正交分解的一般步骤知识分享
高中物理正交分解

高中物理正交分解讲解及解题方法步骤高中物理正交分解是一种常用的解题方法,主要用于解决涉及两个互相垂直方向的物理问题。
下面我将详细讲解正交分解的原理、应用和解题步骤。
一、正交分解的原理正交分解是将一个物理量沿着两个互相垂直的方向进行分解的方法。
在物理学中,很多物理量都可以用正交分解的方法进行求解,如力、速度、加速度等。
正交分解的原理基于矢量的分解和合成。
矢量是既有大小又有方向的量,可以沿任意方向进行分解和合成。
在正交分解中,我们将一个矢量沿两个互相垂直的方向进行分解,得到两个互相垂直的分量。
这两个分量是独立的,它们的大小和方向都可以单独求解。
二、正交分解的应用1.力的正交分解力的正交分解是解决力学问题的常用方法。
在解决涉及两个互相垂直方向的力的问题时,我们可以将力沿这两个方向进行分解,得到两个互相垂直的分力。
然后分别对这两个分力进行分析和求解,最后合成得到总力。
2.速度和加速度的正交分解在解决涉及速度和加速度的问题时,我们也可以使用正交分解的方法。
将速度或加速度沿两个互相垂直的方向进行分解,得到两个互相垂直的分速度或分加速度。
然后分别对这两个分速度或分加速度进行分析和求解,最后合成得到总速度或总加速度。
三、正交分解的解题步骤1.确定需要分解的物理量。
2.确定两个互相垂直的方向。
3.将物理量沿这两个方向进行分解,得到两个互相垂直的分量。
4.分别对这两个分量进行分析和求解。
5.最后将两个分量合成得到总物理量。
四、例题解析例题:一个物体在水平方向上受到两个力的作用,这两个力的大小分别为F1=10N和F2=20N,方向互相垂直。
求这个物体的合力大小和方向。
解题步骤:1.确定需要分解的物理量:合力。
2.确定两个互相垂直的方向:水平方向和竖直方向。
3.将合力沿这两个方向进行分解,得到两个互相垂直的分力:水平分力和竖直分力。
4.分别对这两个分力进行分析和求解:水平分力为F1=10N,竖直分力为F2=20N。
5.最后将两个分力合成得到总合力:F=√(F1²+F2²)=√(10²+20²)=√500N,方向为与水平方向成arctan(2)的夹角斜向上。
正交分解法全

F θ
G
例题9:质量为m的物体放在倾角为θ的斜面上,它
与斜面的滑动摩擦因数为μ,在水平恒定推力F的作
用下,物体沿斜面匀速向上运动。则物体受到的摩
擦力是(
)
BC
N
A、 μmgcosθ
B、 μ(mgcosθ+Fsin θ)
F C、Fcos θ-mgsi0:质量为m的物体压在竖直墙面上,外力与
正交分解法
学会正交分解法求合力 解决复杂平衡问题
已知F=100N,两分力的方向互相垂直,如图 求出:两个分力的大小
F=100N F2
θ =30° F1
F2=Fsin θ=100×0.5=50N
F1=Fcos θ =100×
3
2 =50
3N
2
力的正交分解
• 在很多问题中,常把物体受到的各个力都 分解到互相垂直的两个方向x轴、y轴上
去,然后先求这两个方向上的力的合力Fx 和Fy,再用Fx、Fy求最终的合力。
• 这样可把复杂问题简化,尤其是在求多个 力的合力时,用正交分解的方法,先将力 分解再合成非常简单.
