钛及钛合金典型组织

合集下载

钛及钛合金的分类

钛及钛合金的分类

钛及钛合金的分类市场供货的钛产品主要有工业纯钛和钛合金两大类:一.工业纯钛:钛属于多晶型金属,在低于882℃为a晶型,原子结构呈密排六方晶格,从882℃至熔点都是B晶型,呈体心立方晶格。

工业纯钛在金相组织上呈现a相,如果退火完全的话,是大小基本相等等轴状单项晶格。

由于存在着杂质,所以工业纯钛中也存在着少量的B相。

基本上是沿着晶界分布。

工业纯钛按GB/T3620.1—2007新标准共有九个牌号,TA1类型的有三个,TA2—TA4每个类型的各有两个,它们的差别就是纯度的不同。

从表中我们可以看出,从TA1—TA4每个牌号都有一个后缀带ELI的牌号,这个ELI是英文低间隙元素的缩写,也就是高纯度的意思。

由于Fe,C, N, H, O在a—Ti 中是以间隙元素存在的,它们的含量多少对工业纯钛的耐腐蚀性能以及力学性能产生很大的影响,C,N,O固溶于钛中可以使钛的晶格产生很大的畸变,使钛的被强烈的强化和脆化。

这些杂质的存在是生产过程中由生产原料带入的,主要是海绵钛的质量。

要是想生产高纯度的工业纯钛钛锭,就得使用高纯度的海绵钛。

在标准中,带ELI的牌号在这6个元素含量的最高值均低于不带ELI的牌号。

这些标准的修改是参照国际上或者说是西方国家的标准(我们国家的标准正在努力向西方国家靠拢,因为我们国家的很多基础工业还是比他们落后一些,很多老标准都是沿袭前苏联的),特别是在杂质的含量以及室温力学性能上各牌号的指标和国际上,以及西方国家基本上保持一致。

这个新标准主要是参照ISO(国际标准)外科植入物和美国ASTM材料标准(B265, B338, B348, B381, B861, B862, B863这七个标准)。

并且与ISO和美国的ASTM标准相对应,例如TA1对应Gr1, TA2对应Gr2, TA3对应Gr3, TA4对应Gr4。

这样有利于各个行业在选材和应用上明晰各国标准的参照,也有利于在技术和商贸上与国际上的交流。

钛及钛合金的分类

钛及钛合金的分类

钛及钛合金的分类市场供货的钛产品主要有工业纯钛和钛合金两大类:一.工业纯钛:钛属于多晶型金属,在低于882℃为a晶型,原子结构呈密排六方晶格,从882℃至熔点都是B晶型,呈体心立方晶格。

工业纯钛在金相组织上呈现a相,如果退火完全的话,是大小基本相等等轴状单项晶格。

由于存在着杂质,所以工业纯钛中也存在着少量的B相。

基本上是沿着晶界分布。

工业纯钛按GB/T3620.1—2007新标准共有九个牌号,TA1类型的有三个,TA2—TA4每个类型的各有两个,它们的差别就是纯度的不同。

从表中我们可以看出,从TA1—TA4每个牌号都有一个后缀带ELI的牌号,这个ELI是英文低间隙元素的缩写,也就是高纯度的意思。

由于Fe,C, N, H, O在a—Ti 中是以间隙元素存在的,它们的含量多少对工业纯钛的耐腐蚀性能以及力学性能产生很大的影响,C,N,O固溶于钛中可以使钛的晶格产生很大的畸变,使钛的被强烈的强化和脆化。

这些杂质的存在是生产过程中由生产原料带入的,主要是海绵钛的质量。

要是想生产高纯度的工业纯钛钛锭,就得使用高纯度的海绵钛。

在标准中,带ELI的牌号在这6个元素含量的最高值均低于不带ELI的牌号。

这些标准的修改是参照国际上或者说是西方国家的标准(我们国家的标准正在努力向西方国家靠拢,因为我们国家的很多基础工业还是比他们落后一些,很多老标准都是沿袭前苏联的),特别是在杂质的含量以及室温力学性能上各牌号的指标和国际上,以及西方国家基本上保持一致。

