基于FPGA的数字频率计的设计和实现

合集下载

基于FPGA的数字频率计的设计

基于FPGA的数字频率计的设计

沈 磊 , 善 化 ( 徽 理 工 大 学 电气 与信 息 工 程 学 院 , 徽 淮 南 2 2 0 ) 姚 安 安 3 0 1
S e e, o Sh n h a( e、 i I n fr t nE gn e igC l g , h i nv ri f h nLi Ya a — u El t dI omai n ie r ol e (r a a n o n e An u i s yo U e t
t n a t A of r ca f r Max pls Im a fc ur t a d i fa ED on s t o r wa e lto m + u I . nua t es i h r war lc r i uibo r。 wnla t e p o ed e t h P A s e ee ti cr t c c a d. do O ds “ f l r C ur o t e F G
现场 可 编 程 门 阵
图 1数 字频 率计 的原 理 框 图
片 F G (idPorm b a s Ⅱ 广 P AFe rga malG t a l e eA
列) 片上 , 个 系统 非 常 精 简 , 够 达 到 I 的 技术 指 标 。 芯 整 并能 川样 根
据 不 同 的需要 还 可以 重新 编 程 下载 , 行 升 级} 进 I 。
S in e& T c n l yAn u Hu ia 3 0 1 ce c e h oo . h i an n2 2 0 1 g
摘 要 : 硬件描 述语 言 V D 对 频率t 用 H L t 系统进 行设 计 , 此程序 在 E A软件平 台 M D pu I 上编 译仿 真后 , 作 lsI 制 出其 硬件 电路板 , 再将 程序 下载 到 F G P A模块 中实现 。 件设 计 中只需一 个下载 芯片 E 2 5 剩余 皆是输 入输 出部 硬 PC , 分, 包括 时钟 和数码 管驱动 以及发 光二檄 管 , 大大 地简化 了电 路结构 的复杂性 。 又提高 了电路 的稳 定性 。

计算机毕业论文_基于FPGA的等精度频率计的设计与实现

计算机毕业论文_基于FPGA的等精度频率计的设计与实现

目录前言...............................................................1 第一章 FPGA及Verilog HDL..........................................2 1.1 FPGA简介.....................................................2 1.2 Verilog HDL 概述.............................................2 第二章数字频率计的设计原理........................................3 2.1 设计要求.....................................................3 2.2 频率测量.....................................................3 2.3.系统的硬件框架设计..............................................4 2.4系统设计与方案论证............................................5 第三章数字频率计的设计............................................8 3.1系统设计顶层电路原理图........................................8 3.2频率计的VHDL设计.............................................9 第四章软件的测试...............................................15 4.1测试的环境——MAX+plusII.....................................15 4.2调试和器件编程...............................................15 4.3频率测试.....................................................16基于FPGA的等精度频率计的设计与实现摘要:本文详细介绍了一种基于FPGA的高精度频率计。

基于FPGA的数字频率计实验报告(能测占空比)

基于FPGA的数字频率计实验报告(能测占空比)

基于FPGA的数字频率计设计学院:专业:班级:姓名:学号:审阅老师:评分:目录一、课程设计目的 (3)二、设计任务 (3)三、功能要求与技术指标 (3)四、数字频率计工作原理概述 (3)五.数字频率计实现方法 (4)六.结论与误差分析 (11)七.VHDL程序: (12)一、课程设计目的熟悉EDA工具,掌握用VHDL语言进行数字系统设计的基本方法和流程,提高工程实践能力。

二、设计任务设计一数字频率计,用VHDL语言描述,用QuartusII工具编译和综合,并在实验板上实现。

三、功能要求与技术指标1.基本功能要求(1)能够测量出方波的频率,其范围50Hz~50KHz。

(2)要求测量的频率绝对误差±5Hz。

(3)将测量出的频率以十进制格式在实验板上的4个数码管上显示。

(4)测量响应时间小于等于10秒。

以上(1)~(4)基本功能要求均需实现。

2.发挥部分(1)提高测量频率范围,如10Hz~100KHz或更高、更低频率,提高频率的测量绝对值误差,如达到±1Hz。

(2)可以设置量程分档显示,如X1档(显示范围1Hz~9999Hz),X10档(显示范围0.001KHz~9.999KHz),X100档(显示范围0.100KHz~999.9KHz)...可以自定义各档位的范围。

量程选择可以通过按键选择,也可以通过程序自动选择量程。

(3)若是方波能够测量方波的占空比,并通过数码管显示。

以上(1)~(3)发挥功能可选择实现其中的若干项。

四、数字频率计工作原理概述1.数字频率计简介在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此频率的测量就显得更为重要。