力的正交分解
(1)定义:把一个已知力沿着两个互相
垂直的方向进行分解
(2)正交分解步骤: ①建立xoy直角坐标系
y
F1y
F2
例六: 木箱重500 N,放在水平地面上, 一个人用大小为200 N与水平方向成30°向 下的力推木箱,木箱沿地平面匀速运动,求 木箱与地面的动摩擦因数。
30°
例题7:质量为m的物体放在倾角为θ的光滑斜面上, 在平行斜面的推力的作用下,物体沿斜面匀速
运动。物体与斜面的动摩擦因数为μ 若向上运动,求:推力的大小_____________
人教版高中物理必修一3-5正交分解法1

由勾股定理得合力大小:ΣF=22)()(y x F F ∑+∑ =N22)90(140-+=166.4N∵ΣF x ﹥0、ΣF y ﹥0 ∴ΣF 在第四象限内,设其与x 轴正向夹角为α,则: tg α=x yF F ∑∑=NN14090=0.6429 ∴α=32.7º运用正交分解法解题时,x 轴和y 轴方向的选取要根据题目给出的条件合理选取,即让受力物体受到的各外力尽可能的与坐标轴重合,这样方便解题 。
运用正交分解法解平衡问题时,根据平衡条件F 合=0,应有ΣF x =0,ΣF y =0,这是解平衡问题的必要和充分条件,由此方程组可求出两个未知数。
例2 重100N 光滑匀质球静止在倾角为37º的斜面和与斜面垂直的挡板间, 求斜面和挡板对球的支持力F 1, F 2。
yF 1 xF 2G37°图 3解:选定如图3所示的坐标系,重球受力如图3所示。
由于球静止,所 以有:⎩⎨⎧=︒-=︒-037sin 037cos 21G F G F∴N N G F 808.010037cos 1=⨯=︒= N N G F 606.010037sin 2=⨯=︒=1.如图所示,用绳AO 和BO 吊起一个重100N 的物体,两绳AO 、BO 与竖直方向的夹角分别为30o 和40o ,求绳AO 和BO 对物体的拉力的大小。
2.如图所示,重力为500N的人通过跨过定滑轮的轻绳牵引重200N的物体,当绳与水平面成6 0o角时,物体静止,不计滑轮与绳的摩擦,求地面对人的支持力和摩擦力。
3. (8分)如图6所示,θ=370,sin370=0.6,cos370=0.8。
箱子重G=200N,箱子与地面的动摩擦因数μ=0.30。
要匀速拉动箱子,拉力F为多大?4.(8分)如图,位于水平地面上的质量为M的小木块,在大小为F、方向与水平方向成a角的拉力作用下沿地面作匀速直线运动。
求:(1)地面对物体的支持力?(2)木块与地面之间的动摩擦因数?5.(6分)如图10所示,在倾角为α=37°的斜面上有一块竖直放置的档板,在档板和斜面之间放一个重力G=20N的光滑球,把球的重力沿垂直于斜面和垂直于档板的方向分解为力F1和F2,求这两个分力F1和F2的大小。
正交分解

正交分解法——把力沿着两个经选定的互相垂直的方向分解,其目的是便于运用普通代数运算公式来解决矢量运算。
利用力的正交分解法求合力:这是一种比较简便的求合力的方法,它实际上是利用了力的分解的原理把力都分解到两个互相垂直的方向上,然后就变成了在同一直线上的力的合成问题了.这样计算起来就简单多了。
力的正交分解法步骤如下:1、正确选定直角坐标系:通常选共点力的作用点为坐标原点,坐标轴的方向的选择则应根据实际问题来确定。
原则是使坐标轴与尽可能多的力重合,即是使需要向两坐标轴投影分解的力尽可能少,在处理静力学问题时,通常选用水平方向和竖直方向上的直角坐标,当然在其它方向较简便时,也可选用。
一般选水平和竖直方向上的直角坐标;也可以选沿运动方向和垂直运动方向上的直角坐标.在力学计算上,这两种选择可以使力的计算最简单,只要计算到互相垂直的两个方向就可以了,不必求总合力.2、分别将各个力投影到坐标轴上:分别求x轴和y轴上各力的投影的合力和其中:(式中的轴上的两个分量,其余类推。
)这样,共点力的合力大小可由公式:求出。
设力的方向与轴正方向之间夹角是。
∴通过数学用表可知数值。