这个新标准主要是参照ISO(国际标准)外科植入物和美国ASTM材料标准(B265, B338, B348, B381, B861, B862, B863这七个标准)。

并且与ISO和美国的ASTM标准相对应,例如TA1对应Gr1, TA2对应Gr2, TA3对应Gr3, TA4对应Gr4。

这样有利于各个行业在选材和应用上明晰各国标准的参照,也有利于在技术和商贸上与国际上的交流。

钛和钛合金研究

钛和钛合金研究

钛及钛合金的研究1.引言钛是 20 世纪 50 年代发展起来的一种重要的结构金属,因其具有质轻、高强、耐蚀、耐热、无磁等一系列优良性能,以及形状记忆、超导、储氢、生物相容性四大独特功能,被广泛应用在航空航天、舰船、军工、冶金、化工、海水淡化、轻工、环境保护、医疗器械等领域,并创造了巨大的经济和社会效益,在国民经济发展和国防中占有重要的地位和作用。

钛是金属材料王国中“全能的金属”、“海洋金属”、“太空的金属”,从工业价值、资源寿命和发展前景来看,钛被视为继铁、铝之后处于发展中的“第三金属”和“战略金属”。

根据在钛中加入β稳定元素的多少及退火后的组织,钛合金可分为α、近α、α+β、近β和β钛合金。

美、日、俄罗斯以及中国等许多国家都高度重视钛合金的发展,各国根据不同国情和需求进行了各自的研发,现已得到了广泛的应用[1~3]。

2.钛及钛合金的特点钛及钛合金具有许多优良特性,主要体现在如下几个方面:(1)比强度高。

钛合金具有很高的强度,其抗拉强度为686~1 176 MPa,而密度仅为钢的60%左右,所以比强度很高。

(2)硬度较高。

钛合金(退火态)的硬度HRC为32~38。

(3)弹性模量低。

钛合金(退火态)的弹性模量为1.078@105~1.176@105MPa,约为钢和不锈钢的一半。

(4)高温和低温性能优良。

在高温下,钛合金仍能保持良好的机械性能,其耐热性远高于铝合金,且工作温度范围较宽,目前新型耐热钛合金的工作温度可达550~600e;在低温下,钛合金的强度反而比在常温时增加,且具有良好的韧性,低温钛合金在-253e时还能保持良好的韧性。

