几种基础油生产工艺及竞争力分析

几种基础油生产工艺及竞争力分析
几种基础油生产工艺及竞争力分析

影响基础油生产成本因素主要包括炼厂建设费用、原料成本、运转费用、产量和产品价值等。

其中溶剂精制基础油炼厂使用旧技术,主要通过溶剂精制和溶剂脱蜡工艺生产基础油。该装置需要低硫、高石蜡基原油,主要生产apiⅰ类基础油、光亮油和蜡,低价值副产物包括抽出油和沥青质。典型溶剂精制炼厂基础油生产能力为5000~5500桶/天。

加氢裂化装置可炼制原油的范围很宽,能够生产api ⅱ、ⅱ+和ⅲ类基础油。尽管加氢裂化装置无法得到蜡和光亮油产品,但是大多数副产品价值较高,如低硫汽油、柴油组分。典型产量在2万桶/天。

第三种类型基础油炼厂是在燃料油加氢裂化装置后面连接加氢异构化脱蜡工序,比如雪佛龙的加氢异构脱蜡技术。该类型的基础油炼厂主要生产api iii类基础油,包括轻质和中质基础油,同样无法生产蜡和光亮油,但其副产物几乎全部为高价值产品,主要是低硫汽油、柴油组分。该装置基础油产量一般为1万桶/天。

在装置建设成本方面,对于1万桶/天产量而言,异构脱蜡装置成本不到溶剂精制装置40%,加氢裂化装置成本占溶剂精制装置60%。

在基础油生产阶段,原料成本占基础油成本四分之三。溶剂精制装置要求原料为低硫原油,而加氢装置可以加工重质、酸性原油,两者原料使用上存在较大利差,2008年阿拉伯重质和轻质原油每桶差价为7美元。包括能耗、维护成本、人力成本、化学溶剂成本(溶剂精制装置)或催化剂成本(加氢装置)等运行费用占基础油生产成本剩余的四分之一。运营成本中,加氢技术仍然具有优势,根据2006年的统计,润滑油加氢裂化装置的运营费用大约只有溶剂精制装置的60%,而异构脱蜡型装置则仅占溶剂精制装置的30%。

产品价值则是考虑基础油炼厂经济效益最基本的因素。溶剂精制炼厂必须通过其高价值副产品光亮油和蜡在市场上进行竞争,加氢裂化与溶剂精制装置相比有着每加仑数美分的优势,但是如果运转良好,溶剂精制装置仍然具有相当竞争力。

预期不会再建新溶剂精制炼厂,加氢炼厂在供过于求市场上更有竞争力。对于溶剂精制炼厂而言,只有控制运营费用,保证装置运转良好,才能参与竞争。

零件的工艺分析及生产类型的确定-设计说明书

蚌埠学院 机械制造技术 课程设计说明书 姓名: 学号: 系别:电子与车辆工程系 专业:2013级材料成型及控制工程 指导老师:陈兴强

目录 1序言 (2) 2零件的工艺分析及生产类型的确定 (3) 3选择毛坯确定毛坯尺寸设计毛坯图 (5) 4选择加工方法,制定工艺路线 (6) 5工序设计 (11) 6确定切削用量及基本时间 (13) 7设计心得体会 (22) 8参考文献 (23)

序言 课程设计作为学生专业课程学习的重要组成部分,是对课程理论学习的综合运用,通过课程设计可以使学生系统的将所学的专业知识进行回顾和总结,并在此基础上针对设计题目进行具体分析和应用。达到理论学习与教学实践相结合,更好的保证学生的学习效果。 这次设计使学生进一步学习并巩固机械制造技术基础中的基本理论,并结合生产实习中学到的实践知识,独立地分析和解决了零件机械制造工艺问题,设计了机床专用夹具这一典型的工艺装备,提高了结构设计能力,为今后的毕业设计及未来从事的工作打下了良好的基础,是大学生在校学习期间不可或缺的一次实践。

