群智能优化算法综述
几种仿生优化算法综述

几种仿生优化算法综述仿生优化算法是由自然界中的生物行为和现象而启发而来的一类算法。
这些算法通过模拟生物的行为和机制来解决各种优化问题,包括搜索、分类、调度、规划等诸多领域。
本文将介绍几种典型的仿生优化算法,并对它们的基本原理、应用领域和特点进行综述。
一、遗传算法遗传算法是一种模拟达尔文进化论的方法而产生的一种求解最佳问题的技术。
它是由美国密歇根大学的研究人员 John Holland 提出的,主要模拟自然选择和遗传的思想。
遗传算法的基本概念是模拟进化过程,利用自然选择机制和遗传机制,通过逐代选择和交叉变异操作寻找解决问题的最优解。
具体的工作过程是这样的:建立一个初始种群,通过适应度函数来评价每个个体的优劣。
然后,根据适应度值概率选择一些个体作为父代,采用交叉和变异操作产生下一代。
经过多次迭代操作,最终从种群中找到最优的解。
遗传算法的特点是它具有很强的全局寻优能力和较好的鲁棒性,能有效避免落入局部最优解。
遗传算法广泛应用于组合优化、函数优化、调度问题、神经网络设计等众多领域。
二、粒子群优化算法粒子群优化算法是由美国卡尔弗利技术学院的 James Kennedy 和 Russell Eberhart 在1995年提出来的。
它是一种模拟鸟群觅食行为的优化算法,通过模拟鸟群中鸟的行为和迁徙机制来寻找最优解。
粒子群优化算法的基本思想是通过不断调整搜索空间中各个解的位置和速度,来寻找最优解。
在每一代中,根据当前位置和速度,更新粒子的位置和速度,通过不断迁徙和调整,最终找到最优解。
粒子群优化算法的特点是具有较快的收敛速度和较好的局部搜索能力。
它通常用于解决连续优化、离散优化和多目标优化等问题,例如神经网络训练、模式识别、机器学习等领域。
三、人工蜂群算法人工蜂群算法是由意大利研究人员 Marco Dorigo 在2005年提出的一种模拟蜜蜂觅食行为的优化算法。
它是一种群智能算法,模拟蜜蜂在寻找食物和回巢过程中的行为和交流机制。
群体智能研究综述

1.2 群体机器人 群体智能最早被用在细胞机器人系统的描述中[2] 其中
多个简单的机器人通过与近邻的交互产生一种自组织的模 式 对蚂蚁 蜜蜂的分工 搬运 筑巢等行为的研究中 发 现了社会性昆虫的自组织和自组装能力 以此为理论基础 展开了群体机器人自组织 自组装以及协作的研究 1.2.1 自组织 自组装
粒 子 群 优 化 算 法 (PSO) 是 由 James Kennedy 博 士 和 R C Eberhart 博士于 1995 年提出的 该算法源于对鸟群 鱼群觅食行为的模拟[5] 在 PSO 中 首先初始化一群随机粒 子(随机解) 然后通过迭代寻找最优解 在每一次迭代中 粒子通过跟踪两个极值来更新自己的速度和位置 第一个就 是粒子本身所找到的最优解 这个解叫做个体极值 另一个 极值是整个种群目前找到的最优解 这个极值是全局极值 另外也可以不用整个种群而只是用其中一部分作为粒子的邻 居 那么在所有邻居中的极值就是局部极值 PSO 算法简单 易实现 不需要调整很多参数 主要应用有神经网络的训练 函数的优化问题等
经比较成熟 HP 公司 英国电信公司都在 20 世纪 90 年代后 期就展开了这方面的研究[6] 该算法也越来越多地应用于企 业 如工厂生产计划的制定和运输部门的后勤管理 美国太 平洋西南航空公司采用了一种直接源于蚂蚁行为研究成果的 运输管理软件 每年至少节约上千万美元开支 英国联合利 华公司已率先利用这种技术改善其一家牙膏厂的运转状况 美国通用汽车公司 法国液气公司 荷兰公路交通部和美国 一些移民事务机构也都采用相应技术以改善其运转的机能
菌群优化算法研究综述

文章编 -  ̄ - : 1 0 0 7 . 9 4 1 6 ( 2 0 1 3 ) 1 0 — 0 1 2 8 — 0 2
自从遗传算法得 到 的动 态 的模 式 : 模拟状态及各种形态 的算法选择的达到了高度的重视。 从2 0 世纪7 0
1
过程不再是那样 的复杂 , 这些都是完全牺牲一定的多样 食的影响。 这些都是一些非常重要 的研 究, 在非常低的维度 的函数算 更加 的少 , 性 。 文献_ 】 ” 中我们 能看到一些改过之后的算法 , 像是复制的情况还 法的剧集的情况下。 文献[ 4 】 就是在这样的二维的函数之间的控制的方 是个体的计算都可以在个体中得到一定的应用的总和度 , 然而在改 式然后在一定的稳定情况下从而进行一定的分析 , 然而文献[ 5 】 却是在 进之 后 的 最后 一 次 的趋 向性 的 操作 却 是 存在 一 定 的适 应 的 关系, 不 定的情 况下得到一定的论证和种群等一切同步方向的收敛的情况。
,
.