(5)钛的抗腐蚀性强。

钛在550e以下的空气中,表面会迅速形成薄而致密的氧化钛膜,故在大气、海水、硝酸和硫酸等氧化性介质及强碱中,其耐蚀性优于大多数不锈钢。

此外,钛还具有形状记忆、吸氢、超导、无磁、低阻尼等优良特性。

纯钛及钛合金与其他材料有关性能的对比见表1。

3.钛及钛合金的研究进展1954 年美国成功研制出第一个实用钛合金Ti-6Al-4V,由于其具有优异的综合性能,成为钛合金中的王牌合金[1]。

典型钛及钛合金的组织与性能综述

典型钛及钛合金的组织与性能综述

典型钛及钛合金的组织与性能综述钛及钛合金是一类重要的结构材料,具有低密度、高强度、优良的耐腐蚀性和良好的高温稳定性等特点。

本文将对典型钛及钛合金的组织与性能进行综述,包括纯钛、α型钛合金、β型钛合金和α+β型钛合金四个方面。

纯钛是一种由于其较高的纯度而具有良好综合性能的金属材料。

其组织以α相为主,具有良好的延展性、塑性和韧性。

纯钛的强度较低,但其具有较高的耐腐蚀性,尤其是对氧化腐蚀具有较好的抵抗能力。

纯钛的熔点较低,易于加工成形,并可通过热处理改善其强度。

α型钛合金主要由α相和少量的β相组成。

α相是一种具有密排六方最密堆积结构的钛晶体结构,具有良好的可塑性。

β相是一种具有体心立方结构的钛晶体结构,具有较高的强度。

α型钛合金具有良好的综合性能,具有较高的强度、良好的耐腐蚀性和热稳定性。

它们通常用于航空航天、汽车制造等领域。

β型钛合金主要由β相组成,β相是一种具有体心立方结构的钛晶体结构,具有较高的硬度和强度。

β型钛合金具有较高的强度、优良的耐腐蚀性和良好的高温稳定性。

它们广泛应用于航空航天、船舶制造、化工等领域。

α+β型钛合金同时包含α相和β相,组织复杂且多样。

它们具有较高的强度、耐腐蚀性和高温稳定性,同时兼具良好的可塑性和冲击韧性。

α+β型钛合金是一类综合性能较好的钛合金,广泛应用于航空航天、电子设备等高端领域。

除了以上提到的几种典型钛及钛合金,还有许多其他类型的钛合金,如α'型钛合金、硬质钛合金等。

这些钛合金具有不同的组织和性能,可以根据具体的应用需求进行选择。

总之,钛及钛合金作为一类重要的结构材料,具有独特的组织和性能。

不同类型的钛及钛合金在应用领域、组织结构和性能方面存在差异,但都具有低密度、高强度、优良的耐腐蚀性和良好的高温稳定性等特点。

随着研究的深入,钛及钛合金在各个领域的应用前景将会更加广阔。

钛及钛合金的分类

钛及钛合金的分类

钛及钛合金的分类市场供货的钛产品主要有工业纯钛和钛合金两大类:一.工业纯钛:钛属于多晶型金属,在低于882℃为a晶型,原子结构呈密排六方晶格,从882℃至熔点都是B晶型,呈体心立方晶格。

工业纯钛在金相组织上呈现a相,如果退火完全的话,是大小基本相等等轴状单项晶格。

由于存在着杂质,所以工业纯钛中也存在着少量的B相。

基本上是沿着晶界分布。

工业纯钛按GB/T3620.1—2007新标准共有九个牌号,TA1类型的有三个,TA2—TA4每个类型的各有两个,它们的差别就是纯度的不同。

从表中我们可以看出,从TA1—TA4每个牌号都有一个后缀带ELI的牌号,这个ELI是英文低间隙元素的缩写,也就是高纯度的意思。

由于Fe,C, N, H, O在a—Ti 中是以间隙元素存在的,它们的含量多少对工业纯钛的耐腐蚀性能以及力学性能产生很大的影响,C,N,O固溶于钛中可以使钛的晶格产生很大的畸变,使钛的被强烈的强化和脆化。

这些杂质的存在是生产过程中由生产原料带入的,主要是海绵钛的质量。

要是想生产高纯度的工业纯钛钛锭,就得使用高纯度的海绵钛。

在标准中,带ELI的牌号在这6个元素含量的最高值均低于不带ELI的牌号。

这些标准的修改是参照国际上或者说是西方国家的标准(我们国家的标准正在努力向西方国家靠拢,因为我们国家的很多基础工业还是比他们落后一些,很多老标准都是沿袭前苏联的),特别是在杂质的含量以及室温力学性能上各牌号的指标和国际上,以及西方国家基本上保持一致。

这个新标准主要是参照ISO(国际标准)外科植入物和美国ASTM材料标准(B265, B338, B348, B381, B861, B862, B863这七个标准)。

并且与ISO和美国的ASTM标准相对应,例如TA1对应Gr1, TA2对应Gr2, TA3对应Gr3, TA4对应Gr4。

这样有利于各个行业在选材和应用上明晰各国标准的参照,也有利于在技术和商贸上与国际上的交流。

国内外医用钛及钛合金标准及性能

国内外医用钛及钛合金标准及性能

国内外医用钛及钛合金标准及性能发布时间:2010-4-17 10:20:42 中国废旧物资网一、钛在医学中的应用1、钛作为一种新兴的材料在我国及世界制药工业、手术器械、人体植入物等领域使用已有几十年的历史,并已取得了极大地成功。

2、人体内应外伤、肿瘤造成的骨、关节损伤,采用钛及钛合金可制造人工关节、接骨板和螺钉现已广泛用于临床。

还用于髋关节(包括股骨头)、膝关节、肘关节、掌指关节、指间关节、下頜骨、人造椎体(脊柱矫形器)、心脏起搏器外壳、人工心脏(心脏瓣膜)、人工种植牙、以及钛网在头盖骨整形等方面。