零件的工艺分析及生产类型的确定 1. 零件的结构特点及作用 轴类零件是机器中经常遇到的典型零件之一。它在机械中主要用于支承齿轮、带轮、凸轮以及连杆等传动件,以传递扭矩。按结构形式不同,轴可以分为阶梯轴、锥度心轴、光轴、空心轴、曲轴、凸轮轴、偏心轴、各种丝杠等。它主要用来支承传动零部件,传递扭矩和承受载荷。轴类零件是旋转体零件,其长度大于直径,一般由同心轴的外圆柱面、圆锥面、内孔和螺纹及相应的端面所组成。轴的长径比小于5的称为短轴,大于20的称为细长轴,大多数轴介于两者之间。 设计说明书图示传动轴零件属于阶梯轴类零件,由圆柱面、轴肩、砂轮越程槽和键槽等组成。轴肩一般用来确定安装在轴上零件的轴向位置,各环槽的作用是使零件装配时有一个正确的位置,并使加工中磨削外圆或车螺纹时退刀方便;键槽用于安装键,以传递转矩。 2.零件的工艺分析 传动轴毛坯材料为45。该材料属于优质碳素钢,经热处理(淬火加高温回火)后具有良好的综合力学性能,即具有较高的的强度和较高的塑性、韧性,一般用来制作机床主轴,机床齿轮和其他受力不大的轴类零件。主要技术要求如下:根据工作性能与条件,该传动轴图样规定了主要轴颈、轴头、外圆、键槽以及轴肩有较高的尺寸、位置精度和较小的表面粗糙度值,并有热处理要求。这些技术要求必须在加工中给予保证。因此,该传动轴的关键工序是轴头、轴颈、键槽、外圆及轴肩的加工。

几种基础油生产工艺及竞争力分析

影响基础油生产成本因素主要包括炼厂建设费用、原料成本、运转费用、产量和产品价值等。 其中溶剂精制基础油炼厂使用旧技术,主要通过溶剂精制和溶剂脱蜡工艺生产基础油。该装置需要低硫、高石蜡基原油,主要生产apiⅰ类基础油、光亮油和蜡,低价值副产物包括抽出油和沥青质。典型溶剂精制炼厂基础油生产能力为5000~5500桶/天。 加氢裂化装置可炼制原油的范围很宽,能够生产api ⅱ、ⅱ+和ⅲ类基础油。尽管加氢裂化装置无法得到蜡和光亮油产品,但是大多数副产品价值较高,如低硫汽油、柴油组分。典型产量在2万桶/天。 第三种类型基础油炼厂是在燃料油加氢裂化装置后面连接加氢异构化脱蜡工序,比如雪佛龙的加氢异构脱蜡技术。该类型的基础油炼厂主要生产api iii类基础油,包括轻质和中质基础油,同样无法生产蜡和光亮油,但其副产物几乎全部为高价值产品,主要是低硫汽油、柴油组分。该装置基础油产量一般为1万桶/天。 在装置建设成本方面,对于1万桶/天产量而言,异构脱蜡装置成本不到溶剂精制装置40%,加氢裂化装置成本占溶剂精制装置60%。 在基础油生产阶段,原料成本占基础油成本四分之三。溶剂精制装置要求原料为低硫原油,而加氢装置可以加工重质、酸性原油,两者原料使用上存在较大利差,2008年阿拉伯重质和轻质原油每桶差价为7美元。包括能耗、维护成本、人力成本、化学溶剂成本(溶剂精制装置)或催化剂成本(加氢装置)等运行费用占基础油生产成本剩余的四分之一。运营成本中,加氢技术仍然具有优势,根据2006年的统计,润滑油加氢裂化装置的运营费用大约只有溶剂精制装置的60%,而异构脱蜡型装置则仅占溶剂精制装置的30%。 产品价值则是考虑基础油炼厂经济效益最基本的因素。溶剂精制炼厂必须通过其高价值副产品光亮油和蜡在市场上进行竞争,加氢裂化与溶剂精制装置相比有着每加仑数美分的优势,但是如果运转良好,溶剂精制装置仍然具有相当竞争力。 预期不会再建新溶剂精制炼厂,加氢炼厂在供过于求市场上更有竞争力。对于溶剂精制炼厂而言,只有控制运营费用,保证装置运转良好,才能参与竞争。

