高中数学直线与圆的位置关系 直线与圆的方程的应用教案
《直线与圆的位置关系》教案

《直线与圆的位置关系》教案第一章:引言教学目标:1. 让学生了解直线与圆的位置关系的概念。
2. 引导学生通过观察和思考,探索直线与圆的位置关系。
教学内容:1. 直线与圆的定义。
2. 直线与圆的位置关系的分类。
教学步骤:1. 引入直线和圆的定义,让学生回顾相关概念。
2. 提问:直线和圆有什么关系?它们可以相交、相切还是相离?3. 引导学生观察和思考直线与圆的位置关系,让学生举例说明。
练习题目:a) 直线x=2与圆x^2+y^2=4b) 直线y=3与圆x^2+y^2=9c) 直线x+y=4与圆x^2+y^2=8第二章:直线与圆的相交教学目标:1. 让学生了解直线与圆相交的概念。
2. 引导学生通过观察和思考,探索直线与圆相交的性质。
教学内容:1. 直线与圆相交的定义。
2. 直线与圆相交的性质。
教学步骤:1. 引入直线与圆相交的概念,让学生了解相交的含义。
2. 提问:直线与圆相交时,会有什么特殊的性质?3. 引导学生观察和思考直线与圆相交的性质,让学生举例说明。
练习题目:a) 直线y=2x+3与圆x^2+y^2=16b) 直线x-y+4=0与圆x^2+y^2=16c) 直线x+y-6=0与圆x^2+y^2=36第三章:直线与圆的相切教学目标:1. 让学生了解直线与圆相切的概念。
2. 引导学生通过观察和思考,探索直线与圆相切的性质。
教学内容:1. 直线与圆相切的定义。
2. 直线与圆相切的性质。
教学步骤:1. 引入直线与圆相切的概念,让学生了解相切的含义。
2. 提问:直线与圆相切时,会有什么特殊的性质?3. 引导学生观察和思考直线与圆相切的性质,让学生举例说明。
练习题目:a) 直线y=3x+2与圆x^2+y^2=16b) 直线x-y+4=0与圆x^2+y^2=16c) 直线x+y-6=0与圆x^2+y^2=36第四章:直线与圆的相离教学目标:1. 让学生了解直线与圆相离的概念。
2. 引导学生通过观察和思考,探索直线与圆相离的性质。
高中数学《直线与圆的位置关系》教案

高中数学《直线与圆的位置关系》教案
一、教学目标
【知识与技能】
掌握判断直线与圆的位置关系的方法,能够用两种方法解决直线与圆的位置关系问题。
【过程与方法】
在小组合作探究过程中,得出判别直线与圆位置关系的两种方法,体会解题方式的多样性的同时,感受用代数语言解决几何问题的魅力。
【情感、态度与价值观】
在探究中获得成功的体验,激发学习数学的热情。
二、教学重难点
【重点】直线与圆的位置关系的判定方法。
【难点】直线与圆的位置关系的判定方法的应用。
三、教学过程
(一)导入新课
回顾所学圆的方程。
点明我们以前学过直线与圆的位置关系,今天这节课继续深入研究如何判断直线与圆的位置关系。
引出课题。
(二)讲解新知
请学生回忆平面中直线与圆的位置关系有哪些,以前是如何判断直线和圆的位置关系的。
预设学生能够回答出直线与圆有三种位置关系,可根据公共点个数或者是圆心到直线的距离d与半径r之间的大小关系来判断直线和圆的位置关系。
教师引导学生思考,现在我们已经学习了直线和圆的方程,能否用直线方程和圆的方程判断它们之间的位置关系。
同时展示例题:如图,已知直线l:3x+y-6=0和圆心为C的圆X2+Y2-2Y-4=0,判断直线L与圆的位置关系;如果相交,求它们交点的坐标。
(四)小结作业
课堂小结:回顾判断直线与圆的位置关系的两种方法。
课后作业:完成课后相应练习,根据题目给出的直线方程与圆的方程,先用两种方法判断直线与圆的位置关系。