3、对于植入物材料的要求可以归为三个方面:材料与人体的生物相容性、材料在人体环境中的耐腐蚀性和材料的力学性能,作为长期植入材料有下列七项具体要求:①、耐蚀性;②、生物相容性;③、优越的力学性能和疲劳性能;④、韧性;⑤、低的弹性模量;⑥、在组合体中有好的耐磨性;⑦、令人满意的价格;4、外科植入物材料主要有:金属、聚合物、陶瓷等,金属材料又包括不锈钢、鈷基合金和钛基合金。

材料性能与骨性能的比较和植入物材料的特性比较见表一和表二。

从表二可以看出,不锈钢价格低廉,易于加工,但耐蚀性和生物相容性不如钛合金;鈷鉻合金的耐磨性比钛合金好,但密度较大,太重;钛及钛合金由于比强度高,生物相容性好及耐体液腐蚀性好等特点正日益受到重视。

钛合金的不足之处识是耐磨性差、难于铸造,加工性能也差。

二、国内外外科植入物用钛及钛合金加工材标准情况1、国外外科植入物用加工材标准纯钛:国际标准化组织 ISO 5832/2 1999E《外科植入物-纯钛加工材》美国标准:ASTM F67 2006a 《外科植入物用纯钛》TC4: 国际标准化组织 ISO 5832/3 1996Z 《外科植入物-金属材料-Ti-6Al-4V加工材》ASTM F1472 2002 《外科植入物用Ti-6Al-4V合金加工材》TC4ELI: ASTM F136 2002a 《外科植入物用Ti-6Al-4VELI(超低间隙)加工材规范》TC20: ISO 5832/11 I994(E) 《外科植入物-金属材料-Ti-6Al-7Nb合金加工材》ASTM F1295:2005《外科植入物用Ti-6Al-7Nb合金加工材》2、中国国家标准①、《外科植入物用钛及钛合金加工材》中国国家标准为GB/T13810-2007,牌号有:TA 1ELI、TA1、TA2、TA3、TA4、TC4、TC4ELI、TC20.品种有:板材0.8~25mm;棒材7.0~90mm;丝材1.0~7.0mm;GB\T13810-2007标准中规定的各项性能指标:②、GB/T13810-2007标准中,为了保证外科植入物用钛及钛合金加工材的综合性能(强度、塑性、韧性、硬度、抗疲劳等性能的合理匹配),对两相钛合金的高倍金相组织和氢含量及其它间隙元素含量都有非常严格的要求和控制。

航空材料钛及钛合金的特性及发展趋势

航空材料钛及钛合金的特性及发展趋势

1所示。

图1不同元素对相变温度的影响[3]钛密度为4.5g/cm3,属于轻金属,熔点为1669℃,化学活性大,容易与空气中的氧发生反应生成致密的氧化膜,阻止进一步氧化,高温时,反应剧烈,氧化膜脱落会加速反应速度,所以,在钛合金的制备过程中,真空或气体保护是非常必要的。

钛合金作为应用广泛的结构材料,比铝、钢强度高,而且在海水中有较好的抗腐蚀和耐低温的性能。

目前,飞图2α-Ti和β-Ti晶胞结构(a)α-Ti(b)β-Ti钛合金组织有α型、α+β型、β型三种结构,对应的符号为TA、TC、TB。

2.1α型钛合金α钛合金是单相合金,其组织是α相固溶体,符号用表示。

合金的主要元素为中性元素或α稳定元素,Al、Sn、Zr等,基本不含β稳定元素。

工业纯钛,组织均α相,属于典型的α型钛合金。

α型钛合金的抗氧化能力和切削加工性能良好,其强度和蠕变抗力在500~600℃范围内仍可维持,缺点是无法实行热处理工艺进行强化,室温的强度相对较低,退火后的强度变化量很小或基本无变化。