季戊四醇生产工艺

df文档 河北大学硕士学位论文姓名:石敏瑜申请学位级别:硕士专业:应用化学指导教师:白国义20100501 摘 要 摘 要 双季戊四醇是一种重要的精细化工中间体,不论是在实验室研究还是在工业生产中都具有十分重要的意义。本文对双季戊四醇及其衍生物的合成与废水处理工艺进行了系统的研究。首先,以甲醛、乙醛和氢氧化钠为原料,对单、双季戊四醇的合成工艺进行了研究。为提高双季戊四醇的选择性,系统地考察了反应物的物质的量之比、反应终温、单季戊四醇加入量等因素对反应的影响,确定了最佳反应条件:在反应终温为46℃,n(甲醛):n(乙醛):n(氢氧化钠) = 6.0:1:1.2 时,加入质量分数为 6 wt%的单季戊四醇,乙醛的转化率接近100.0%,单季戊四醇的选择性为91.2%,双季戊四醇的选择性为 4.7%。接着,以双季、丙烯酸为原料,合成了双季戊四醇六丙烯酸酯。考察了阻聚剂和酸催化剂的加入量对反应的影响,确定了最佳实验条件:在酸醇摩尔比为7.5:1,对苯二酚加入量 3 wt%,对甲苯磺酸加入量为4 wt%时,双季戊四醇六丙烯酸酯收率为90.6%。此外,还建立了一种基于TiO2 光催化剂的单(双)季戊四醇废水处理工艺。制备了一系列的TiO2 催化剂用于单(双)季戊四醇的废水处理,并发现TiO2-HY 催化剂具有较高的催化活性和稳定性。通过XRD,SEM,XPS 等系列表征,发现TiO2-HY 催化剂粒径22.6 nm,以金红石相存在。pH 为6,50 mL 废水中催化剂加入量为0.06 g 时,在光照16 h,废水中总有机物的降解率可达90.5%。 关键词 双季戊四醇合成 衍生物 废水处理 TiO2 I Abstract Abstract Dipentaerythritol (DPE) is an important fine chemical intermediate, which has a great significance both in the laboratory and industrial production. Synthesis of DPE and its derivative, together with the technology for the disposal of its wastewater, are studied in this paper. The synthesis of pentaerythritol (PE) and DPE were studied systematically, using formaldehyde, aldehyde and 骚年美女网https://www.360docs.net/doc/155414302.html, NaOH as the starting material. The influence of the molar ratio of the reactants, final reaction temperature, and dosage of PE were optimized. The conversion of aldehyde is nearly 100.0% and the selectivity of PE and DPE are 91.2% and 4.7%, respectively, while the final reaction temperature is 46℃, the molar ratio is n(formaldehyde): n(aldehyde): n(NaOH) = 6.0:1:1.2, and the dosage of PE is 6 wt%. The synthesis of dipentaerythritol hexaacrylate was also studied, using DPE, crylic acid as the starting material. The influence of dosage of inhibitor and acid catalyst were optimized. The yield of dipentaerythritol hexaacrylate is 90.6%, while the molar ratio is n(crylic acid): n(DPE) = 7.5:1, t

大豆油生产工艺

大豆油生产工艺 1.压榨法制油工艺流程 2.以花生果为例:清理→剥壳→破碎→轧胚→蒸炒→压榨→花生原油(毛油) 3.2.浸出法制油工艺流程 4.以大豆为例:清理→破碎→软化→轧胚→浸出→蒸发→汽提→大豆原油(毛油)5.3.油脂精炼工艺流程 6.原油(毛油)→过滤→水化(脱胶)→碱炼(脱酸)→脱色→脱臭→成品油 油脂精炼 毛油一般指从浸出或压榨工序由植物油料中提取的含有不宜食用(或工业用)的某些杂质的油脂。 毛油的主要成分是甘油三脂肪酸酯的混合物(俗称中性油)。除中性油外,毛油中还含有非甘油酯物质(统称杂质),其种类、性质、状态,大致可分为机械杂质、脂溶性杂质和水溶性杂质等三大类。 1﹒油脂精炼的目的和方法 (1)油脂精炼的目的油脂精炼,通常是指对毛油进行精制。毛油中杂质的存在,不仅影响油脂的食用价值和安全贮藏,而且给深加工带来困难,但精炼的目的,又非将油中所有的杂质都除去,而是将其中对食用、贮藏、工业生产等有害无益的杂质除去,如棉酚、蛋白质、磷脂、黏液、水分等都除去,而有益的"杂质",如生育酚等要保留。因此,根据不同的要求和用途,将不需要的和有害的杂质从油脂中除去,得到符合一定质量标准的成品油,就是油脂精炼的目的。 (2)油脂精炼的方法根据操作特点和所选用的原料,油脂精炼的方法可大致分为机械法、化学法和物理化学法三种。

