相关系数
相关性分析(相关系数)

相关系数是变量之间相关程度的指标。
样本相关系数用r表示,总体相关系数用ρ表示,相关系数的取值一般介于—1~1之间.相关系数不是等距度量值,而只是一个顺序数据。
计算相关系数一般需大样本。
相关系数又称皮(尔生)氏积矩相关系数,说明两个现象之间相关关系密切程度的统计分析指标。
相关系数用希腊字母γ表示,γ值的范围在—1和+1之间。
γ>0为正相关,γ<0为负相关.γ=0表示不相关;γ的绝对值越大,相关程度越高.两个现象之间的相关程度,一般划分为四级:如两者呈正相关,r呈正值,r=1时为完全正相关;如两者呈负相关则r呈负值,而r=—1时为完全负相关.完全正相关或负相关时,所有图点都在直线回归线上;点子的分布在直线回归线上下越离散,r的绝对值越小。
当例数相等时,相关系数的绝对值越接近1,相关越密切;越接近于0,相关越不密切。
当r=0时,说明X和Y两个变量之间无直线关系。
相关系数的计算公式为〈见参考资料>.其中xi为自变量的标志值;i=1,2,…n;■为自变量的平均值,为因变量数列的标志值;■为因变量数列的平均值.为自变量数列的项数。
对于单变量分组表的资料,相关系数的计算公式〈见参考资料〉.其中fi为权数,即自变量每组的次数.在使用具有统计功能的电子计算机时,可以用一种简捷的方法计算相关系数,其公式〈见参考资料>。
使用这种计算方法时,当计算机在输入x、y数据之后,可以直接得出n、■、∑xi、∑yi、∑■、∑xiy1、γ等数值,不必再列计算表.简单相关系数:又叫相关系数或线性相关系数。
它一般用字母r 表示。
它是用来度量定量变量间的线性相关关系。
复相关系数:又叫多重相关系数复相关是指因变量与多个自变量之间的相关关系。
例如,某种商品的需求量与其价格水平、职工收入水平等现象之间呈现复相关关系.偏相关系数:又叫部分相关系数:部分相关系数反映校正其它变量后某一变量与另一变量的相关关系,校正的意思可以理解为假定其它变量都取值为均数。
相关系数计算公式

相关系数计算公式
一、概念
相关系数(correlation coefficient),又称作相关系数,是衡量
两个变量之间相互关系紧密程度的一种统计量,其取值范围位于-1与1
之间。
它是由两个变量的协方差(covariance)除以它们各自的标准差(standard deviation)得到的。
二、定义
相关系数(correlation coefficient)的定义为:
设X和Y是有关联的两个随机变量,其均值分别为μX和μY,标准
差分别为σX和σY,协方差为rXY,其相关系数定义为:
rXY=r(X,Y)=frac{r_{XY}}{sigma_X sigma_Y}=frac{E[left(X-mu_X ight)(Y-mu_Y)]}{sigma_X sigma_Y}
三、性质
1.当相关系数rXY取值为1时,说明X、Y呈完全正相关,此时,当
X增大时,Y也增大;
2.当相关系数rXY取值为0时,说明X、Y之间没有显著的相关关系;
3.当相关系数rXY取值为-1时,说明X、Y呈完全负相关,此时,当
X增大时,Y减小;
4.相关系数rXY取值越大,表明X、Y之间相关关系越紧密;
5.相关系数rXY有有效范围,即[-1,1];
6.相关系数rXY是一致的,不受X、Y变量变化的时间顺序而改变;
7.相关系数rXY取值只反映X、Y变量的线性关系,而对于非线性关系,其取值不符合实际情况;
8.相关系数rXY只衡量两变量之间的线性相关性,但不能揭示它们之间的因果关系。
四、公式
相关系数rXY的计算公式是:。
相关系数的区别

相关系数的区别
相关系数是用于衡量两个变量之间关联程度的统计指标。
常见的相关系数有皮尔逊相关系数和斯皮尔曼相关系数。
1. 皮尔逊相关系数(Pearson correlation coefficient)是用来衡量两个连续变量之间线性关系的强度和方向。
