物质。
另外,GC-MS 还可以用于识别物质中以前认为在未被识别前就已经蜕变了的痕量元素。
气相色谱—质谱(GC —MS )联用技术是由两个主要部分组成:即气相色谱(GC )部分和质谱(MS )部分。
气相色谱使用毛细管柱,其关键参数是柱的尺寸(长度、直径、液膜厚度)以及固定相性质(例如,5%苯基聚硅氧烷)。
GC 是用气体作为流动相的色谱法,当试样流经柱子时,根据混合物组分分子的化学性质的差异而得到分离。
分子被柱子所保留,然后,在不同时间(叫做保留时间)流出柱子。
GC 可以将混合物分离为纯物质,但是GC 只依靠保留时间定性,很大程度上具有不可靠性。
MS 是通过将每个分子断裂成离子化碎片并通过其质荷比来进行测定,可以确定待测物的分子量、分子式,但MS 只能对纯物质进行定性,对混合组分定性无能为力。
把气相色谱和质谱这两部分放在一起使用要比单独使用那一部分对物质的识别都会精细很多倍。
单用气相色谱或质谱是不可能精确地识别一种特定的分子的。
通常,经质谱仪处理的需要是非常纯的样品,而使用传统的检测器的气相色谱(如火焰离子化检测器)当有多种分子通过色谱柱的时间一样时(即具有相同的保留时间)不能予以区分,这样会导致两种或多种分子在同一时间流出柱子。
液质联用、气质联用色谱仪的原理

液质联用、气质联用色谱仪的原理
液质联用和气质联用色谱仪的原理主要基于色谱和质谱的结合。
液质联用(LC-MS)以液相色谱作为分离系统,质谱为检测系统。
样品经过液相色谱分离后,流动相分流进入质谱仪,在离子源被电离,产生带有一定电荷、质量数不同的离子。
质谱仪依据不同离子在电磁场中的运动行为不同来检测各个离子,根据每一个离子的质荷比(质量与电荷数比值)不同,显示在色谱图上,最后通过对色谱图的分析,得到样品的检测数据。
气质联用(GC-MS)也是以液相色谱作为分离系统,质谱为检测系统。
样品在质谱部分和流动相分离,被离子化后,经质谱的质量分析器将离子碎片按荷质比分开,经检测器得到质谱图。
气质联用体现了色谱和质谱优势的互补,将色谱对复杂样品的高分离能力,与MS具有高选择性、高灵敏度及能够提供相对分子质量与结构信息的优点结合起来,在药物分析、食品分析和环境分析等许多领域得到了广泛的应用。
气相色谱-质谱联用原理及应用介绍

气相色谱法-质谱联用气相色谱法–质谱法联用(英语:Gas chromatography–mass spectrometry,简称气质联用,英文缩写GC-MS)是一种结合气相色谱和质谱的特性,在试样中鉴别不同物质的方法。
GC-MS的使用包括药物检测(主要用于监督药物的滥用)、火灾调查、环境分析、爆炸调查和未知样品的测定。
GC-MS也用于为保障机场安全测定行李和人体中的物质。
另外,GC-MS 还可以用于识别物质中以前认为在未被识别前就已经蜕变了的痕量元素。
GC-MS已经被广泛地誉为司法学物质鉴定的金标方法,因为它被用于进行“专一性测试”。
所谓“专一性测试”就是能十分肯定地在一个给定的试样中识别出某个物质的实际存在。
而非专一性测试则只能指出试样中有哪类物质存在。
尽管非专一性测试能够用统计的方法提示该物质具体是那种物质,但存在识别上的正偏差。
目录1 历史2 仪器设备2.1 GC-MS吹扫和捕集2.2 质谱检测器的类型3 分析3.1 MS全程扫描3.2 选择的离子检测3.3 离子化类型3.3.1 电子离子化3.3.2 化学离子化3.4 GC-串联MS4 应用4.1 环境检测和清洁4.2 刑事鉴识4.3 执法方面的应用4.4 运动反兴奋剂分析4.5 社会安全4.6 食品、饮料和香水分析4.7 天体化学4.8 医药5 参考文献6 参考书目7 外部链接历史用质谱仪作为气相色谱的检测器是上个世纪50年代期间由Roland Gohlke和Fred McLafferty首先开发的。
当时所使用的敏感的质谱仪体积庞大、容易损坏只能作为固定的实验室装置使用。
价格适中且小型化的电脑的开发为这一仪器使用的简单化提供了帮助,并且,大大地改善了分析样品所花的时间。