1
c
万 丁 , 式中、 为正常数, 取值为
l
#§
年代开始 , 各种智能的算法相继推出, 直到二十世纪9 O 年代 , 智能优 4 0 0 , . , ( ) 为 函数适应度值 。 国际的专家基本上就 是根据文献【 7 】 来进 化的算法就 已经达到 了种类繁多的效果。 不仅只是数量上的增加 , 行一定的情 况来完成的[ 8 J , 基本上这种细菌都是在一定的基础上定 智能优化算法的运用也在各个领域中开展 , 最特别的是在工程 中运 制的 , 只有当其中的差额 非常的大的时候 , 这 样的趋 向才会变得更 用, 因为在大规模计算 的问题上 , 传统的计算会需要更多的时间。 因 加的大 ; 当其 中的差额非常 的小 的话 , 那么这样 的细菌才会是 完全 此, 在2 0 0 2 年 由著名 的教授提 出了当前 非常新的细菌觅食优化算 的变小 。 专家在提出大量的动态方面的想法后才能够达到一定的情 法, 不仅仅只是菌群方面的优化的算法 , 还会 是一些其他的算法的 况, 不管是有 关于局部还是全局方面, 都 能够达到足够 的平衡的基 出现 , 他们的优点对于以前 的传统的算法相 比, 他们的优点也都得 础。 所谓的 自身适应的菌群优化算法_ 9 】 , 算法的适应的搜索是有下面 到了业 内所有的学者的重视 , 使得智能算法变得更加的流行 。 菌群 两条标准 : 在那些细菌开始 搜索 到那些非常丰富的觅食的地 方, 基 优化算法基本上算是一种非常简单且计算 的速度非常快的算法 , 是 本 上 就 能够 得 到 非 常小 的 动态 以及 基 本上 的适 应方 面 的 策 略 等等 。 种完全的仿生算法 , 它也不需要完全 的优化 , 这种算法非常的实 而在趋势性变得更加的大的时候 , 这样才能够得到应该完全 的全局 用。 从这种算法开始实行开始 , 基本上就得到了全世界学者的认可, 的情 况。 这样 的新 的算法就是使得算法更加的困难 , 不仅是在趋势 也是具有非常大的潜在 力。 性上还是在操作的情 况上 , 这些都是基于完全循环 的情况下来完成
现代智能优化算法的研究综述

过程与一般 组合优 化问题之 间的相似性 , 是基 于 M uc a o 代求解 etC r 迭 l 策略 的一种 随机优 化算法 。S A算法 的基 本思想 是从一 给定初始解 开 始 , 邻域 中随机 产生另一个解 , 在 接受准则允许 目标函数在有 限范围 内
的一大飞跃 。
1 蚁群算法( n o n p mi o , C ) . 4 A t l yO f z n A O Co i mi 人『 蚁群算 法 [ 是受到对真实蚁群行 为的研究的启发 , 由意大利学 者 M.oi 等人 于 19 年首 先提 出的 , D ro g 91 它是一种 基于蚁群 的模 拟进化 算法 , 属于 随机搜 索算法 。研究学者在研究 过程中发现 , 蚂蚁个体之 间 是通过 一种称 之为外 激素(h rmoe的物质进 行信息 传递 , 而能相 p eo n ) 从 互协作 , 完成 复杂的任务 。蚂蚁在运动过程 中 , 能够在它所经过 的路径 上 留下该 种物质 , 而且蚂蚁 在运动过 程中能够感 知这种物质 的存在及 其强度 , 以此指 导 自己的运动方 向, 并 蚂蚁倾 向于朝着该物质强度高 的 方 向移动 。蚂蚁个体 之间就是通过这种信 息的交流达到搜索食物 的 目 的 。蚁群 算法正是模 拟 了这 样的优化机 制 , 即通 过个体之 问的信息交 流与相互协作最终找到最优解 。 15 .粒子群优化算法(a ilS am pi zt n P O) P rce w r o t ai ,S t mi o 粒子群优化算法 是一种进化算 法 , 最早是 由K n e 与 E e a 于 en y b r r h t 1 9 年提出的 。