如果有公共点,再求出公共点坐标。
四、板书设计。
名师教学设计《直线与圆的位置关系》完整教学教案

(四)归纳总结,布置作业
本环节采用填写表格,师生协作的方式,对所学的知识进行小结,培养学生的归纳能力。
师生协作的方式
作业布置试图通过阅读、练习和思考等不同形式的教学活动,加深对所学知识的理解和运用。
作业:
(1)阅读:教材第78-80页;
(2)练习:教材第80页A组1题。
(3)思考:教材第80页B组2题。
(三)运用新知,解决问题
例题与练习是掌握、应用知识和技能所必需的,根据学生的认知特点,我设计了如下例题与练习。
1.例题分析
例1判断直线 与圆 的位置关系。
例2是教材上的例题。作为对圆与直线的位置关系的理解和初步应用,可以让学生自主完成。
判断下列各题中的直线与圆的位置关系。
(1)直线2x-3y+1=0,圆 ;
学生动手画时,教师进行巡视,当所有学生都把三种位置关系画出来时,我用计算机给同学们作演示,给定直线圆在动,使学生从运动的观点去研究问题。
学生动手画时,我进行巡视,当所有学生都把三种位置关系画出来时,我用计算机给同学们作演示,给定直线圆在动,使学生从运动的观点去研究问题。
通过观察,我们已经知道直线和圆的位置关系有三种,引导学生从直线和圆的公共点的个数来完成直线和圆的位置关系的定义。
练习1:主要反馈学生对定义本身的掌握程度,由学生抢答,培养学生的分析能力和数学语言表达能力。
判断圆与直线的位置关系。
圆的直径为10cm,直线到圆心的距离分别为
3
5
练习2我设计了一个小型对抗赛:将全班同学分为两个小组,一组出题另一组回答,答题组再出题,对方回答,依次类推。看哪个组答题既准又快,对优胜组和表现突出的同学进行表扬。
3、掌握直线和圆三种位置关系的判定方法。
《直线与圆的位置关系》教学设计

《直线与圆的位置关系》教学设计一、教学内容解析《直线与圆的位置关系》是圆与方程这一章的重要内容,它是学生在初中平面几何中已学过直线与圆的三种位置关系,以及在前面几节学习了直线与圆的方程的基础上,从代数角度,运用坐标法进一步研究直线与圆的位置关系,体会数形结合思想,初步形成代数法解决几何问题的能力,并逐渐内化为学生的习惯和基本素质,为以后学习直线与圆锥曲线的知识打下基础.本节课内容共一个课时.教学过程中,让学生利用已有的知识,自主探索用坐标法去研究直线与圆的位置关系的方法,体验有关的数学思想,培养学生“用数学”以及合作学习的意识.二、教学目标设置由于本节课在初中已有涉及,教师准备“学案”先让学生提前思考,归纳出直线与圆的三种位置关系以及代数与几何的两种判定方法.通过学生的观察、分析、概括,促使学生把解析几何中用方程研究曲线的思想与初中已掌握的圆的几何性质相结合,从而把传授知识和培养能力融为一体,完成本节课的教学目标.三、学生学情分析在经历直线、圆的方程学习后,学生已经具备了一定的用方程研究几何对象的能力,因此,我在教学中通过提供的丰富的数学学习环境,创设便于观察和思考的情境,给他们提供自主探究的空间,使学生经历完整的数学学习过程,引导学生在已有数学认知结构的基础上,通过积极主动的思维而将新知识内化到自己的认知结构中去.同时为他们施展创造才华搭建一个合理的平台,使他们感知学习数学的快乐.高中数学教学的重要目标之一是提高学生的数学思维能力,通过不同形式的探究活动,让学生亲身经历知识的发生和发展过程,从中领悟解决问题的思想方法,不断提高分析和解决问题的能力,使数学学习变成一种愉快的探究活动,从中体验成功的喜悦,不断增强探究知识的欲望和热情,养成一种良好的思维品质和习惯.