1964年,美国电子联合公司(Electronic Associates, Inc. 简称EAI)-美国模拟计算机供应商的先驱在开始开发电脑控制的四极杆质谱仪Robert E. Finnigan的指导下[3]开始开发电脑控制的四极杆质谱仪。
应用气质联用技术对水质进行快速检测

应用气质联用技术对水质进行快速检测作者:白宇来源:《中国食品》2020年第19期在日常生活中,城市生活污水、工业生产废水若任意排放,会对水环境造成严重污染,进而危害用水安全。
将气质联用技术应用于水质检测中,能够对多种有机物进行测定分析,在水源有机污染应急监测中优势明显。
一、气质联用技术概述气质联用技术指的是气象色谱质谱联用技术,其优势主要体现在以下几点:能够对水质中有机物含量进行准确测定;测定结果准确性高;能够对水体中的有机物以及衍生物进行测定分析。
在气质联用技术的实际应用中,检测设备的应用成本比较高,因此目前没有得到推广应用。
虽然气质联用技术应用优势明显,但是也有一些不足,比如,如果水质中有机物的沸点比较高,或者热稳定性较差,则很难进行分离检测,因此在气质联用技术的实际应用中,样品处理难度比较大。
为了提高水质检测结果的准确性和可靠性,在应用气质联用技术时,需要采用多种检测仪器,包括ECD、MIP-AED、FPD等。
通过应用气质联用仪,能够将质谱仪和气象色谱仪的应用优势进行有效结合;通过在检测仪器中加入离子源、检测器以及滤质器,能够达到良好的分离效果,并且能量分散小、灵敏度高、检测分析速度快。
二、气质联用技术测定方法1.扫描方式。
(1)Scan。
在一定的质量范围中,对射频电压进行持续调整,在此过程中,离子质荷比不同,所产生的峰强信号也有一定区别,可得出化合物全谱,然后据此进行谱库检索。
在水质检测中,如果样本浓度比较大,则可利用Scan法进行定量分析。
(2)跳变扫描。
在跳变扫描中,可选择多个特征质量峰,并进行离子检测分析,根据检测结果制作离子流强度随时间的变化曲线。
2.谱图与气质联用技术定性、定量方式。
(1)质谱图,可反映出质荷比与其相对强度之间的關联。
(2)离子谱图法,跳变扫描确定离子流强度在不同时间的变化情况;总离子流色谱法,可采用Scan确定,根据质谱中不同组分所形成的总粒子流,对扫描次数制图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
联用对气相色谱的要求
流速匹配 适合高灵敏度分析 载气不干扰质谱图 色谱柱应当低流失
气相色谱的发展
载气
惰性:He, Ar, N2, H2. 一般使用高纯氦气(>99.999%) 流速在1ml/min左右 需要在气相色谱控制单元开启真空补偿以
SIM模式下获得的质谱图。
总离子流色谱图(TIC)
是一张色谱图 横轴为采样图谱序号,可换算成保留时间 纵轴为当前采样点上所有质荷比离子丰度
之和 用于观察所有物质流出情况 由于所有共流出物都会产生信号响应,信
噪比较低
提取离子色谱图(RIC)
是一张色谱图 横轴为采样图谱序号,可换算成保留时间 强度为特定质荷比范围的离子丰度加和 用于观察有特定碎片离子的物质的流出情
扣除背景之前
GC-MS的定量方法
选择未分离色谱峰
GC-MS的定量方法
定量分析一般使用SIM模式以提高灵敏度 Scan模式获得的数据可以通过提取离子流
的方式,获得特定质荷比离子的色谱图进 行定量分析,比使用总离子流计算要准确 的多。
GC-MS的定量方法
外标法 内标法
一般内标法 同位素内标法
稳定同位素标记
一般来说同位素的化合物性质相当,他们 的RT时间是非常接近的,单单靠色谱是没 有办法区分开的。而质谱有选择离子模式 ,可以很好的把同位素标记物分离开来。
同位素内标法
同位素内标的化学性质与被分析物完全相 同
能够有效的排除提取效率造成的误差 能有效排除
在毛细管气相色谱仪中,同位素内标和化 合物可能保留时间不同,但很接近
库检索
库检索的结果一般用相似度和可能性表示 相似度(Similarity).