它的取值范围在-1到1之间,其中-1表示完全的负相关,1表示完全的正相关,0表示无相关。
当相关系数接近于-1或1时,表示两个变量之间存在较强的线性关系。
2. 斯皮尔曼相关系数(Spearman correlation coefficient)用于衡量两个变量之间的单调关系,不要求变量是连续的。
它通过将原始数据转换为排序数据,然后计算排序数据之间的皮尔逊相关系数来得到。
斯皮尔曼相关系数的取值范围也在-1到1之间,解释方式与皮尔逊相关系数类似。
总结来说,皮尔逊相关系数适用于衡量两个连续变量之间的线性关系,而斯皮尔曼相关系数适用于衡量两个变量之间的单调关系,无论变量是连续的还是离散的。
相关系数

相关系数相关表和相关图可反映两个变量之间的相互关系及其相关方向,但无法确切地表明两个变量之间相关的程度。
于是,著名统计学家卡尔·皮尔逊设计了统计指标——相关系数(Correlation coefficient)。
相关系数是用以反映变量之间相关关系密切程度的统计指标。
相关系数是按积差方法计算,同样以两变量与各自平均值的离差为基础,通过两个离差相乘来反映两变量之间相关程度;着重研究线性的单相关系数。
依据相关现象之间的不同特征,其统计指标的名称有所不同。
如将反映两变量间线性相关关系的统计指标称为相关系数(相关系数的平方称为判定系数);将反映两变量间曲线相关关系的统计指标称为非线性相关系数、非线性判定系数;将反映多元线性相关关系的统计指标称为复相关系数、复判定系数等。
资料个人收集整理,勿做商业用途1、定义相关关系是一种非确定性的关系,相关系数是研究变量之间线性相关程度的量。
由于研究对象的不同,相关系数有如下几种定义方式。
资料个人收集整理,勿做商业用途相关系数公式简单相关系数:又叫相关系数或线性相关系数,一般用字母r 表示,用来度量两个变量间的线性关系。
复相关系数:又叫多重相关系数。
复相关是指因变量与多个自变量之间的相关关系。
例如,某种商品的季节性需求量与其价格水平、职工收入水平等现象之间呈现复相关关系。
资料个人收集整理,勿做商业用途典型相关系数:是先对原来各组变量进行主成分分析,得到新的线性关系的综合指标,再通过综合指标之间的线性相关系数来研究原各组变量间相关关系。
资料个人收集整理,勿做商业用途2、性质(1)定理:| ρXY | = 1的充要条件是,存在常数a,b,使得P{Y=a+bX}=1;相关系数ρXY取值在-1到1之间,ρXY = 0时,称X,Y不相关;| ρXY | = 1时,称X,Y完全相关,此时,X,Y之间具有线性函数关系;| ρXY | < 1时,X的变动引起Y的部分变动,ρXY的绝对值越大,X的变动引起Y的变动就越大,| ρXY | > 0.8时称为高度相关,当| ρXY | < 0.3时称为低度相关,其它时候为中度相关。
简述相关系数的意义

简述相关系数的意义
相关系数是衡量两个或多个变量之间相关性的指标,通常用于回归分析中。
相关系数的取值范围在-1到1之间,其中0表示两个变量完全无相关性,1表示两个变量高度相关。
相关系数的意义如下:
1. 表示两个变量之间的相关性:如果相关系数大于0.7,则表明两个变量之间有较强的相关性;如果相关系数大于0.9,则表明两个变量之间非常强烈的相关性。
2. 表示两个变量之间的传递性:如果相关系数是正的,则表明自变量可以通过因变量产生更多的误差;如果相关系数是负的,则表明因变量可以通过自变量产生更多的误差。
3. 表示两个变量之间的独立性:如果相关系数小于0.4,则表明两个变量之间可能存在一些独立性;如果相关系数小于0.6,则表明两个变量之间可能存在一些弱相关性。
4. 用于评估回归模型的可靠性:回归模型的系数与相关系数可以用来评估模型的可靠性。
如果系数与相关系数都很高,则表明模型很好地拟合了数据。
相关系数是一个非常重要的工具,可以帮助研究者更好地理解变量之间的关系,并对相关关系进行更深入的分析。