上述精炼方法往往不能截然分开。有时采用一种方法,同时会产生另一种精炼作用。例如碱炼(中和游离脂肪酸)是典型的化学法,然而,中和反应生产的皂脚能吸附部分色素、粘液和蛋白质等,并一起从油中分离出来。由此可见,碱炼时伴有物理化学过程。 油脂精炼是比较复杂而具有灵活性的工作,必须根据油脂精炼的目的,兼顾技术条件和经济效益,选择合适的精炼方法。 2﹒机械方法 (1)沉淀 K沉淀原理沉淀是利用油和杂质的不同比重,借助重力的作用,达到自然分离二者的一种方法。 L沉淀设备沉淀设备有油池、油槽、油罐、油箱和油桶等容器。 M沉淀方法沉淀时,将毛油置于沉淀设备内,一般在20~30℃温度下静止,使之自然沉淀。由于很多杂质的颗粒较小,与油的比重差别不大。因此,杂质的自然沉淀速度很慢。另外,因油脂的粘度随着温度升高而降低,所以提高油的温度,可加快某些杂质的沉淀速度。但是,提高温度也会使磷脂等杂质在油中的溶解度增大而造成分离不完全,故应适可而止。 沉淀法的特点是设备简单,操作方便,但其所需的时间很长(有时要10多天),又因水和磷脂等胶体杂质不能完全除去,油脂易产生氧化、水解而增大酸值,影响油脂质量,不仅如此,它还不能满足大规模生产的要求,所以,这种纯粹的沉淀法,只适用于小规模的乡镇企业。 (2)过滤

糠醇生产工艺技术分析

糠醇生产工艺技术分析 糠醇的合成是由糠醛在催化剂作用下,在管式反应器内保持一定压力、利用自热维持一定的反应温度,氢气与糠醛液相充分接触后发生反应合成的。影响其生产工艺过程的主要因素由采用的催化剂类型的选择;反应温度、压力、气液比(氢醛比)等的控制;空速;反应器的高径比;精馏工艺的选择;糠醛的纯度及酸性等决定。 目前,糠醇的生产主要是利用糠醛催化加氢制,分为高压液相加氢和常压气相加氢。前者工艺流程短,投资少,见效陕,缺点是劳动强度大;后者工艺流程复杂,投资大,生产成本高,见效慢,尤其对催化剂的技术要求较高。目前,国内生产气相加氢制糠醇的催化剂技术还不够完善,需从国外进口,优点是装置用人少,安全性高。 国内大多数厂家均采用液相加氢法生产糠醇,本文结合共享集团于2005年10月份开始建设并已投产的7000t/a糠醇生产装置项目,作者经过对实际装置生产工艺运行控制和总结,从以下几个方面探讨有关糠醇合成工艺技术及其技术改造。 1 生产工艺过程 将糠醛用泵打入糠醛高位槽,然后放人搅拌槽与定量的催化剂混合均匀,再通过计量泵以约8.0MPa的压力注入夹套管式反应器,进入反应器前与经过氢压机压缩至大于 8.0MPa的氢气共同预热后在反应器人口处混合,一般反应温度控制在210~230℃,得粗糠醇,经减压精馏即可得到产品糠醇。 2 糠醇合成机理 糠醛加氢合成糠醇主反应式如下: C4H3O(CHO)+H2=C4H3O(CH2OH)+Q 液相糠醛加氢反应类型属瞬间反应,反应为非均相反应,具有多相反应的特征。反应历程为,糠醛首先吸附在催化剂活性中心,被吸附分子的C-O羰基键由于活性中心的复杂分子轨道作用而被削弱,接着与溶解在糠醛中的氢发生反应。目前,实践研究表明,该羰基上发生的化学吸附在铜铬催化剂作用下,当温度、压力达到其活性温度才会发生。 3 糠醇合成技术 3.1 常压气相加氢制糠醇 以汽化的糠醛控制一定的空速与过量的氢气流混合后通过装有催化剂的列管式固定床反应器,采用氧化物类催化剂,其反应温度控制在120℃左右,压力在1.1×105Pa左右,粗产物糠醇无色透明,糠醇含量可达到98%,单程转化率可得达到99%以上,产率一般可达到92%以上。气相加氢所采用的催化剂一般有两大类:氧化物催化剂和合金类催化剂。前者活性温度相对高于后者。 3.2 液相加氢制糠醇 一般采用夹套管式反应器,应用氧化物催化剂,反应温度可控制在200-220℃,压力为6.5~11MPa,糠醇含量可达到97%以上,单程转化率在98%以上。液相加氢所采用的催