计算图谱库谱图和样品谱图的相关系数或夹角余弦 正向相似度 不包含图谱库谱图中没有的质谱峰 反向相似度 不包含样品谱图中没有的质谱峰
可能性(Probability)
根据与图谱库中match的图谱多少计算 match的图谱越多,probability越小 match的图谱越少,probability越大
况 信噪比相对TIC图可以高出10~1000倍
GC-MS的定性方法
图谱库检索
商品化质谱库
NIST库
有标准化合物谱图13万
Willey库
近30万张
Pfleger, Maurer, Weber Drug and Pesticide Library
实验室也可以根据分析需求建立自己的质 谱库
色谱柱
气质联用一般使用毛细管色谱柱
直径0.1 mm to 0.53 mm 的毛细管柱.
气质联用对色谱分离的要求较低,因此常 使用非极性或低极性色谱柱
一般标有MS字样,是低流失色谱柱 色谱柱在使用前一般需要老化,老化的过
程中,不应当把色谱柱接入质谱仪 Nhomakorabea气质联用对质谱的要求
质量范围
1~600Da(AMU)
保证流速控制准确。
进样系统(split/splitless.)
分流(split)
允许样品中的部分进入到色谱柱中。 当被测物浓度较高时使用。
不分流(splitless)
适用于半挥发有机物分析 样品中大部分进入到色谱柱中 一般选用较低的初始柱温,样品在柱头富集 可提高灵敏度5~10倍,但系统容易污染
采样速率
气相色谱峰宽在1~5s之间 定量分析需要10点 定性分析需要至少5点
适当的离子源
EI 通用的离子源 CI 电负性强的物质,如含卤素的分子
常用的质量分析器
四级杆 TOF 磁质谱
质谱仪的工作模式
扫描模式(Scan Mode)
对一定质量范围的离子记录质合比和强度信 息
可以进行谱库检索,常用于定性分析
中的组分分离,并用质谱鉴定分离出来的 组分(定性分析)以及其精确的量(定量 分析)。 气相和质谱控制、数据的记录、分析都由 电脑完成。气质联用具有非常高的灵敏度 (10-15 克),并且可以分析范围非常广 泛,例如农药、环保、药物、兴奋剂等方 面的分析。
将GC-MS联用中的难点
GC-MS 联用是联用技术中困难较少的一种。 在气相色谱和质谱两种技术之间,许多操
选择离子监测模式(SIM Mode)
Selected Ion Monitor,SIM 需要过滤型的质量分析器 选择特定质荷比离子到达检测器 不能进行谱库检索,但灵敏度高5-10倍左右
气质联用的数据处理
色谱质谱联用产生的谱图
质谱图(MS)
Mass Spectrum
总离子流色谱图(TIC)
Total ion Chromatograph
提取离子色谱图(RIC)
Reconstructed ion Chromatograph
Scan模式下色谱图和质谱图的关系
质谱图(MS)
可以在Scan模式下或SIM模式下获得 色谱质谱联用数据实际上为色谱图的贯序
队列 在每个采样时间点均对应一个质谱图 一个采样序列,可以既有Scan模式又有
谱库搜索结果
常用的质谱图处理手段
合成质谱图
选择一段时间内的质谱图进行加和操作 可以提高图谱的信噪比
扣除背景
选择或合成质谱图后,另外选择或合成背景 质谱图,进行图谱相减的操作
可以扣除流动相杂质、柱流失的干扰 可以扣除未完全分离杂质的干扰 可以提高匹配相似度
质谱图扣除背景
扣除背景之后
色谱-质谱联用
卫生检验学系 乔善磊 电话:86868402 Email:alexqiao@
气相色谱质谱联用
气相色谱质谱联用
什么是气相色谱质谱联用 对气相色谱的要求 对质谱的要求 气质联用的数据处理
气相色谱质谱联用(GC-MS)
GC/MS 是一种高效的分析技术 该技术利用气相色谱的分离能力让混合物