最早 的P O 95 S 是模拟 鸟群 觅食行 为而发展起来 的一种基 于群体协 作 的随机 搜索算 法 。P O S 是模 拟鸟群 的捕食 行为 , 一群鸟 让 在 空间里 自由飞翔 觅食 , 每个鸟都能记住它 曾经飞 过最高的位置 , 然后 就随机的靠近那个位 置 , 不同的鸟之间可 以互相交 流 , 它们都尽量靠近 整个 鸟群 中曾经 飞过 的ቤተ መጻሕፍቲ ባይዱ高点 , 这样 , 经过一段时 间就 可以找到近似 的 最 高点 。P O后来经 过多次 的改进 , S 去除 了原来 算法 中一些无 关的或
智能优化算法综述

智能优化算法的统一框架指导老师:叶晓东教授姓名:***学号:2班级:电磁场与微波技术5班2011年6月20日目录1 概述 (3)2群体智能优化算法.................................. 错误!未定义书签。
人工鱼群算法 (4)蚁群算法 (5)混合蛙跳算法 (9)3神经网络算法 (10)神经网络知识点概述 (10)神经网络在计算机中的应用 (11)4模拟退火算法 (15)5遗传算法.......................................... 错误!未定义书签。
遗传算法知识简介 (17)遗传算法现状 (18)遗传算法定义 (19)遗传算法特点和应用 (20)遗传算法的一般算法 (21)遗传算法的基本框架 (26)6总结 (28)7感谢 (29)1概述近年来,随着人工智能应用领域的不断拓广,传统的基于符号处理机制的人工智能方法在知识表示、处理模式信息及解决组合爆炸等方面所碰到的问题已变得越来越突出,这些困难甚至使某些学者对强人工智能提出了强烈批判,对人工智能的可能性提出了质疑。
众所周知,在人工智能领域中,有不少问题需要在复杂而庞大的搜索空间中寻找最优解或准优解。
像货朗担问题和规划问题等组合优化问题就是典型的例子。
在求解此类问题时,若不能利用问题的固有知识来缩小搜索空间则会产生搜索的组合爆炸。
因此,研究能在搜索过程中自动获得和积累有关搜索空间的知识,并能自适应地控制搜索过程,从而得到最优解或准有解的通用搜索算法一直是令人瞩目的课题。
智能优化算法就是在这种背景下产生并经实践证明特别有效的算法。
2群体智能优化算法自然界中群体生活的昆虫、动物,大都表现出惊人的完成复杂行为的能力。
人们从中得到启发,参考群体生活的昆虫、动物的社会行为,提出了模拟生物系统中群体生活习性的群体智能优化算法。
在群体智能优化算法中每一个个体都是具有经验和智慧的智能体 (Agent) ,个体之间存在互相作用机制,通过相互作用形成强大的群体智慧来解决复杂的问题。
群智能优化算法综述

现代智能优化算法课程群智能优化算法综述学生姓名:学号:班级:2014年6月22日摘要工程技术与科学研究中的最优化求解问题十分普遍,在求解过程中,人们创造与发现了许多优秀实用的算法。
群智能算法就是一种新兴的演化计算技术,已成为越来越多研究者的关注焦点,智能优化算法具有很多优点,如操作简单、收敛速度快、全局收敛性好等。
群智能优化就是智能优化的一个重要分支,它与人工生命,特别就是进化策略以及遗传算法有着极为特殊的联系。
群智能优化通过模拟社会性昆虫的各种群体行为,利用群体中个体之间的信息交互与合作实现寻优。
本文综述群智能优化算法的原理、主要群智能算法介绍、应用研究及其发展前景。
关键词:群智能;最优化;算法目录摘要 01 概述 (2)2 定义及原理 (2)2、1 定义 (2)2、2 群集智能算法原理 (3)3 主要群智能算法 (3)3、1 蚁群算法 (3)3、2 粒子群算法 (4)3、3 其她算法 (5)4 应用研究 (6)5 发展前景 (6)6 总结 (7)参考文献 (8)1 概述优化就是人们长久以来不断研究与探讨的一个充满活力与挑战的领域。
很多实际优化问题往往存在着难解性,传统的优化方法如牛顿法、共扼梯度法、模式搜索法、单纯形法等己难以满足人们需求。