———————————————————————作者简介:黄文君(1990-),女,河南许昌人,助教,硕士,研究方向为机械工程材料。

抗缺口敏感性,缺点是断裂韧性,蠕变性能相对较差。

图3钛合金典型的显微组织[9](b )双态组织(d )等轴组织(a )魏氏组织(b )网篮组织4展望随着科技的进步和现代工业的发展,钛合金在军工和民用领域的应用也越来越广泛,在汽车行业,钛合金的应用不仅能减重,更能满足环保的要求,未来航空航天和推力系统需要钛合金材料具有更小的密度,更高的强度、工作温度和弹性模量,对材料性能的要求也逐渐提高,高强度、高硬度、高耐热性的材料越来越受各领域的青睐,优质轻型金属材料的钛合金必将代替部分传统的材料,既减轻质量,又降低成本,达到降低能源消耗的目的,因此高性能钛合金的研究已成为重要的发展方向,相信随着发展的需要,钛合金在我国的市场前景会越来越好。

钛合金的四种基本显微组织

钛合金的四种基本显微组织

钛合金的四种基本显微组织钛合金是一种具有优异性能的金属材料,广泛应用于航空航天、医疗器械、化工等领域。

其性能的突出之处在于其独特的显微组织。

钛合金的显微组织可以分为四种基本类型:α相、β相、α + β相和ω相。

下面将详细介绍这四种显微组织的特点。

第一种是α相。

α相是指纯钛晶体结构,在显微镜下呈现出银白色的球状晶粒。

它具有高度的塑性和可锻性,是钛合金中最主要的相态组织。

在低合金度的钛合金中,α相可以占据相当比例的晶粒。

此外,α相的存在可以提高合金的耐腐蚀性和延展性。

第二种是β相。

β相具有典型的钛合金晶体结构,在显微镜下呈现出具有棱柱形状的晶粒。

与α相相比,β相的硬度和强度较高,而韧性和延展性较差。

β相在高合金度的钛合金中常常占据主导地位,可以显著提高合金的强度和硬度。

第三种是α + β相。

α + β相是指同时存在α相和β相的显微组织。

在合金经过适当的加热处理后,α相和β相可以共存于同一块材料中。

α + β相的钛合金具有较好的综合性能,既具备了α相的优异可锻性和延展性,又保留了β相的高强度和硬度。

第四种是ω相。

ω相是钛合金中一种特殊的显微组织,主要存在于高应力和高温条件下。

它具有一种典型的双层锯齿形结构,呈现出黑色或深灰色的颜色。

ω相通常会降低钛合金的机械性能和耐蚀性能,因此应尽量避免其生成。

综上所述,钛合金的四种基本显微组织分别是α相、β相、α+ β相和ω相。

每种组织都具有独特的特点和应用领域。

了解和控制这些显微组织,可以根据具体的工程要求调整钛合金的性能,以提高其应用效果。

第一种显微组织是α相。

α相能够提供钛合金良好的塑性和可锻性。

在纯钛中,α相是唯一的组织形态。

在α相中,晶体结构是六方最紧密堆积,呈球状晶粒分布。

这种结构的特点决定了α相的优异性能。

α相的存在可以提高钛合金的延展性,使其具有出色的弯曲和拉伸性能。

同时,α相还能够提高钛合金的耐腐蚀性能,使其在各种恶劣环境下具有良好的耐候性。

第二种显微组织是β相。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

TC4,950℃/1hr AC; 等轴初生α+舍有针状α的β转变组织.
金相明场 500×;金相相衬 500×;电镜明场 10000× 浸蚀剂:氢氟酸:硝酸:水 =1:4:45
TC4,950℃/1hr 炉冷;等轴α+晶间β
金相明场 500×;金相相衬 500×;电镜明场 5000× 浸蚀剂:氢氟酸:硝酸:水 =1:6:193
TA2,1000℃/1hr,AC;锯齿α片及α片间保留的β相
浸蚀剂---氢氟酸:硝酸:水=2 : 1 : 17; 金相明场 250×; 金相偏光 250×; 电镜明场 5000×
TA2 ,700℃/1hr ,AC,等轴α相(某些晶粒内含孪晶)