基础油分类标准

基础油分类标准 类别饱和烃含量/% 黏度指数VI 硫含量/%(质量分数) I类 (MVI) <90% 80--<120 >0.03% II类 (HVI) ≥90% 80--<120 <0.03% III类(VHVI) ≥90%≥120 <0.03% I类基础油通常是由传统的“老三套”工艺生产制得,从生产工艺来看,I类基础油的生产过程基本以物理过程为主,不改变烃类结构,生产的基础油质量取决于原料中理想组分的含量和性质。因此,该类基础油在性能上受到限制。 II类基础油是通过组合工艺(溶剂工艺和加氢工艺结合)制得,工艺主要以化学过程为主,不受原料限制,可以改变原来的烃类结构。因而II类基础油杂质少(芳烃含量小于10%),饱和烃含量高,热安定性和抗氧性好,低温和烟炱分散性能均优于I类基础油。 III类基础油是用全加氢工艺制得,与II类基础油相比,属高黏度指数的加氢基础油,又称作非常规基础油(UCBO)。III类基础油在性能上远远超过I类基础油和II类基础油,尤其是具有很高的黏度指数和很低的挥发性。某些III类油的性能可与聚α-烯烃(PAO)相媲美,其价格却比合成油便宜得多。 从外观上来说,精制程度越高的看上去就越纯净,所以三类颜色浅,一类颜色深 超高粘度指数:≥140 划分‘SN’油的粘度以 40℃运动粘度 很高粘度指数: 120--140 ‘BS’油的粘度以100℃运动粘度 高粘度指数: 90--120 中粘度指数: 40--90 低粘度指数:﹤40 通用基础油粘度牌号 Ⅰ类基础油粘度牌号 粘度 等级 75 100 150 200 300 350 400 500 600 650 750 900 运动粘度(40℃) 12.0- ﹤16.0 19.0- ﹤24.0 28.0- ﹤34.0 35.0- ﹤42.0 50.0- ﹤62.0 62.0- ﹤74.0 74.0- ﹤90.0 90.0-﹤ 110.0 110.0- ﹤120.0 120.0- ﹤135.0 135.0- ﹤160.0 160.0- ﹤180.0 Ⅱ、Ⅲ类基础油粘度牌号 粘度 等级 2 4 5 6 8 10 12 14 16 20(90BS) 26(120BS) 30(150BS) 运动粘度(100℃) 1.5- ﹤2.5 3.5- ﹤4.5 4.5- ﹤5.5 5.5- ﹤6.5 7.5- ﹤9.0 9.0-﹤ 11.0 11.0-﹤ 13.0 13.0-﹤ 15.0 15.0-﹤ 17.0 17.0-﹤ 22.0 22.0-﹤ 28.0 28.0-﹤ 34.0