因此设计高效的优化算法成为众多科研工作者的研究目标。
随着人类对生物启发式计算的研究, 一些社会性动物( 如蚁群、蜂群、鸟群) 的自组织行为引起了科学家的广泛关注。
这些社会性动物在漫长的进化过程中形成了一个共同的特点: 个体的行为都很简单, 但当它们一起协同工作时, 却能够“突现”出非常复杂的行为特征。
基于此,人们设计了许多优化算法,例如蚁群算法、粒子群优化算法、混合蛙跳算法、人工鱼群算法,并在诸多领域得到了成功应用。
目前, 群智能理论研究领域主要有两种算法: 蚁群算法(Ant Colony Optimization, ACO) 与粒子群优化算法(ParticleSwarm Optimization, PSO)。
新型群体智能优化算法综述

新型群体智能优化算法综述高岳林;杨钦文;王晓峰;李嘉航;宋彦杰【期刊名称】《郑州大学学报:工学版》【年(卷),期】2022(43)3【摘要】智能优化算法主要分为4类:仿自然优化算法、进化算法、仿植物生长算法和群体智能优化算法,其中群体智能优化算法是最为重要的一类算法。
智能优化算法与图像处理、故障检测、路径规划、粒子滤波、特征选择、生产调度、入侵检测、支持向量机、无线传感器、神经网络等技术领域交叉融合,应用更加广泛。
以蝙蝠算法、果蝇优化算法、鲸鱼优化算法、樽海鞘群体算法和哈里斯鹰优化算法为基础,对群体智能优化算法的模型、特征、改进策略及应用领域等进行了综述,从理论研究、改进策略和应用研究3个方面分析了其面临的发展机遇和未来趋势,给出了算法应用的指导意见。
研究表明:群体智能优化算法在众多经典问题上的表现较好,而在多目标优化、多约束优化、动态优化和混合变量优化等领域仍有待扩展;不同群体智能优化算法在面对各类具体问题时有效的参数控制仍是未来的研究重点;种群协同进化、探索更高效的混合算法和搜索策略是可行的解决途径。
【总页数】10页(P21-30)【作者】高岳林;杨钦文;王晓峰;李嘉航;宋彦杰【作者单位】北方民族大学计算机科学与工程学院;北方民族大学宁夏智能信息与大数据处理重点实验室;北方民族大学数学与信息科学学院;国防科技大学系统工程学院【正文语种】中文【中图分类】TP18;TP301【相关文献】1.基于无人机航迹规划优化的几种新型仿生智能优化算法综述2.新型群智能优化算法综述3.基于无人机航迹规划优化的几种新型仿生智能优化算法综述4.一种新型群体智能优化算法——微进化算法5.群体智能优化算法在入侵检测中的应用综述因版权原因,仅展示原文概要,查看原文内容请购买。
智能优化算法综述

智能优化算法综述智能优化算法(Intelligent Optimization Algorithms)是一类基于智能计算的优化算法,它们通过模拟生物进化、群体行为等自然现象,在空间中寻找最优解。
智能优化算法被广泛应用于工程优化、机器学习、数据挖掘等领域,具有全局能力、适应性强、鲁棒性好等特点。
目前,智能优化算法主要分为传统数值优化算法和进化算法两大类。
传统数值优化算法包括梯度法、牛顿法等,它们适用于连续可导的优化问题,但在处理非线性、非光滑、多模态等复杂问题时表现不佳。
而进化算法则通过模拟生物进化过程,以群体中个体之间的竞争、合作、适应度等概念来进行。
常见的进化算法包括遗传算法(GA)、粒子群优化(PSO)、人工蜂群算法(ABC)等。
下面将分别介绍这些算法的特点和应用领域。
遗传算法(Genetic Algorithm,GA)是模拟自然进化过程的一种优化算法。
它通过定义适应度函数,以染色体编码候选解,通过选择、交叉、变异等操作来最优解。
GA适用于空间巨大、多峰问题,如参数优化、组合优化等。
它具有全局能力、适应性强、并行计算等优点,但收敛速度较慢。
粒子群优化(Particle Swarm Optimization,PSO)是受鸟群觅食行为启发的优化算法。