注意:如果这是处理多个力作用下物体平衡问题的好办法。
计算方法举例:例:如图所示,物体A在倾角为θ的斜面上匀速下滑,求物体受到的摩擦力及动摩擦因数。
分析:选A为研究对象分析A受力作受力图如图,选坐标如图:将不在坐标轴上的重力在x,y坐标上分解:Gx=GžsinθGy=Gžcosθf在x轴(反向),N在y轴上(正向)∵物体匀速下滑则有则一、合力与分力:在实际问题中,一个物体往往同时受到几个力的作用。
如果一个力产生的效果与原来几个力产生的效果相同,这个力就叫那几个力的合力,而那几个力就叫这个力的分力。
二、力的合成与分解:求几个力的合力的过程叫力的合成,求一个力的分力的过程叫力的分解。
合力与分力有等效性与可替代性。
求力的合成的过程实际上就是寻找一个与几个力等效的力的过程;求力的分解的过程,实际上是寻找几个与这个力等效的力的过程。
正交分解知识梳理

正交分解法: 1、概念:将物体受到的所有力沿选定的两个相 互 垂直 的方向分解的方法,是处理相对复杂的 多力的合成与分解的常用方法。
2、目的:将力的合成化简为同向、反向或垂直 方向的分力,便于运用普通代数运算公式解决矢 量的运算,“分解”的目的是为了更好地“合 成”。
y
N
Fy
y轴方向:N+Fy-G=0
F
N G Fy 140 N
X轴方向①:Fx-f=0
f
Fx
X
f Fx 80N
X轴方向②:f= μ N
G
f N 0.57 •140N 80N
例2、如图,F1=10N,F2=6N,F3= 10 3N,求合力。
y
F3x cos 30 3
F3
2
x
F3x
正交分解法的步骤:
1)建立坐标系。以为坐标原点,直角坐标系x轴和y轴 的选择应使尽量多的力在坐标轴上。
2)正交分解各力。即将每一个不在坐标轴上的力分解 到x和y轴上,并求出各分力的大小。
3)分别求出x轴和y轴上各分力的合力,即
Fx Fx1 Fx2 Fx3 ......
Fy Fy1 Fy2 Fy3......
动摩擦因数μ=0.57,当F=100N时,箱子匀速
被拉动,求①箱子与地面之间的压力N为多大?
②用两种方法求解箱子与地面之间的摩擦力f为
多大? N
F
f
G
G=200N Fy sin 37 0.6
Fy 0.6F 60N
F
F=100N μ=0.57
Fx cos 37 0.8 F
正交分解法知识点总结

正交分解法知识点总结一、正交分解法的基本概念1. 正交化在线性代数中,对于一个向量空间内的一组基向量,我们可以通过一定的方法将它们转化为一组正交基,这个过程就称为正交化。
正交化的目的是为了使得基向量之间互相正交,也就是说它们的内积为零。
这样一组正交基向量就可以更容易地用来表示其他向量,比如说对于一个向量,我们可以将它在这组正交基上的投影相加得到原向量,而不需要进行繁琐的计算。
2. 单位化在将一组向量正交化之后,我们通常还需要将它们单位化,也就是说将它们的模长归一化为1。
这样一来,我们得到的一组正交单位向量就可以作为线性空间的一组标准正交基。
这样的基向量在表示其他向量的时候更加方便,也符合我们对于标准正交基的要求。
所以在正交化的过程中,单位化是一个必要的步骤。
3. 正交分解正交分解是指将一个向量表示为一组正交基上的线性组合的过程。
对于一个线性空间中的一个向量,我们可以将它在一组正交基上的投影相加得到原向量。
这样的表示方法在很多情况下是非常方便的,比如说在计算内积、求解线性方程组、进行特征值分解等问题时,我们可以借助正交分解的方法来简化运算。
二、Gram-Schmidt正交化方法Gram-Schmidt正交化方法是一种常用的将线性无关向量集合正交化的算法。
它的基本思想是通过一系列的正交化和单位化操作,将原始的线性无关向量集合转化为一组正交基。
Gram-Schmidt正交化方法的具体步骤如下:1. 对于给定的一组线性无关的向量{v1,v2,…,vn},首先取v1作为第一个正交基。
2. 对于第i个向量vi,将它在前i-1个正交基上的投影相减,得到vi的正交化向量ui。