相关系数是什么意思

相关系数
相关系数是从资产回报相关性的角度分析两种不同证券表现的联动性。
相关系数的绝对值大小体现两个证券收益率之间相关性的强弱。
相关系数可以衡量任何两项资产收益率之间的变动关系。
相关系数介于区间[-1,1]内。
当相关系数为-1,表示完全负相关,表明两项资产的报酬率变化方向和变化幅度完全相反。
当相关系数为+1时,表示完全正相关,表明两项资产的收益率变化方向和变化幅度完全相同。
当相关系数为0时,表示不相关。
相关系数的正负与协方差的正负相同。
相关系数为正值,表示两种资产报酬率呈同方向变化,组合抵消的风险较少;负值则意味着反方向变化,抵消的风险较多。
相关系数定义
相关关系是一种非确定性的关系,相关系数是研究变量之间线性相关程度的量。
由于研究对象的不同,相关系数有如下几种定义方式。
简单相关系数:又叫相关系数或线性相关系数,一般用字母r 表示,用来度量两个变量间的线性关系。
复相关系数:又叫多重相关系数。
复相关是指因变量与多个自变量之间的相关关系。
例如,某种商品的季节性需求量与其价格水平、职工收入水平等现象之间呈现复相关关系。
典型相关系数:是先对原来各组变量进行主成分分析,得到新的线性关系的综合指标,再通过综合指标之间的线性相关系数来研究原各组变量间相关关系。
相关系数及其在统计分析中的应用

相关系数及其在统计分析中的应用相关系数是一种统计量,它用于衡量两个变量之间的关联程度。
在统计学和数据分析中,相关系数是非常重要的指标。
它可以帮助我们确定两个变量之间是否存在关联,并可以衡量这种关联的强度和性质。
在本文中,我们将探讨什么是相关系数、相关系数的类型及其在统计分析中的应用。
什么是相关系数?相关系数是用来衡量两个变量之间关联程度的数值,通常用符号r表示。
相关系数的取值范围为-1到1之间,其中-1表示完全负相关,0表示没有关联,1表示完全正相关。
正相关意味着两个变量的值随着彼此的变化而变化,负相关则意味着变量的值发生反向变化。
相关系数的类型在统计学中,有几种不同类型的相关系数。
以下是其中一些:1. 皮尔森相关系数皮尔森相关系数是最常用的相关系数之一。
它用来衡量两个连续变量之间的线性关系。
这意味着当这两个变量的值随着时间的推移从一个方向向另一个方向移动时,它们会遵循某种趋势。
2. 斯皮尔曼等级相关系数斯皮尔曼相关系数是一种非参数相关系数,适用于两个变量之间的单峰性或非线性关系。
它不要求变量是正态分布的,也不对异常值敏感。
斯皮尔曼等级相关系数是根据等级而不是原始观测值计算的。
3. 切比雪夫-柯西相关系数切比雪夫-柯西相关系数是一种度量两个变量之间相关性的方法。
它在统计学和计算机科学中广泛使用。
它可以用于衡量许多类型的关系,包括线性、非线性、高维和低维关系。
切比雪夫-柯西相关系数的计算方法比其他方法简单。
相关系数的应用相关系数在统计学和数据分析中有许多应用。
以下是其中一些:1. 预测未来趋势相关系数可以用于预测未来趋势。
通过分析过去的数据并计算变量之间的相关性,可以预测这些变量在未来的发展趋势。
2. 评估风险相关系数可以用来评估风险。
通过分析两个变量之间的相关性,可以有效评估一个变量对另一个变量的影响及其可能带来的风险。
3. 识别模式相关系数可以用来帮助识别模式。
通过分析变量之间的相关性,可以在数据中发现一些特定的模式,进而做出更准确的预测和决策。
相关系数

相关系数相关表和相关图可反映两个变量之间的相互关系及其相关方向,但无法确切地表明两个变量之间相关的程度。
于是,著名统计学家卡尔·皮尔逊设计了统计指标——相关系数(Correlation coefficient)。
相关系数是用以反映变量之间相关关系密切程度的统计指标。
相关系数是按积差方法计算,同样以两变量与各自平均值的离差为基础,通过两个离差相乘来反映两变量之间相关程度;着重研究线性的单相关系数。