根据本节课的教学内容和我所教学生的实际,本节课的教学目标确定为以下三个方面:知识与技能目标:(1)理解直线与圆三种位置关系.(2)掌握用圆心到直线的距离d与圆的半径r比较,以及通过方程组解的个数判断直线与圆位置关系的方法.过程与方法目标:(1)通过对直线与圆的位置关系的探究活动,经历知识的建构过程,培养学生独立思考、自主探究、动手实践、合作交流的学习方式.(2)强化学生用坐标法解决几何问题的意识,培养学生分析问题和灵活解决问题的能力.情感、态度与价值观目标:通过对本节课知识的探究活动,加深学生对坐标法解决几何问题的认识,从而领悟其中所蕴涵的数学思想,体验探索中成功的喜悦,激发学习热情,养成良好的学习习惯和品质,培养学生的创新意识和科学精神.四、教学策略分析本节课以问题为载体,学生活动为主线,让学生利用已有的知识,自主探究,培养学生主动学习的习惯.通过建立数学模型、数形结合,提高学生分析问题和解决问题的能力,进一步培养学生的数学素质;通过对直线与圆的位置关系判断方法的探究,进一步提高学生的思维能力和归纳能力.在教学方法的选择上,采用教师组织引导,学生自主探究、动手实践、小组合作交流的学习方式,力求体现教师的设计者、组织者、引导者、合作者的作用,突出学生的主体地位.五、课前准备:直线与圆的位置关系学案(附后)例如图,已知直线直线与圆已知过点,求直线的方程.(课件)六、教学评价设计新课程强调学习过程的评价,因此,在对学生学习结果评价的同时,更应高度重视学生学习过程中的参与度、自信心、合作意识、独立思考的能力及学习的兴趣等.根据本节课的特点,我从以下几个方面进行教学评价:通过问题情境,激发学生的学习兴趣,使学生找到要学的与以学知识之间的联系;问题串的设置可让学生主动参与到学习中来;在判断方法的形成与应用的探究中,师生的相互沟通调动学生的积极性,培养团队精神;知识的生成和问题的解决,培养学生独立思考的能力,激发学生的创新思维;通过练习检测学生对知识的掌握情况;根据学生在课堂小结中的表现和课后作业情况,查缺补漏,以便调控教学.。
2022年《2.5.1直线与圆的位置关系》优秀教案

第二章直线和圆的方程直线与圆、圆与圆的位置关系直线与圆的位置关系教学设计一、教学目标1 能根据给定直线、圆的方程,判断直线与圆的位置关系;2 能用直线和圆的方程解决一些简单的数学问题和实际问题二、教学重难点1 教学重点直线与圆的位置关系及其应用2 教学难点直线与圆的方程的应用三、教学过程〔一〕新课导入思考:直线与圆有哪些位置关系?〔学生自由发言,教师总结〕〔1〕直线与圆相交,有两个公共点;〔2〕直线与圆相切,只有一个公共点;〔3〕直线与圆相离,没有公共点〔二〕探索新知问题1 在初中,我们怎样判断直线与圆的位置关系?根据圆心到直线的距离d与圆的半径r的大小关系来判断直线与圆的位置关系〔1〕直线与圆相交;〔2〕直线与圆相切;〔3〕直线与圆相离问题2 如何利用直线和圆的方程判断它们之间的位置关系?先来看例1例1 直线和圆心为C的圆,判断直线与圆C的位置关系;如果相交,求直线被圆C所截得的弦长解法1:联立直线与圆C的方程,得,消去,得,解得所以,直线与圆C相交,有两个公共点把分别代入方程①,得所以,直线与圆C的两个交点是因此解法2:圆C的方程可化为,因此圆心C的坐标为,半径为,圆心到直线的距离所以,直线与圆C相交,有两个公共点如图,由垂径定理,得通过上述解法我们发现,在平面直角坐标系中,要判断直线与圆的位置关系,可以联立它们的方程,通过判定方程组的解的个数,得出直线与圆的公共点的个数,进而判断直线与圆的位置关系假设相交,可以由方程组解得两交点坐标,利用两点间的距离公式求得弦长我们还可以根据圆的方程求得圆心坐标与半径r,从而求得圆心到直线的距离d,通过比拟d与r的大小,判断直线与圆的位置关系假设相交,那么可利用勾股定理求得弦长例2 