浸蚀剂---氢氟酸:硝酸:水=2 : 1 : 17; 金相明场 250×; 金相偏光 250×; 电镜明场 5000×
图3-4
47
近β-Ti合金组织
Ti-10V-2Fe-3Al
工艺:820°C/8h/WQ组 织:等轴β相
工艺:820°C/8h/WQ +时效 600°C/8h/AC. 组织:β相基体上 细小的α相析出
48
Ti-10V-2Fe-3Al 工艺:α+β固溶 700°C/8h/WQ + 时效 600°C/4h/AC. 组织:初生等轴αand 针状α (SEM )
金相明场500×;
电镜明场20000×
浸蚀液: 氢氟酸 : 硝酸 : 水 = 1 : 1 : 3
TB2,800℃/30分 AC+500℃/8hr AC; 有弥散α相析出的β晶粒
金相明场 500×, 浸蚀㲸:氢氟酸:硝酸: 水=1:3:5;
金相偏光 500×, 浸蚀㲸:氢氟酸:硝酸: 水=1:12:18;
金相明场 500×;金相相衬 500×;电镜明场12000× 浸蚀剂:氢氟酸:硝酸:水 =1:4:45
TC4,750℃/1hrAC;等轴初生α+β
金相明场320×;金相相衬 320×;电镜明场20000× 浸蚀剂:氢氟酸:硝酸:水 =1:4:45
2.4 TB2,典型组织介绍 TB2,800℃/30分,AC;等轴亚稳β晶粒
49
其他Ti合金组织
Ti-Al合金:Ti3Al基合金和 TiAl基合金
α2(Ti3Al)、O (Ti2AlNb),
图3-17 Ti-24Al-20Nb 工艺: α2+β 固 900°C/1h/WQ. 组织: α2 (dark) + O (gray) + B2 (bright) 相.
50
Ti-24Al-11Nb, 工艺:1060°C/4h/WQ + 800°C/24h/AC. 组织: α2 + 转变B2 相
TA2 ,锻态,变形α晶粒
浸蚀剂: 氢氟酸:硝酸:水=2:1:17; 金相明场 250×; 电镜明场 5000×;
TA1,退火+焊接,热影响区:等轴α相
浸蚀剂--氢氟酸 : 硝酸 : 水 = 1 :1 :3;
金相明场 250×; 金相偏光 250×; 电镜明场 5000×
TA1,退火+焊接;焊缝区:片状α+原始β晶 界(晶内有孪晶)
TC4,950℃/1hr炉冷至600℃AC+再经970℃/1hr AC;双态组织(等轴初生α+再结晶二次β晶粒)
金相明场 500×;金相相衬 500×;电镜明场 10000× 浸蚀剂:氢氟酸:硝酸:水 =1:6:193
TC4,950℃/1hr 水淬+550℃/4hr AC; 等轴初生α+针状的α相的β转变基体
TC4,1020℃热轧,加工率78%+750℃/1hr AC; 网竺状组织(α+β)
金相明场 500×; 金相相衬 500×; 电镜明场 10000×. 浸蚀剂:氢氟酸:硝酸:水 =1:4:45
TC4,950℃/1hr 水淬;等轴α+马氏体α′基体
金相明场 500×;金相相衬 500×;电镜明场 5000× 浸蚀剂:氢氟酸:硝酸:水 =1:4:45
TB2,800℃/30分AC+500℃/4hr AC; 非匀均弥散α析出的β晶粒
浸蚀剂---氢氟酸:硝酸:正丙酸 =1:12:18; 金相明场 500×; 电镜明场 14000×; 电镜α暗场14000×
TB2,800℃/30分AC+自动氩弧焊; 焊接头低倍,焊缝区粗大等轴亚稳B晶粒
焊缝低倍 8×, 焊缝区金相明场 500× 焊缝区金相暗场 500×;
Ti-6Al-4V 1020℃/20min/FC 魏氏组织α 相+晶界初生β相
Ti-6Al-4V 960℃/60min/WC 等轴α 相+转变β相
TC4,1020℃/1hr 水淬;马氏体α’+原始β晶界
浸蚀剂---氢氟酸:硝酸:水=1:6:193; 金相明场 250×; 金相相衬 250×; 电镜明场 5000×;