而数字频率计是采用数字电路制成的实现对周期性变化信号的频率的测量。

2.常用频率测量方法:方案一采用周期法。

通过测量待测信号的周期并求其倒数,需要有标准倍的频率,在待测信号的一个周期内,记录标准频率的周期数,这种方法的计数值会产生最大为±1个脉冲误差,并且测试精度与计数器中记录的数值有关,为了保证测试精度,测周期法仅适用于低频信号的测量。

基于FPGA的数字频率计设计

基于FPGA的数字频率计设计

基于FPGA的数字频率计设计摘要数字频率计是一种常用的电子测量仪器,在工程领域中广泛应用。

与传统的模拟频率计相比,数字频率计具有精度高、响应快、体积小等优点,在现代电子技术领域中广泛应用。

本文将介绍如何使用FPGA设计数字频率计,并通过示例演示FPGA的应用。

介绍数字频率计是一种将输入信号的频率转换成计数信号输出的电子工具,它可以测量频率、周期和时间间隔等参数。

频率计通常采用数字进制计数方式,其测量精度取决于计数器的精度和时钟频率。

在电子电路测试、无线通信、音频、视频等领域中,数字频率计起着至关重要的作用。

FPGA(Field Programmable Gate Array)是一种具有灵活性、可编程性和高速性的逻辑芯片,适用于数字电路的设计和实现。

与ASIC(Application-Specific Integrated Circuit)相比,FPGA具有短设计周期、可重构、低成本等特点。

在数字系统中,FPGA作为计数器的电子部件,使得数字频率计的设计变得更加灵活和简便。

FPGA数字频率计设计系统框图FPGA数字频率计的系统框图如下:FPGA数字频率计系统框图FPGA数字频率计系统框图如图所示,FPGA数字频率计的输入端连接到待测信号,经过放大和滤波处理后送入计数器中进行计数,计数器输出的计数值存储在FPGA的存储器中并进行处理,最终形成数字频率读数并显示在数码管上。

输入端FPGA数字频率计的输入端通常使用低噪声前置放大器和有限带宽滤波器的组合,以保证待测信号的准确度和稳定性。

实际设计中应根据待测信号的具体情况选择合适的放大系数和滤波器参数。

计数器数字频率计的计数器是FPGA实现的核心部件。

计数器根据输入端计数触发信号进行计数,并将计数器输出的计数值存储在FPGA的存储器中。

计数器的计数值越大,频率读数的分辨率就越高。

在FPGA中,计数器可以采用累加计数器或移位寄存器计算,具体实现取决于设计者的需求和性能要求。

基于FPGA的数字频率计的设计与实现

基于FPGA的数字频率计的设计与实现
维普资讯
基于 F G P A的数 字频 率计的设计 与实现
张兆莉 。 等
基于 F G P A的数 字频 率计的设计与实现
De in a d Re l a in o gi l r q en y M e e s d on F GA sg n ai t fDi t e u c t rBa e P z o a F
文献 标识码 :A
A s a t i t ' un ym t ei e i P A d v l m n sf a - s 1 si r u e .T e1H l zi u m aue bt c :A dg a f q e e e r s nd w t F G e e p e t o w r Q  ̄u t d c d h z— p t esrd r il e i ed g h o t e 1i no MH n
p le sg aso h ii lie u n y mee a s d frme s rn rq e c us in l fte dgt i q e c trc n beu e o a u ig fe u n y,p ro a ' eid,p lewi h a d d t ai u s dt n uy rto,ec T e ts rs l tby t. h e t e ut sa l s d s a 7 3 sv n s g n umei u e ,a d te me s rn a g s ma wi h d o e uo t al. T a u n ro se u lt r iply O1 e e —e me tn rc tb s n h a uig r n e y be s t e v ra tmai l c c y heme s r g er ri q a o o i

(完整版)基于FPGA的等精度频率计的设计与实现毕业设计

(完整版)基于FPGA的等精度频率计的设计与实现毕业设计

第一章课题研究概述1.1课题研究的目的和意义在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此,频率的测量就显得更为重要。