过点作圆的切线,求切线的方程解法1:设切线的斜率为,那么切线的方程为,即由圆心到切线的距离等于圆的半径1,得,解得或因此,所求切线的方程为,或解法2:设切线的斜率为,那么切线的方程为因为直线与圆相切,所以方程组只有一组解消元,得①因为方程①只有一个解,所以,解得或所以,所求切线的方程为,或例3 如图是某圆拱形桥一孔圆拱的示意图圆拱跨度,拱高,建造时每间隔4 m需要用一根支柱支撑,求支柱的高度〔精确到m〕解:建立如下图的直角坐标系,使线段AB所在直线为轴,O为坐标原点,圆心在轴上由题意,点例4 一个小岛的周围有环岛暗礁,暗礁分布在以小岛中心为圆心,半径为2021的圆形区域内小岛中心位于轮船正西40 m处,港口位于小岛中心正北30 m处如果轮船沿直线返港,那么它是否会有触礁危险?解:以小岛的中心为原点O,东西方向为轴,建立如下图的直角坐标系为了运算的简便,我们取10 m为单位长度,那么港口所在位置的坐标为,轮船所在位置的坐标为这样,受暗礁影响的圆形区域的边缘所对应的圆的方程为轮船航线所在直线的方程为,即联立直线与圆O的方程,得消去,得由,可知方程组无解所以直线与圆O相离,轮船沿直线返港不会有触礁危险用坐标法解决平面几何问题的“三步曲〞:第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何要素,如点、直线、圆,把平面几何问题转化为代数问题;第二步:通过代数运算,解决代数问题;第三步:把代数运算的结果“翻译〞成几何结论〔三〕课堂练习1 假设直线与圆相切,那么的值为C 或答案:D解析:圆的方程可化为,那么圆心坐标为,因为直线与圆相切,所以圆心到直线的距离为,那么有,2 直线过点,当直线与圆有两个交点时,其斜率的取值范围是A B C D答案:C解析:易知圆心坐标是,半径是1,直线的斜率存在设直线的方程为,即,由点到直线的距离公式,得,即,3 直线与圆交于两点,那么______________答案:解析:由题意知圆的方程为,所以圆心坐标为,半径为2,那么圆心到直线的距离,所以4 点在圆上,那么点到直线的最短距离为___________答案:2解析:圆心的坐标为,点到直线的距离为,所以所求最小值为5 圆和点〔1〕假设过点有且只有一条直线与圆相切,求实数的值,并求出切线方程;〔2〕假设,过点的两条弦互相垂直,求的最大值答案:〔1〕由题意知点在圆上,所以,解得当时,点为,所以,切线此时切线方程为,即;当时,点为,所以此时切线方程为,即综上,所求切线方程为或〔2〕设圆心到直线的距离分别为,那么因为,所以,所以因为,即,所以,当且仅当时取等号,所以,所以所以,即的最大值为〔四〕小结作业小结:1 直线与圆的位置关系;2 直线与圆的方程的应用作业:四、板书设计直线与圆的位置关系1 直线与圆的位置关系:相交、相切、相离;2 用方程判断直线与圆的位置关系;3 用坐标法判断直线与圆的位置关系。
直线与圆的位置关系(教案)