较快 慢 慢

最快
疲劳性能
低周 高周
较差
较好
高于 双态 高于 等轴

好 高于 等轴



52
1、钛合金的组织类型 1.1 等轴组织
TC11合金
TC21合金
Ti-17合金
Ti-1023合金
BT20 (叶片)
等轴组织复型照片
3
● 表达式:
(α+β)组织,白色颗粒α等,交错分布的细条 领域β转(又称转变β基体)
或 (α等+β转) 或 (α等初+β转) β转基体中的细条魏氏α(α魏),
细条之间黑色底为残余β(β残)。 所以, β转(α魏+β残) 因此,等轴组织=(α等+ α魏+β残)
TC11水冷
TC11水冷大变形
Ti-17
Ti-679
● 表达式:(α等+ α条+β转)组织
● 特征: α等≈10~20%, α条≈60~70%,且混乱交织 6
1.4 网篮组织
β锻后水冷 β锻水冷
β锻空冷,晶界破碎
β锻空冷
β锻空冷,断续的晶界
7
β锻空冷,连续的晶界α β锻空冷,断续的晶界α
β锻空冷,锻态
51
3、不同组织的力学性能 组织决定性能
组织 类型
等轴 双态 三态 网篮 魏氏
室温拉伸
热稳定
强度 塑性 强度 塑性

最好


与等轴同一水平
高于 等轴
高于 等轴
较差
与等轴同一水平



最差

最差
高温性能
拉伸 持久 蠕变
一般


高于等轴
高于双态
高于双态 较差
断裂韧性
K1C 最差
Da/dN

较好
高于 双态
生β晶界α24
初生β晶界α
a 1050℃
b 1050℃
Ti-6Al-V合金的相转变图,MS:马氏体转 变 开 始 温 度 。 以 及 Ti-6Al-4V 合 金 从 1050℃、800℃和650℃炉冷和水淬后的 显微组织
c 800℃
d 800℃
e 650℃ 炉冷(50℃/h )
f 650℃ 水淬
Ti-6Al-4V 1020℃/20min/WQ 马氏体组织+晶界初生β
浸蚀剂— 氢氟酸:硝酸:水=1:1:3
TB2,800℃/30分AC+自动氩弧焊; 热影响区粗大等轴亚稳β晶粒,
电镜明场 20000×---B晶界 及位错线;
电;
TB2,800℃/30分AC+自动钨极氩弧焊+500℃/8hrAC; 有弥散α析出的β晶粒
浸蚀剂: 氢氟酸 : 硝酸 : 正丙酸 =1 : 12 : 18; 金相明场 250×; 金相明场 500×; 电镜明场 20000×
3Ti合金组织观察
近α -Ti合金:Ti-6Al-5Zr-0.5Mo-0.3Si
工艺: 1050°C,1h,油淬 600°C,24h,时效.
组织:转变β相和 初始β晶界
β锻空冷,大块α
β锻空冷,大块α
β锻空冷,大块α
● 表达式:(α条+ β转)组织,有断续晶界α,或有 连续晶界α,或有大块α
● 特征: α等≈0
8
1.5 魏氏组织
β锻,空冷,锻态
β锻,空冷,热处理
● 表达式:
(α针+ β转)组织 ● 特征: α针细长、平直,β晶粒粗大,并有
晶界α存在
9
总结
● 不管何种组织结构均有β转存在,总是在转变β 基体上析出不同形态的条状α。
浸蚀剂--氢氟酸:硝酸:水=1:1:3;
金相明场 250×; 金相偏光 250×; 电镜明场 5000×
2.2 TA7,典型组织介绍 TA7,1040℃/30分,水淬;针状α+原始β晶界
浸蚀剂--氢氟酸:盐酸:甘油=1:1:7
金相明场 250×; 金相相衬 250×; 电镜明场 5000×;
TA7,1040℃/30’ AC;针状α+原始β晶界
金相明场 500×;金相相衬 500×;电镜明场 5000× 浸蚀剂:氢氟酸:硝酸:水 =1:4:45
TC4,850℃/1hr 水淬;等轴初生α+马氏体 α′.
金相明场 500×;金相相衬 500×;电镜明场20000× 浸蚀剂:氢氟酸:硝酸:水 =1:4:45
TC4,850℃/1hr AC ;等轴初生α+转变β
● 只要有β转,就有β残(残余β),但含量是不同 的,因此,不同类型组织的热稳定性也都不一 样的。
10
2 不同类型钛合金的典型组织
2.1 纯钛:TA1或TA2 为代表
A:885℃ ℃
相关文档
最新文档