米糠油的提炼方法总结

1、物理精炼 物理精炼以其比较简单的工艺流程,可直接获得质量高的精炼油和副产品脂肪酸,而且原辅材料节省,没有废水污染,产品稳定性好,精炼率高等优点,越来越引起人们的关注。尤其对高酸值油脂,其优越性更加显著。它包括蒸馏前的预处理和蒸馏脱酸两个阶段。由于预处理对物理精炼油的质量起着决定性作用。近几年来对米糠油的物理精炼研究主要集中于预处理方面。B和Bhattacharrya[11]对含脂肪酸4?0~12?4%的米糠油对经过几种脱胶脱蜡方式处理、脱色后物理精炼米糠油的特性进行了研究。研究表明,低温(10℃)加工后物理精炼米糠油的色泽、FFA、胶质和蜡总量、谷维素、生育酚含量均非常好,适当低温处理(17℃)是可以的。室温(32℃)或稍低于室温(25℃)联合脱胶脱蜡,物理精炼RBO的质量不受欢迎。因此,低温(10℃)脱蜡无论对低FFA 还是高FFA的油均可得到色泽等均好的油脂。经磷酸脱胶(65℃)、低温脱蜡(10℃)、脱色物理精炼油色泽比同温(65℃)水脱胶和水脱蜡(10℃)、脱色物理精炼油色泽深,在较高温度下脱蜡(17或25℃)对色泽无影响;磷酸脱胶、水脱蜡(25℃),脱色物理精炼油色泽优于水脱胶替代磷脱胶;磷酸脱胶的精炼RBO 中生育酚含量低于水脱胶精炼米糠油(RBO);单独进行水脱胶(65℃)和低温(10℃)水脱蜡比磷酸脱胶(65℃)和水脱蜡生产的油脂质量好。全部试验结果表明,在联合低温(10℃)脱胶脱蜡后的米糠油物理精炼可生产色浅、游离脂肪酸(FFA)含量低、谷维素和生育酚含量高的优质米糠油。 2、米糠油的硅胶脱色法 米糠经溶剂浸出制得的米糠油,其色泽呈暗棕色、暗绿褐色或绿黄色,这主要取决于米糠贮存中的变质程度、制油方法和加工条件。一般来说,米糠油的深色经脱色不能完全除去,生产清澈透明和色浅的米糠油较困难。,采用硅胶柱渗滤脱色和硅胶同混合油混合脱色两种方法。其缺点是混合油通过硅胶柱时(尤其是溶剂浸出毛米糠油)流速慢。硅胶脱色可将工业常规实用的精炼工艺:脱胶—一次脱蜡—精炼—脱色—二次脱蜡和脱臭改进成硅胶柱—渗滤处理—脱胶—脱蜡—精炼—脱色和脱臭工艺。 3、米糠油的生物精炼法 Bhattacharrya和 D.KBkattacharrya[13]将生物精炼技术应用于高酸值米糠油的精炼,其原理借助微生物酶(1,3?特效脂肪酶)在一定条件下能催化脂肪酸及甘油间的酯化反应,使大部分脂脂酸转化为甘油酯。研究认为高酸值米糠油生物精炼的最佳反应条件是:加酶量为油重的10%、压力1333?22Pa、温度70℃、加水10%、加入甘油为理论计算量(加过量甘油未见明显改善)。他们所做实验中,当毛糠油FFA为30%,反应1h,FFA降低至19?2%;反应2h,游离脂肪酸降低至8?5%;经反应5h和7h;FFA分别降低至4?7%和3?6%。经过这种生物精炼脱酸处理的油中还残余一些游离脂肪酸,可再经过碱炼方法除去。就精炼特性而论,根据调查,生物精炼和碱炼结合的工艺过程大大胜过物理精炼和碱炼中和相结合的工艺过程。同其它工艺比较,采用酶催化脱酸和碱中和结合的工艺过程精炼高酸值米糠油需要的能量很低,经济效益高。

糠醇安全技术说明书1

编码:00003 化学品安全技术 说明书 化学品名:糠醇 企业名称: 地址: 邮编: 传真号码: 联系电话: 电子邮箱: 编制日期:

目录 第一部分:化学品及企业标识 (2) 第一部分:化学品及企业标识 (2) 第二部分:危险性概述 (2) 第三部分:成分/组成信息 (2) 第四部分:急救措施 (3) 第五部分:消防措施 (3) 第六部分:泄漏应急处理 (3) 第七部分:操作处置与储存 (3) 第八部分:接触控制和个体防护 (4) 第九部分:理化特性 (4) 第十部分:稳定性和反应性 (5) 第十一部分:毒理学信息 (5) 第十二部分:生态学信息 (6) 第十三部分:废弃处理 (6) 第十四部分:运输信息 (6) 第十五部分:法规信息 (6) 第十六部分:其他信息 (7)