依据相关现象之间的不同特征,其统计指标的名称有所不同。
如将反映两变量间线性相关关系的统计指标称为相关系数(相关系数的平方称为判定系数);将反映两变量间曲线相关关系的统计指标称为非线性相关系数、非线性判定系数;将反映多元线性相关关系的统计指标称为复相关系数、复判定系数等。
1、定义相关关系是一种非确定性的关系,相关系数是研究变量之间线性相关程度的量。
由于研究对象的不同,相关系数有如下几种定义方式。
相关系数公式简单相关系数:又叫相关系数或线性相关系数,一般用字母r 表示,用来度量两个变量间的线性关系。
复相关系数:又叫多重相关系数。
复相关是指因变量与多个自变量之间的相关关系。
例如,某种商品的季节性需求量与其价格水平、职工收入水平等现象之间呈现复相关关系。
典型相关系数:是先对原来各组变量进行主成分分析,得到新的线性关系的综合指标,再通过综合指标之间的线性相关系数来研究原各组变量间相关关系。
2、性质(1)定理:| ρXY | = 1的充要条件是,存在常数a,b,使得P{Y=a+bX}=1;相关系数ρXY取值在-1到1之间,ρXY = 0时,称X,Y不相关;| ρXY | = 1时,称X,Y完全相关,此时,X,Y之间具有线性函数关系;| ρXY | < 1时,X的变动引起Y的部分变动,ρXY的绝对值越大,X的变动引起Y的变动就越大,| ρXY | > 0.8时称为高度相关,当| ρXY | < 0.3时称为低度相关,其它时候为中度相关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n
n
(3)计算
x
2 i
,
y
2 i
i1
i 1
i 1
(4)将上述有关结果代入公式,求r
r
n
xi yi nxy
i1
n
2 n
2
(xi2 nx )(yi2 ny )
i1
a i1
4
②练习2:已知变量X,Y满足下表,
求相关系数r
x
1
2
3
y
1
3
8
XiYi Xi2
yi2
n
r
xi yi nxy
i1
n
2 n
2
(xi2
对r进行 显著性检验
相关系数r的绝对值与1接近到什么程度才表明利用
线性回归模型比较合理呢a?
2
相关关系的测度
(相关系数取值及其意义)
完全负相关
无线性相关
完全正相关
-1.0 -0.5 0 +0.5 +1.0
r
负相关程度增加 正相关程度增加
a
3
①.求相关系数r的步骤:
(1)计算平均数 x , y
n
(2)计算 x i 与y i 的积,求 x i y i
n
, x iy i 13. i = 1
n
于是有b=
xi yi n x y
i 1
n
xi2
n
2
x
0.849
i 1
aybx85.712
所以回归方程是 $ y0.849x85.712
所以,对于身高为172cm的女大学生,由回归方程可以预报 其体重为
$ y 0 .8 4 9 7 2 8 5 .7 1 2 6 0 .3 1 6 (k g )
建构数学
相关系数
• 1.计算公式
n
(xi - x)(yi - y)
r=
i=1
n
n
(xi - x)2 (yi - y)2
i=1
i=1
• 2.相关系数的性质
n
__
xiyi nxy
i1
n i1
xi2
n
_
x
2
n i1
yi2
n
_
y
2
• (1)|r|≤1.
• (2)|r|越接近于1,相关程度越强;|r|越接近于0, 相关程度越弱.
1、其它因素的影响:影响身高 y 的因素不只是体重 x,
可能还包括遗传基因、饮食习惯、生长环境等因素;
2、用线性回归模型近似真实模型所引起的误差;
3、身高 y 的观测误差。
a
10
计算可得r=0.798,所以可以线性相关求回归方程。
函数模型与回归模型之间的差别
GDP
120000
中国GDP散点图
100000
探究P4: 身高为172cm的女大学生的体重一定是60.316kg吗?如
果不是,你能解析一下原因吗?