测量频率的方法有多种,其中电子计数器测量频率具有精度高、使用方便、测量迅速,以及便于实现测量过程自动化等优点,是频率测量的重要手段之一。

目前常用的测频方案有三种:方案一:完全按定义式F=NT进行测量。

被测信号Fx经放大整形形成时标ГX,晶振经分频形成时基TR。

用时基TR开闸门,累计时标ГX 的个数,则有公式可得Fx=1ГX=NTR。

此方案为传统的测频方案,其测量精度将随被测信号频率的下降而降低。

方案二:对被信号的周期进行测量,再利用F=1T(频率=1周期)可得频率。

测周期时,晶振FR经分频形成时标ГX,被测信号经放在整形形成时基TX控制闸门。

闸门输出的计数脉冲N=ГXTR,则TX=NГX。

但当被测信号的周期较短时,会使精度大大下降。

方案三:等精度测频,按定义式F=NT进行测量,但闸门时间随被测信号的频率变化而变化。

如图1所示,被测信号Fx经放大整形形成时标ГX,将时标ГX经编程处理后形成时基TR。

用时基TR开闸门,累计时标ГX的个数,则有公式可得Fx=1ГX=NTR。

此方案闸门时间随被测信号的频率变化而变化,其测量精度将不会随着被测信号频率的下降而降。

本次实验设计中采用的是第三种测频方案。

等精度频率计是数字电路中的一个典型应用,其总体设计方案有两种:方案一:采用数字逻辑电路制作,用IC拼凑焊接实现。

其特点是直接用现成的IC组合而成,简单方便,但由于使用的器件较多,连线复杂,体积大,功耗大,焊点和线路较多将使成品稳定度与精确度大打折扣,而且会产生比较大的延时,造成测量误差、可靠性差。

方案二:采用可编程逻辑器件(CPLD)制作。

随着现场可编程门阵列FPGA的广泛应用,以EDA工具作为开发手段,运用VHDL等硬件描述语言语言,将使整个系统大大简化,提高了系统的整体性能和可靠性。

毕业设计 基于fpga的等精度数字频率计的设计

毕业设计 基于fpga的等精度数字频率计的设计

本科生毕业论文题目:基于fpga的等精度数字频率计的设计摘要在电子工程,资源勘探,仪器仪表等相关应用中,频率计是工程技术人员必不可少的测量工具。

频率测量也是电子测量技术中最基本最常见的测量之一。

不少物理量的测量,如转速、振动频率等的测量都涉及到或可以转化为频率的测量。

基于传统测频原理的频率计的测量精度会随被测信号频率的下降而降低。

本文介绍了一种基于FPGA的等精度数字频率计,它不但具有较高的测量精度,而且在整个测量区域能保持恒定的测量精度。

文章首先介绍了硬件描述语言(HDL)的发展,以VHDL为核心,说明了利用VHDL语言进行设计的步骤。

然后介绍FPGA器件的基本结构和开发流程,接着阐述等精度数字频率计的工作原理以及利用VHDL语言实现数字频率计的具体做法,重点是利用BCD码减法实现的BCD码除法器的设计,最后还利用modelsim软件对其进行了仿真,具体分析验证了此设计的正确性。

关键词:FPGA VHDL 等精度BCD码除法AbstractCymometer is a necessary measure tool for technical engineers in electronic engineering , resource exploration and apparatus using . frequency mesure is one of the most essential and the most common mesure of electronic mesure technology . many physical quantities’ mesure , such as rotate speed , vibration frequency’s mesure , is related with or can be transformed into frequency mesure.The precision of cymometer based on traditional frequency-testing theory will decrese when the measured frequency becomes lower. this article introduces a cymometer of same-precision based on FPGA. The cymometer not only has high precision, but also its precision doesn’t decrese when the measured frequency becomes lower.This article first introduces the development of HDL , focusing on VHDL , present the step of design of VHDL . then it introduces the basic structure and the develop flow of FPGA device . in the end , it introduces the theory of cymometer and the specific implement of cymometer based on VHDL , emphasizing the theory of implementing BCD division. the function simulation and logic synthesis also come out, showing the correction of the design .Keywords: FPGA VHDL same-precision BCD division目录第一章前言............................................................................................................... 错误!未定义书签。

FPGA频率计实验报告

FPGA频率计实验报告

数字频率计实验报告数字频率计用VHDL语言设计实现基于FPGA的数字频率计学校:学院:姓名:学号:实验室:实验日期:摘要本文介绍了一种基于FPGA的数字频率的实现方法。

该设计采用硬件描述语言VHDL,在软件开发平台ISE上完成。

该设计的频率计有三种闸门选择,分别是1s、0.1s、0.01s,能较准确的测量频率在10Hz到10MHz之间的信号。

使用ModelSim仿真软件对各个模块的VHDL程序做了仿真,对各个模块的功能进行了测试,并完成了综合布局布线,最终下载到芯片上取得了良好测试效果。

关键词:VHDL、频率计、 FPGA、测量目录第一章引言 ..................................... 错误!未定义书签。

第二章基于FPGA的VHDL设计流程 . (3)2.1概述 (3)2.2VHDL语言和V ERILOG HDL介绍 (3)2.2.1 VHDL的特点 (4)2.3FPGA介绍 (5)第三章数字频率计的软件开发环境 ................. 错误!未定义书签。