它通过模拟成群的鸟或鱼在空间中的相互合作和个体局部来找到最优解。
PSO具有全局能力强、适应性强、收敛速度快等特点,适用于连续优化问题,如函数拟合、机器学习模型参数优化等。
人工蜂群算法(Artificial Bee Colony,ABC)是模拟蜜蜂觅食行为的一种优化算法。
ABC通过模拟蜜蜂在资源的与做决策过程,包括采蜜、跳舞等行为,以找到最优解。
ABC具有全局能力强、适应性强、收敛速度快等特点,适用于连续优化问题,如函数优化、机器学习模型参数优化等。
除了上述三种算法,还有模拟退火算法(Simulated Annealing,SA)、蚁群算法(Ant Colony Optimization,ACO)、混沌优化算法等等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
现代智能优化算法课程群智能优化算法综述学生姓名:学号:班级:2014年6月22日摘要工程技术与科学研究中的最优化求解问题十分普遍,在求解过程中,人们创造与发现了许多优秀实用的算法。
群智能算法是一种新兴的演化计算技术,已成为越来越多研究者的关注焦点,智能优化算法具有很多优点,如操作简单、收敛速度快、全局收敛性好等。
群智能优化是智能优化的一个重要分支,它与人工生命,特别是进化策略以及遗传算法有着极为特殊的联系。
群智能优化通过模拟社会性昆虫的各种群体行为,利用群体中个体之间的信息交互和合作实现寻优。
本文综述群智能优化算法的原理、主要群智能算法介绍、应用研究及其发展前景。
关键词:群智能;最优化;算法目录摘要 (1)1 概述 (3)2 定义及原理 (3)2.1 定义 (3)2.2 群集智能算法原理 (4)3 主要群智能算法 (4)3.1 蚁群算法 (4)3.2 粒子群算法 (5)3.3 其他算法 (6)4 应用研究 (7)5 发展前景 (7)6 总结 (8)参考文献 (9)1 概述优化是人们长久以来不断研究与探讨的一个充满活力与挑战的领域。
很多实际优化问题往往存 在着难解性,传统的优化方法如牛顿法、共扼梯度法、模式搜索法、单纯形法等己难以满足人们需求。
因此设计高效的优化算法成为众多科研工作者的研究目标。
随着人类对生物启发式计算的研究, 一些社会性动物( 如蚁群、蜂群、鸟群) 的自组织行为引起了科学家的广泛关注。
这些社会性动物在漫长的进化过程中形成了一个共同的特点: 个体的行为都很简单, 但当它们一起协同工作时, 却能够“突现”出非常复杂的行为特征。
基于此,人们设计了许多优化算法,例如蚁群算法、粒子群优化算法、混合蛙跳算法、人工鱼群算法,并在诸多领域得到了成功应用。
目前, 群智能理论研究领域主要有两种算法: 蚁群算法(Ant Colony Optimization, ACO) 和粒子群优化算法(ParticleSwarm Optimization, PSO)。
2 定义及原理2.1 定义群集智能优化算法源于对自然界的生物进化过程或觅食行为的模拟。
它将搜索和优化过程模拟成个体的进化或觅食过程,用搜索空间中的点模拟自然界中的个体;将求解问题的目标函数度量成个体对环境的适应能力;将个体的优胜劣汰过程或觅食过程类比为搜索和优化过程中用好的可行解取代较差可行解的迭代过程。
从而,形成了一种以“生成+检验”特征的迭代搜索算法,是一种求解极值问题的自适应人工智能技术。
各类优化算法实质上都是建立问题的目标函数,求目标函数的最优解,因而实际工程优化问题均可转化为函数优化问题。
其表达形式如下:求:,,2,1,0)(..),(min ,,,2,1,),,,(21Lm j X g t s X f n L i x L x x X i T n i =≤==。
Ω∈X其中,i X 为设计变量;)(X f 为被优化的目标函数;0)(≤X g j 为约束函数;Ω为设计变量的可行域。