4.2.1直线与圆的位置关系【三维目标】1.知识与技能(1)理解直线与圆的三种位置关系;能根据直线、圆的方程,判断直线与圆的位置关系;(2)能用直线和圆的方程解决一些简单的问题;2. 过程与方法(1)响应高考发展的趋势,培养学生自主探究,动手实践,并适应合作交流的学习方式;(2)强化学生用解析法解决几何问题的意识,培养学生分析问题和灵活解决问题的能力;3. 情感态度与价值观(1)让学生通过观察图形,理解并掌握直线与圆的位置关系,培养学生数形结合的思想;(2)加深对解析法解决几何问题的认识,激发学习热情,培养学生的创新意识和探索精神;【重点难点】1.重点:直线与圆的位置关系及其判断方法;2.难点:体会和理解解析法解决几何问题的数学思想;【教学准备】多媒体课件【教学设计】一.情境引入以生活中常见的具体实例(日出的过程)演示直线与圆的位置关系,并引导学生回忆初中阶段判断直线与圆的位置关系的思想过程.二.探索新知1.引出课题——直线与圆的位置关系问题1:通过情境引入中的动画演示提出问题,直线与圆的位置关系有几种?在平面几何中,我们怎样判断直线与圆的位置关系呢?如何定义?师生活动:展示出直线与圆的位置关系的图形和定义,用表格展示,使问题更直观形象.2在已有知识的基础上,通过一组题目,让学生分组展开活动:如何判断直线与圆的位置关系?能否利用直线与圆的方程判断它们之间的位置关系呢?<分组活动>1.请判断直线02=-+y x 与圆221x y +=的位置关系. 2.请判断直线01=-+y x 与圆221x y +=的位置关系. 3.请判断直线02=-+y x 与圆222x y +=的位置关系师生活动:以小组为单位进行讨论研究,教师巡视指导,讨论有结果的小组可以派代表回答。
问题2:这是利用圆心到直线的距离d 与半径r 的大小关系判别直线与圆的位置关系(称此法为“几何法”).请问用“几何法”的一般步骤如何?师生活动:比较d 与r 的大小,确定直线与圆的位置关系.分类情况如下:①当r d >时,直线l 与圆C 相离;②当r d =时,直线l 与圆C 相切;③当r d <时,直线l 与圆C 相交。
直线和圆的位置关系的数学教案

直线和圆的位置关系的数学教案一、教学目标:1. 让学生理解直线和圆的位置关系,并能运用其解决实际问题。
2. 让学生掌握判断直线和圆位置关系的方法,提高空间想象力。
3. 培养学生的逻辑思维能力和团队合作精神。
二、教学内容:1. 直线和圆的位置关系:相离、相切、相交。
2. 判断直线和圆位置关系的方法。
3. 实际问题中的应用。
三、教学重点与难点:1. 教学重点:直线和圆的位置关系,判断方法及实际应用。
2. 教学难点:直线和圆位置关系的判断,空间想象能力的培养。
四、教学方法:1. 采用问题驱动法,引导学生探究直线和圆的位置关系。
2. 利用多媒体辅助教学,直观展示直线和圆的位置关系。
3. 开展小组讨论,培养学生的团队合作精神。
五、教学过程:1. 导入新课:通过生活中的实例,引出直线和圆的位置关系。
2. 知识讲解:讲解直线和圆的相离、相切、相交三种位置关系,及判断方法。
3. 案例分析:分析实际问题,运用直线和圆的位置关系解决问题。
4. 课堂练习:布置练习题,巩固所学知识。
5. 小组讨论:探讨直线和圆位置关系在实际问题中的应用。
7. 课后作业:布置作业,巩固所学知识。
六、教学评估:1. 课堂练习题目的完成情况,以检验学生对直线和圆位置关系的理解和应用能力。
2. 小组讨论的参与度,观察学生是否能够主动思考和解决问题。
3. 课后作业的质量,评估学生对课堂所学知识的掌握程度。
4. 学生对拓展问题的回答,了解学生的思维拓展和创造性解决问题的能力。
七、教学反思:1. 学生是否能够清晰理解直线和圆的位置关系?2. 学生是否能够熟练运用判断方法解决实际问题?3. 教学方法和教学内容的安排是否适合学生的学习水平?4. 如何改进教学策略以提高学生的空间想象力和逻辑思维能力?八、教学资源:1. 多媒体教学课件,用于展示直线和圆的位置关系示意图。
2. 实际问题案例库,用于引导学生将理论知识应用于解决实际问题。