第一部分:化学品及企业标识 化学品中文名:糠醇;2-呋喃甲醇 化学品英文名:furfural alcohol 企业名称: 地址: 邮编: 传真号码: 企业电话: 应急电话: 电子邮件地址: 推荐用途:可用于有机合成、合成纤维、橡胶、农药等,也用于制造树脂和溶剂。 第二部分:危险性概述 危险性类别:第6.1类毒害品。 侵入途径:吸入、食入、经皮肤吸收。 健康危害:本品具有刺激性。高浓度持续吸入引起咳嗽、气短和胸部紧束感,极高浓度可引起死亡。蒸气对眼有刺激性,液体可引起眼部炎症和角膜混浊。皮肤接触其液体,可引起皮肤干燥和刺激。口服出现头痛、恶心,口腔和胃刺激。 环境危害:对环境可能有危害。 爆炸危险:本品可燃,有毒,具强刺激性。 第三部分:成分/组成信息 纯品□√混合物□ 化学品名称:糠醇 有害物成分含量CAS号 糠醇99% 98-00-0

基础油的规格划分

度,BS则以100℃运动粘度划分。这些中性油的规格标准已在国内实行了一段时期,对于润滑油总体生产技术起了促进和提高作用。 石蜡基基础油以俄罗斯和韩国产品质量最佳,国内来源主要由贸易进口后分销,进口此产品的企业有青岛森拓贸易有限公司、天津SK代理等。此产品适合用作高档润滑油原料。 中国石化总公司从90年代起按照国际上通用的中性油分类方法,并根据国内原油性质和粘度指数,把中性油分为UHVI(超高粘度指数,粘度指数>140)、VHVI(很高粘度指数,粘度指数>120)、HVI(高粘度指数,粘度指数>80)、MVI(中粘度指数,粘度指数40-80)和LVI(低粘度指数,粘度指<40)四大类。另外,根据大跨度多级内燃机油、液力传动油、高性能极压工业齿轮油等高档油品对中性油的性质要求,又订出了HVIS和MVIS两类深度精制的中性油标准,以及HVIW和MVIW两类深度脱蜡的中性油标准。这些中性油的氧化安定性、抗乳化性、蒸发损失和倾点等指标均较前面几种中性油规定了更高的要求。 HVI高粘度指数中性油,规定粘度指数不小于95。用于配制粘温性能要求较高的润滑油。粘度牌号为HVI-75、HVI-100、HVI-150、HVI-200、HVI-350、HVI-400、HVI-500以及HIV-650和两个HVI-120BS、HVI-150BS光亮油。 MVI为中粘度指数中性油。粘度指数不小于60。适用于配制粘温性能要求不高的润滑油。粘度牌号为:MVI-60、MVI-75、MVI-100、MVI-150、MVI-250、MVI-500、MVI-600、MVI-750、MVI-900以及MVI-90BS、MVI125/140BS和MVI-200/220BS三个光亮油。 LVI为低粘度指数中性油。未规定最低粘度指数。适用于配制变压器油、冷冻机油等低凝点润滑油。粘度牌号为:LVI-60、LVI-75、LVI-100、LVI-150、LVI-300、LVI-500、LVI-900、LVI-1200以及LVI-90BS、LVI-230/250BS两个光亮油。 HVIS高粘度指数深度精制中性油,除粘度指数大于95外,还有较优良的氧化安定性、抗乳化性和一定的蒸发损失指标。适用于调配高档汽轮机油、极压工业齿轮油。其粘度牌号对应于HVI中性油。 HVIW为高粘度指数、低凝点和低挥发性中性油。除粘度指数大于95外,还规定了较低凝点、较低的蒸发损失和具有良好的氧化安定性。适用于调配高档内燃机油、低温液压油、液力传动液等。其粘度牌号对应于HVI中性油。 MVIS为中粘度指数深度精制中性油,除粘度指数不小于60外,还有较好的氧化安定性和抗乳化性。适用于调配汽轮机油等。其粘度牌号对应于MVI中性油。 MVIW为中粘度指数低凝点低挥发性中性油,除粘度指数不小于60外,还有较好的氧化安定性、抗乳化性和蒸发损失。适用于调配内燃机油、低温液压油等 二、基础油的性能(技术指标) 在观察基础油的好坏,主要看的是基础油的性能,也就是常说的技术指标。主要抓住以下几点: 一般理化性能 (1)外观(色度)(2)密度(3)粘度(4)粘度指数(5)闪点(6)凝点和倾点 (7)酸值、碱值和中和值(8)水分(9)机械杂质(10)灰分和硫酸灰分 (11)残炭 特殊理化性能 (1)氧化安定性(2)热安定性(3)油性和极压性(4)腐蚀和锈蚀(5)抗泡性 (6)水解安定性(7)抗乳化性(8)空气释放值(9)橡胶密封性