2.2 群集智能算法原理自然界中一些生物的行为特征呈现群体的特征,可以用简单的几条规则将这种群体行为在计算机中建模,Reynolds认为动物以群落形式生存觅食时一般遵循三个规则1)分隔规则:尽量避免与临近伙伴过于拥挤;2)对准规则:尽量与临近伙伴的平均方向一致,向目的运动;3)内聚规则:尽量朝临近伙伴的中心移动。
以上规则可归纳为个体信息和群体信息两类信息,前者对应于分隔规则,即个体根据自身当前状态进行决策;后者对应于对准规则和内聚规则,即个体根据群体信息进行决策。
另外,由于动物行为一般具有适应性、盲目性、自治性、突现性以及并行性等特征。
因此自组织性、突现性成为群集智能优化算法的两大基本特征。
群集智能优化算法通过Reynolds模型模拟了整个群体的运动,使得算法的迭代搜索过程成为一个不断地利用个体极值和群体极值来修正自身进行寻优搜索的过程,实现了个体与群体的信息交互与相互协作。
个体极值具有一定的随机性,在一定的程度上保持了搜索方向的多样性,避免了过早地收敛而陷于局部最优;群体极值从整体上把握了寻优的方向,从而保证算法的收敛性。
3 主要群智能算法3.1 蚁群算法蚁群算法蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来寻找最优解决方案的机率型技术。
它由Marco Dorigo于1992年在他的博士论文中引入,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。
蚂蚁在路径上前进时会根据前边走过的蚂蚁所留下的分泌物选择其要走的路径。
其选择一条路径的概率与该路径上分泌物的强度成正比。
因此,由大量蚂蚁组成的群体的集体行为实际上构成一种学习信息的正反馈现象:某一条路径走过的蚂蚁越多,后面的蚂蚁选择该路径的可能性就越大。
蚂蚁的个体间通过这种信息的交流寻求通向食物的最短路径。
蚁群算法就是根据这一特点,通过模仿蚂蚁的行为,从而实现寻优。
这种算法有别于传统编程模式,其优势在于,避免了冗长的编程和筹划,程序本身是基于一定规则的随机运行来寻找最佳配置。
也就是说,当程序最开始找到目标的时候,路径几乎不可能是最优的,甚至可能是包含了无数错误的选择而极度冗长的。
但是,程序可以通过蚂蚁寻找食物的时候的信息素原理,不断地去修正原来的路线,使整个路线越来越短,也就是说,程序执行的时间越长,所获得的路径就越可能接近最优路径。
这看起来很类似与我们所见的由无数例子进行归纳概括形成最佳路径的过程。
实际上好似是程序的一个自我学习的过程。
自蚁群算法提出以来,引起了国内外研究人员的极大兴趣,对该算法进行了广泛的研究,取得了丰富的成果。
研究表明,蚁群算法是一种高效的启发式随机搜索算法,具有如下优点:1.正反馈性:由自然蚂蚁搜索食物原理可知,信息素的积累是一个正反馈的过程。
单个蚂蚁之间通过信息素进行交流,若某路径上的信息素浓度更高,将吸引更多的蚂蚁沿着这条路径运动,这又使得其信息素浓度增加。
2.自组织性强:算法初期,单个的人工蚂蚁无序地寻找解,经过一段时间的搜索,通过信息素的作用,蚂蚁自发地越来越趋向于寻找到接近最优解的一些解,是个从无序到有序的过程。
3.鲁棒性强:该算法具有很好的适应性,且不局限于具体问题,只要稍加修改就可以应用到其它领域。
4.并行性强:蚁群在问题的解空间中多点同时开始进行独立的搜索,具有本质并行性。
5.结合性强:蚁群算法易于与其他优化算法相结合,吸取其他算法得优点,以改善算法的性能。
但由于基本蚁群算法进化收敛速度慢,且易陷入局部最优或者出现停滞现象等缺陷,国内外学者开展了大量有意义的研究。
研究成果主要涉及路径搜索策略、信息素更新策略和最优解保留策略等方面;研究行为主要是进行算法改进或验证。
有些改进算法的性能相比基本蚁群算法而言有了较大水平的提高,如最大最小蚁群算法是目前求解TSP 问题的最好方法之一;有些已成为主流的蚁群算法。