3. 将ui进行单位化,得到第i个正交单位向量ei。
4. 重复上述过程,直到得到一组正交单位向量{e1,e2,…,en}。
Gram-Schmidt正交化方法的优点是它的思想简单,易于实现,而且对于实际应用中的大多数情况来说,它都能够得到不错的结果。
正交分解

三、正交分解法
1、正交分解法:在许多情况下,根据力的实际作用效果,我们可以把一个力分解为两个相互垂直的分力,把力沿着两个选定的两个互相垂直的方向分解,叫力的正交分解法。
2、原理:一条直线上的两个或两个以上的力,其合力可以由代数运算求得。
当物体受到多个力的作用,并且这几个力只共面不共线时,其合力用平行四边形定则求解很不方便,为此,我们可以建立一个直角坐标系,先将各力正交分解在两条互相垂直的坐标轴上 ,分别求出两个不同方向上的合力x F 和
y
F
,然后可以由
F =
思路:先分再合
3、正交分解法的步骤:
(1)以共点力的作用点为原点,建立直角坐标系; (2)将合力分解为沿x 轴方向分力1,
2,3x x x
F
F F …和沿y 轴方向分力
1,2,3y y y
F F F …(与坐标轴重合的力不分解),并求出各分力大小;
(3)分别求出x 轴方向合力123x
x x x
F F F F =+++…再将
,x y
F F 二力合成,合力
大小:
F =
(4)设合力F 与x 的夹角为θ,则:tan y x
F F θ=
查表知θ,即知分力F 的
方向 4、例题 如图所示,力
12,3,F F F 4
F 同一物体上的共面共点力,其
中
123420,20,,F N F N F F ====,各力之间的夹角已标出,求合
力F 的大小和方向。
答:F ,方向与3F一致。
正交分解的步骤

正交分解的步骤正交分解是现代数学中一个重要的对称性研究方法,它是比较简单方便的研究复杂问题的工具,如空间几何、分类理论、图论、逻辑学等。
它也可以应用于其他各种领域,如抽象代数、凸分析以及计算机科学等。
正交分解可以被用来解决许多复杂的问题,它不仅可以减少问题的复杂性,还可以使问题变得更加容易理解和解决。
本文将介绍正交分解的步骤和应用实例。
正交分解的基本思想是将一个复杂的问题分解为几个相互正交的子问题,然后分别处理每个子问题,最终将子问题的解决方案综合起来,从而解决原问题。
正交分解通常需要满足两个条件来准备分解:(1)研究对象必须是完全可以分解的;(2)子问题之间必须是完全正交的。
正交分解的步骤主要包括以下几步:(1)确定研究对象。
首先,确定要研究的复杂问题,分析其特征,并确定其可分解的特性。
(2)确定子问题的特性。
根据正交分解的原理,子问题之间必须完全正交,因此可以从多种角度来确定子问题的特性,比如可以根据原问题的形式进行转换,从而将复杂问题转换为几个完全正交的子问题。
(3)求解子问题。
根据确定的特性,分别求解子问题,得到子问题的解决方案。
(4)整合解决方案。
最后,将子问题的解决方案综合起来,从而获得原问题的解决方案。
正交分解在很多领域都有重要的应用,最常见的是在图论中的应用。
例如,可以使用正交分解解决图的最小环路问题。
该问题要求在无权图中找到一条最短的路径,不经过任何顶点两次。
正交分解可以将这个问题分解为几个子问题,根据子问题的特性,可以分别求解每个子问题,最终合并子问题的解决方案,从而解决原问题。
正交分解也可以用于抽象代数和凸分析中的许多问题,例如,可以使用正交分解来求解一个给定的凸多项式的最优化问题。
此外,正交分解还可以应用于许多其他研究领域,如信号处理、机器学习等。
综上所述,正交分解是一种灵活有效的研究复杂问题的方法,它可以将复杂问题分解为几个相互完全正交的子问题,然后分别求解每个子问题,最终将子问题的解决方案综合到一起,从而解决原问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正交分解的一般步骤