答:身高为172cm的女大学生的体重不一定是60.316kg, 但一般可以认为她的体重a 在60.316kg左右。 14
身高/cm 165 165 157 170 175 165 155 170
体重/kg 48 57 50 54 64 61 43 59
求根据一名女大学生的身高预报她的体重的回归方程, 并预报一名身高为172cm的女大学生的体重。
解:1、选取身高为自变量x,体重为因变量y,作散点图: 2、由散点图知道身高和体重有比较好的 线性相关关系,因此可以用线性回归方程 刻画它们之间的关系。
• 注:b 与 r 同号
• 问题:达到怎样程度,x、y线性相关呢?它们的相 关程度怎样呢?
a
1
n
相关系数 r=
i=1(xi - x)(yi - y)
n i=1(xi
-x)2×i=n1(yi
-y)2
r>0正相关;r<0负相关.通常,
r∈[-1,-0.75]--负相关很强;
r∈[0.75,1]—正相关很强; r∈[-0.75,-0.3]--负相关一般; r∈[0.3, 0.75]—正相关一般; r∈[-0.25, 0.25]--相关性较弱;
体重/kg 48 57 50 54 64 61 43 59
求根据一名女大学生的身高预报她的体重的回归方程,
并预报一名身高为172cm的女大学生的体重。
根据最小二乘法估计 a$和 b$就是未知参数a和b的最好估计,
制表 i 1 2 3 4 5 6 7 8 合计
xi
yi
xi yi xi2
x
n
, y , a x i2 i = 1
在统计中,我们也把自变量x称为解析变量,因变量y称为预报变量。
- ∵回归直线恒过点 ( x ,,y 故) 称
- 为( x样,本y 点) 的中心。
a
12
案例1:女大学生的身高与体重
例1 从某大学中随机选取8名女大学生,其身高和体重数据 如下表所示:
编号 1 2 3 4 5 6 7 8
身高/cm 165 165 157 170 175 165 155 170
nx a
)(yi2 ny
)
5
i1
i1
问题4:对于线性相关的两个变量用 什么方法来刻划之间的关系呢?
2、最小二乘估计
①最小二乘估计下的线性回归方程:
yˆ bˆx aˆ
n
(xi X )( yi Y )
bˆ i1 n
(X i X )2
i 1
n
xi yi n x y
i1 n
2
xi2 n x
i 1
a
7
3、线性回归模型
yabx
其中a+bx是确定性函数, 是随机误差
注: 产生的主要原因:
(1)所用确定性函数不恰当; (2)忽略了某些因素的影响; (3)观测误差。
a
8
案例1:女大学生的身高与体重
例1 从某大学中随机选取8名女大学生,其身高和体重数据 如下表所示:
编号
aˆYbˆXa
6
②.求线性回归方程的步骤:
(1)计算平均数 x , y
(2)计算 x
i
与y
i
的积,求
n
xiyi
n
n
(3)计算
x
2 i
,
y
2 i
i1
(4)将上述i1有关i结1 果代入公式,求b、a
,写出回归直线方程.
n
xi yi n x y
b i1 n
2 a yb x
xi2 n x
3、从散点图还看到,样本点散布在某一条 直线的附近,而不是在一条直线上,所以 不能用一a次函数y=bx+a描述它们关系9。
我们可以用下面的线性回归模型来表示:y=bx+a+e, 其中a和b为模型的未知参数,e称为随机误差。
思考P3产生随机误差项e 的原因是什么?
随机误差e的来源(可以推广到一般):
80000
60000
40000
20000
0 1992
1993
1994
1995
1996
1997
1998
年
1999
2000
2001
2002
2003
函 ybxa 回归模型: y数bx a ae
可以提供 选择模型的准则
11
函数模型与回归模型之间的差别
线性回归模型y=bx+a+e增加了随机误差项e,因变量y的值 由自变量x和随机误差项e共同确定,即自变量x只能解析部分 y的变化。