3.2 粒子群算法粒子群算法源于复杂适应系统(Complex Adaptive System,CAS)。
CAS理论于1994年正式提出,CAS中的成员称为主体。
比如研究鸟群系统,每个鸟在这个系统中就称为主体。
主体有适应性,它能够与环境及其他的主体进行交流,并且根据交流的过程“学习”或“积累经验”改变自身结构与行为。
整个系统的演变或进化包括:新层次的产生(小鸟的出生);分化和多样性的出现(鸟群中的鸟分成许多小的群);新的主题的出现(鸟寻找食物过程中,不断发现新的食物)。
所以CAS系统中的主体具有4个基本特点(这些特点是粒子群算法发展变化的依据):首先,主体是主动的、活动的。
主体与环境及其他主体是相互影响、相互作用的,这种影响是系统发展变化的主要动力。
环境的影响是宏观的,主体之间的影响是微观的,宏观与微观要有机结合。
最后,整个系统可能还要受一些随机因素的影响。
粒子群算法就是对一个CAS系统——鸟群社会系统的研究得出的。
粒子群算法(Particle Swarm Optimization, PSO)最早是由Eberhart和Kennedy于1995年提出,它的基本概念源于对鸟群觅食行为的研究。
设想这样一个场景:一群鸟在随机搜寻食物,在这个区域里只有一块食物,所有的鸟都不知道食物在哪里,但是它们知道当前的位置离食物还有多远。
那么找到食物的最优策略是什么呢?最简单有效的就是搜寻目前离食物最近的鸟的周围区域。
PSO算法就从这种生物种群行为特性中得到启发并用于求解优化问题。
在PSO中,每个优化问题的潜在解都可以想象成d维搜索空间上的一个点,我们称之为“粒子”(Particle),所有的粒子都有一个被目标函数决定的适应值(Fitness Value ),每个粒子还有一个速度决定他们飞翔的方向和距离,然后粒子们就追随当前的最优粒子在解空间中搜索。
Reynolds对鸟群飞行的研究发现。
鸟仅仅是追踪它有限数量的邻居但最终的整体结果是整个鸟群好像在一个中心的控制之下.即复杂的全局行为是由简单规则的相互作用引起的。
3.3 其他算法●人工鱼群算法(Artificial Fish Swarm Algorithm,简称AFSA)是受鱼群行为的启发,由国内李晓磊博士于2002 年提出的一种基于动物行为的群体智能优化算法,是行为主义人工智能的一个典型应用,这种算法源于鱼群的觅食行为。
●蛙跳算法(SFLA)是一种全新的后启发式群体进化算法,具有高效的计算性能和优良的全局搜索能力。
对混合蛙跳算法的基本原理进行了阐述,针对算法局部更新策略引起的更新操作前后个体空间位置变化较大,降低收敛速度这一问题,提出了一种基于阈值选择策略的改进蛙跳算法。
通过不满足阈值条件的个体分量不予更新的策略,减小了个体空间差异,从而改善了算法的性能。
数值实验证明了该改进算法的有效性,并对改进算法的阈值参数进行了率定。
4 应用研究随着群智能算法研究的不断发展,研究者已尝试着将其应用于各种工程优化问题,并取得了意想不到的收获。
多种研究表明,群智能算法在离散和连续求解空间中均表现出良好的搜索效果,更在组合优化问题中有突出表现。
蚁群算法最初用于解决旅行商问题。
自从在著名的旅行商问题(TSP)和工件排序问题上取得成效以来,已经陆续渗透到其它领域中,如图着色问题、二次分配问题、大规模集成电路设计、通讯网络中的路由问题以及负载平衡问题、车辆调度问题、数据聚类问题、武器攻击目标分配和优化问题、区域性无线电频率自动分配问题等。
粒子群算法最早应用于训练人工神经网络,Kennedy 和Eberhart 成功地将算法应用于分类XOR 问题的神经网络训练。
随后,微粒群算法被广泛地应用于函数优化、约束优化、模式分类、参数优化、组合优化、模糊系统控制、机器人路径规划、信号处理、模式识别、TSP、车间调度等工程领域。