收集于网络,如有侵权请联系管理员删除
正交分解的一般步骤: 1.对物体进行受力分析。
2.根据物体受力的特点,以力的作用点为原点建立xOy 直角坐标系。
注意要让尽可能多的力在坐标轴上,这样需要分解的力会减少,从而使问题简单些。
3.将不在坐标轴力依次向x 轴和y 轴上分解为y x F F 11,;
y x F F 22,;。
,这样做的目的就是要让不共线的几个力变的共线,
从而方便求解合力。
4.分别求出x 轴和y 轴上的合力F x 、F y 。
注意用正方向的力减去负方向的力,求出合力。
合力的正负表示合力的方向。
4.根据x 、y 轴上的合力F x 、F y ,求出最终的合力F ,大小22y
x F
F F
+= 方向x
y F F =
θtan
例1、如图所示,重力为500N 的人通过跨过定滑轮的轻绳牵引重200N 的物体,当绳与水平面成60°角时,物体静止。
不计滑轮与绳的摩擦,求地面对人的支持力和摩擦力。
例2、大小均为F 的三个力共同作用在O 点,如图,F 1与F 2、F 2与F 3之间的夹角均为60º,求这三个力的合力。
例3、如图所示:将重力为G 的光滑圆球用细绳拴在竖直墙壁上,如图则
(1)求绳对球的拉力T 和墙对球的弹力N
(2)当把绳的长度增长,绳对球的拉力T 和墙对球的弹力N 是增大还是减小。
正交分解的一般步骤: 1.对物体进行受力分析。
2.根据物体受力的特点,以力的作用点为原点建立xOy 直角坐标系。
注意要让尽可能多的力在坐标轴上,这样需要分解的力会减少,从而使问题简单些。
3.将不在坐标轴力依次向x 轴和y 轴上分解为y x F F 11,;
y x F F 22,;。
,这样做的目的就是要让不共线的几个力变的共线,
从而方便求解合力。
4.分别求出x 轴和y 轴上的合力F x 、F y 。
注意用正方向的力减去负方向的力,
求出合力。
合力的正负表示合力的方向。
4.根据x 、y 轴上的合力F x 、F y ,求出最终的合力F ,大小22y
x F
F F +=
方向x
y F F =
θ
tan
例1、如图所示,重力为500N 的人通过跨过定滑轮的轻绳牵引重200N 的物体,当绳与水平面成60°角时,物体静止。
不计滑轮与绳的摩擦,求地面对人的支持力和摩擦力。
例2、大小均为F 的三个力共同作用在O 点,如图,F 1与F 2、F 2与F 3之间的夹角均为60º,求这三个力的合力。
例3、如图所示:将重力为G 的光滑圆球用细绳拴在竖直墙壁上,如图则
(1)求绳对球的拉力T 和墙对球的弹力N
(2)当把绳的长度增长,绳对球的拉力T 和墙对球的弹力N 是增大还是减小。
正交分解的一般步骤: 1.对物体进行受力分析。
2.根据物体受力的特点,以力的作用点为原点建立xOy 直角坐标系。
注意要让尽可能多的力在坐标轴上,这样需要分解的力会减少,从而使问题简单些。
3.将不在坐标轴力依次向x 轴和y 轴上分解为y x F F 11,;
y x F F 22,;。
,这样做的目的就是要让不共线的几个力变的共线,
从而方便求解合力。
4.分别求出x 轴和y 轴上的合力F x 、F y 。
注意用正方向的力减去负方向的力,求出合力。
合力的正负表示合力的方向。
4.根据x 、y 轴上的合力F x 、F y ,求出最终的合力F ,大小2
2y x F F F +=
方向x
y F F =
θ
tan
例1、如图所示,重力为500N 的人通过跨过定滑轮的轻绳牵引重200N 的物体,当绳与水平面成60°角时,物体静止。
不计滑轮与绳的摩擦,求地面对人的支持力和摩擦力。
例2、大小均为F 的三个力共同作用在O 点,如图,F 1与F 2、F 2与F 3之间的夹角均为60º,求这三个力的合力。
例3、如图所示:将重力为G的光滑圆球用细绳拴在竖直墙壁上,如图则
(1)求绳对球的拉力T和墙对球的弹力N
(2)当把绳的长度增长,绳对球的拉力T和墙对球的弹力N是增大还是减
小。
收集于网络,如有侵权请联系管理员删除。