3. 练习题库,包括不同难度的题目,以满足不同学生的学习需求。
数学《直线与圆的位置关系》教案

数学《直线与圆的位置关系》教案教学目标:1. 了解直线与圆的位置关系,熟练掌握直线与圆的切线、割线、切点、割点等概念。
2. 掌握直线与圆的位置关系的基础推理方法,能够灵活运用数学知识解决相关的问题。
3. 培养学生观察、分析的能力,增强学生的实际操作能力和动手能力。
教学重难点:1. 直线与圆的切线、割线、切点、割点等概念的理解和掌握。
2. 直线与圆的位置关系的基础推理方法的应用。
教学方法:1. 讲授法和实践法相结合。
2. 采用板书、多媒体等方式进行教学。
3. 鼓励学生积极思考、多动手实践。
教学内容:1. 直线与圆的位置关系的定义。
2. 直线与圆的切线、割线、切点、割点等概念的讲解。
3. 直线与圆的位置关系的基础推理方法的应用。
教学过程:一、引入通过实际例子引出今天的教育内容:小明在修建一条直线公路的时候,发现公路穿过了一块广场,广场的中央是一个圆形花坛。
这时候,我们就需要了解直线与圆的位置关系了。
二、学习内容1. 直线与圆的位置关系的定义2. 直线与圆的切线、割线、切点、割点等概念的讲解3. 直线与圆的位置关系的基础推理方法的应用三、学习方法1. 讲授法和实践法相结合,从例子入手,以实际问题为导向,让学生掌握知识。
2. 采用板书、多媒体等方式进行教学,以图形为主,直观、形象。
3. 鼓励学生积极思考、多动手实践,参与课堂讨论。
四、学习重点难点1. 直线与圆的切线、割线、切点、割点等概念的理解和掌握。
2. 直线与圆的位置关系的基础推理方法的应用。
五、学习结果1. 了解直线与圆的位置关系。
2. 掌握直线与圆的切线、割线、切点、割点等概念。
3. 熟练应用数学知识解决直线与圆的位置关系相关的问题。
六、作业1. 完成课后习题。
2. 预习下一节课内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直线与圆的位置关系-直线与圆的方程的应用
教学要求:
利用直线与圆的位置关系解决一些实际问题
教学重点:
直线的知识以及圆的知识
教学难点:
用坐标法解决平面几何.
教学过程:
一、复习准备:
(1) 直线方程有几种形式? 分别为什么?
(2)圆的方程有几种形式?分别是哪些?
(3)求圆的方程时,什么条件下,用标准方程?什么条件下用一般方程?
(4)直线与圆的方程在生产.生活实践中有广泛的应用.想想身边有哪些呢?
二、讲授新课:
出示例1.图1所示是某圆拱形桥.这个圆拱跨度20AB m =,拱高4OP m =,
建造时每间隔4m 需要用一根支柱支撑,求支柱22A B 的高度(精确0.01m)
出示例2.已知内接于圆的四边形的对角线互相垂直,求证圆心到一边距离
等于这条边所对这条边长的一半.(提示建立平面直角坐标系)
小结:用坐标法解题的步骤:
1建立平面直角坐标系,将平南几何问题转化为代数问题;
2利用公式对点的坐标及对应方程进行运算,解决代数问题:
3根据我们计算的结果,作出相应的几何判断.
.三、巩固练习:
1.赵州桥的跨度是37.4m.圆拱高约为7.2m.求这座圆拱桥的拱圆的方程
2.用坐标法证明:三角形的三条高线交于一点
3.求出以曲线2225x y +=与213y x =-的交点为顶点的多边形的面积.
4.机械加工后的产品是否合格,要经过测量检验某车间的质量检测员利用三个同样的量球以及两块不同的长方体形状的块规检测一个圆弧形零件的半径.已知量球的直径为2厘米,并测出三个不同高度和三个相应的水平距离,求圆弧零件的半径.
.四、作业: P144练习4题;。