3.1开发环境 (6)3.2M ODEL S IM介绍 (6)3.3ISE介绍 (5)第四章数字频率计的设计与实现 (7)4.1任务要求 (7)4.2测量原理................................... 错误!未定义书签。

4.3设计方案与系统需求 (7)4.4各模块的功能及实现 (9)4.4.1 分频器 (9)4.4.2 闸门选择器 (10)4.4.3 测频控制器............................. 错误!未定义书签。

4.4.4 计数器................................. 错误!未定义书签。

4.4.5 锁存器................................. 错误!未定义书签。

4.4.6 显示控制系统........................... 错误!未定义书签。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于FPGA 的数字频率计的设计和实现杨守良(渝西学院物理学与电子信息工程系 重庆 402168)摘 要:现场可编程门阵列的出现给现代电子设计带来了极大的方便和灵活性,使复杂的数字电子系统设计变为芯片级设计,同时还可以很方便地对设计进行在线修改。

本文以设计一个四位显示的十进制数字频率计为例,介绍了在一片F PG A 芯片上实现多位数字频率计的设计方法和实现步骤,并且给出了仿真结果。

在设计中,所有频段均采用直接测频法对信号频率进行测量,克服了逼近式换挡速度慢的缺点。

所设计的电路通过硬件仿真,下载到目标器件上运行,能够满足实际测量频率的要求。

关键词:数字频率计设计;V HDL ;现场可编程门阵列(FP GA );直接测频法中图分类号:T P 271+.82 文献标识码:B 文章编号:1004373X (2005)1111803Construction and Realization of the Digital C ymometer Based on FPGAY A NG Shouliang(Department of Physics &Elec t roni c Informa tion Eng i neeri ng ,West ern Chongqing Uni v ersit y ,Chongqi ng ,402168,China )Abstract :T he appear ance of F PG A (Field P ro gr ammable G ate A r ray )leads to t he co nvenience and flex ibility of the mo der n electr o nic construction ,w hich cha ng es the complicated dig ital electr onic sy stem co nstr uctio n into the on chip co nst ructio n .On the o ther hand ,it can a lso make so me o nline modificat ion expediently.W ith a case which describes an quadbit sho wn on t he decimal digital fr equency ,t he author intro duces the co nstr uct ion metho d and the r ealiza tio n steps o n a sing le F PG A chip.T he aut ho r show s an em ulational result.D ur ing the constr uction pro cess,the sig nal f requency of all the F requency Channel is measur ed by the way o f direct measurement ,which o ver comes the shor tcoming of lo w appr ox imate shift speed .W ith the cer tificatio n of t he har dwar e emulatio n system,t he cir cuit constructed can meet the demand of measur ing fr equency in the r eality,which has so me theor etic and pr act ical sig nificatio n.Keywords :desig n of the dig ital cymo meter ;V HDL ;F PGA (Field Pr og ram mable G ate A rr ay );dir ect frequency measur ement收稿日期:20050122 可编程逻辑器件和EDA 技术给今天的硬件系统设计者提供了强有力的工具,使得电子系统的设计方法发生了质的变化。

传统的“固定功能集成块+连线”的设计方法正逐步地退出历史舞台,而基于芯片的设计方法正在成为现代电子系统设计的主流。

在设计方法上,已经从“电路设计—硬件搭试—焊接”的传统方式转到“功能设计—软件模拟—下载”的电子设计自动化模式,从而大大提高了系统设计的灵活性。

本文以一个四位的十六进制频率计为例,介绍其设计和实现方法。

1 数字频率计设计实例数字频率计是计算机、通讯设备、音频视频等科研生产领域不可缺少的测量仪器。

采用V DHL 编程设计实现的数字频率计,除被测信号的整形部分、键输入部分和数码显示部分以外,其余全部在一片FPGA 芯片上实现,整个设计过程变得十分透明、快捷和方便,特别是对于各层次电路系统的工作时序的了解和把握显得尤为准确,而且具有灵活的现场可更改性。

在不更改硬件电路的基础上,对系统进行各种改进还可以进一步提高系统的性能和测量频率的范围。

该数字频率计具有高速、精确、可靠、抗干扰性强、而且可根据需要进一步提高其测量频率的范围而不需要更改硬件连接图,具有现场可编程等优点。

1.1 数字频率计设计的基本原理本文以一个四位十进制、测量范围为1Hz ~16kHz 的数字频率计为例,采用SOPC /SOC 实验开发系统,以1Hz 测频控制信号,说明设计的基本原理及实现方法。

设计的数字频率计由测频控制信号发生器模块、锁存器和译码显示模块组成。

根据频率的定义和频率测量的基本原理,测定信号的频率必须有一个脉宽为1s 的对输入信号脉冲计数允许的信号;1s 计数结束后,计数值锁入锁存器的锁存信号和为下一测频计数周期做准备的计数器清0信号。

这3个信号可以由一个测频控制信号发生器产生,即图1中的T EST CT L ,他的设计要求是,T EST CT L 的计数使能信号CN T _EN 能产生一个1s 脉宽的周期信号,并对频率计的每一计数器CNT 10的EN A 使能端进行同步控制。

当CN T _EN 高电平时,允许计数;低电平时停止计数,并保持其所计的脉冲数。

在停止计数期间,首先需要一个锁存信号LO AD 的上跳沿将计数器在前1秒钟的计数值锁118电子技术杨守良:基于FPGA 的数字频率计的设计和实现存进各锁存器REG 4B 中,并由外部的7段译码器译出,显示计数值。

设置锁存器的好处是,显示的数据稳定,不会由于周期性的清零信号而不断闪烁。

锁存信号之后,必须有一清零信号RST _CN T 对计数器进行清零,为下1秒钟的计数操作做准备。

其工作时序波形如图1所示。

图1 频率计测频控制器测控时序图1.2 设计方法采用V HL 语言设计一个复杂的电路系统,运用自顶向下的设计思想,将系统按功能逐层分割的层次化设计方法进行设计。

在顶层对内部各功能块的连接关系和对外的接口关系进行了描述,而功能块的逻辑功能和具体实现形式则由下一层模块来描述。

根据本数字频率计实现原理,运用自顶向下的设计思想,设计的系统顶层电路图如图1所示。

各功能模块采用V HDL 语言描述。

1.2.1 测频控制信号发生器模块的设计要想使频率计能自动测频,还需要一个测频控制电路,要求他能产生3个控制信号:CN T _EN 、L OAD 和RST _CN T ,以便使频率计能顺利完成测频3步曲:计数、锁存和清0。

其VHDL 语言编程实现如下:L IBR A RY IEEE;U SE IEEE.ST D _LO GI C _1164.A L L ;U SE IEEE.ST D _LO GI C _U N SIG N ED.A L L ;EN T IT Y T EST CT L IS PO RT (CL K K :IN ST D _L OG IC; --1Hz CN T _EN ,R ST _CN T ,L OA D :O U T ST D _L O GIC); EN D T EST CT L ;A RCHIT ECT U RE behav O F T EST CT L IS SIG NA L DIV 2CLK :ST D _L OG IC;BEG IN PR OCESS(CL K K ) BEG IN IF CL KK ′EV EN T A N D CL K K =′1′T HEN DIV 2CL K <=N OT DIV 2CL K ; EN D IF ; EN D P ROCESS ; P RO CESS (CL K K ,DI V 2CLK ) BEGIN IF CLK K =′0′A N D Div 2CL K =′0′T HEN RST _CN T <=′1′; EL SE RST _CN T <=′0′; EN D IF ; EN D P ROCESS ; L O AD <=N O T DIV 2CL K ;CN T _EN <=DIV 2CL K ;EN D behav ;然后将本程序在QuartusII 下经过编译,其仿真波形如图1所示,由此可以看出,其设计能满足测频控制信号发生器的要求,最后生成测频控制信号元件,以便在顶层文件中调用。

1.2.2 四位锁存器的设计在本设计中,首先需要一个锁存信号L OA D 的上跳沿将计数器在前1秒钟的计数值锁存进各锁存器REG 4B 中,其锁存器的V HDL 语言编程实现如下:L IBRA RY IEEE ;U SE IEEE .ST D _L OG IC _1164.AL L ;EN T IT Y REG 4B IS P OR T (L O A D :IN ST D _L O GI C ; DIN :I N ST D _LO GI C _V ECT O R (3DO WN T O 0);DOU T :OU T ST D _L OG IC _V ECT O R (3DO W NT O 0));EN D REG 4B ;A RCHIT ECT U RE behav O F R EG 4B IS BEGINP ROCESS (LO A D ,D IN ) BEGIN IF L O AD ′EV EN T A N D LO A D =′1′T HEN D OU T <=DI N ; EN D IF ;EN D P ROCESS ;EN D behav ;同样的将此程序在QuartusII 下编译后,生成锁存器元件,以便在顶层文件中调用。

在本设计中,所需的其他模块采用普通的计数器模块和显示译码模块。

相关文档
最新文档