季戊四醇

产品介绍 简介 1名称季戊四醇 2分子式C(CH2OH)4 3分子量136.15 4物化特性熔点:261~262℃沸点:276℃相对密度:1.395g/cm3折射率:1.548 溶解性:15℃时1g溶于18ml水。 溶于乙醇、甘油、乙二醇、甲酰胺。不溶于丙酮、苯、四氯化碳、乙醚和石油醚等。稳定性:在空气中很稳定,不易吸水 5 规格98单季92单季90单季双季 6外观白色结晶或粉末 明细 1图片 2储运: 干燥、清洁、通风仓库内 3用途: 用于制造醇酸树脂和油漆,制造塑料稳定剂和增塑剂,并用于制造四硝基季戊四醇起爆炸药等,也可制备航空润滑油4生产工艺: 乙醛与甲醛在碱性条件下缩合后用氢气还原或者与甲醛在强碱条件下反应得到 表格 名称季戊四醇 分子式C(CH2OH)4 分子量136.15 规格98单季92单季90单季双季 CAS码115-77-5 EINECS号204-104-9 包装25/50kg/pp bag 装箱量20MT/20’FCL 是否危险品否 监管条件无 HS编码2905.4200 起运港天津或青岛 目标市场瑞典,美国,日本 是否加托盘可不加

Introduction Name: Pentaerythrite Molecular formula: C (CH2OH) 4 Molecular weight: 136.15 Physical and Chemical property Melting point: 261 ~ 262 ° c boiling point : 276 ℃relative density: 1.395 g/cm3 refractive index: 1.548 solubility: 15 degrees 18ml soluble in water 1g. Soluble in ethanol, glycerin, glycol, armour. Insoluble in acetone, benzene, carbon tetrachloride, ether and petroleum ether, etc. Stability: the air is very stable, bibulous Specification 98 single-season 92 single-season 90 single-season double-season Appearance White crystalline or powder Particulars Picture Storage and transportation: dry, clean and perflation in the Usage: Used in the manufacture of alkyd resin and paint, manufacturing plastic stabilizers and plasticizer, and used in the manufacture of four nitro pentaeruthritol detonating explosives etc, also in aviation for lubricating preparation Production technology: Acetaldehyde and formaldehyde in alkaline conditions after the condensation with hydrogen reduction or with formaldehyde in alkali reaction conditions Sheet Name Pentaerythrite Molecular formula C(CH2OH)4 Molecular weight 136.15 Specification98% 92% 90% CAS code 115-77-5 EINECS code 204-104-9 Package 25 or 50kg/ pp bag loading 20MT/20’FCL Hazardous chemicals no Supervision condition None HS code 2905.4200 Port of loading Tianjin or Qingdao Target market Sweden USA Japan Pallet or not no

榨油生产工艺中三去六脱介绍

榨油生产工艺中三去六脱介绍 一、三去:去轻、去石、去磁。 去轻:是为了得到更纯的胡麻子作为原料,通过物理比重差异在风力悬浮筛选下去除、比胡麻籽轻的杂质如:粉尘、胡麻皮等 去重:通过比重差异,在震动筛上将胡麻籽重的杂质去除。 去磁:利用铁性杂质的磁性原理去除铁性杂质。“三去”保证产品安全,同时保护生产设备。 二、六脱:脱酸、脱胶、脱色、脱水、脱臭、脱蜡。 我国目前的食用油按国家标准来说有食用一级油、二级油、高级烹调油、色拉油等等。我公司产品生产工艺属于全精炼(色拉油)生产工艺。就目前大多数地区的消费档次而言,食用油还没有区分出烹调油、凉拌油(色拉油)等,多数地区的饮食习惯,食用油主要是烹调用,即炒菜用,因此主要是烹调油。近几年来,随着油脂精炼生产线的引进和国产精炼设备的不断成熟,色拉油以及各种企业标准的精炼油产量不断提高,再加上一些厂家的广告效应,有些城市及地区食用油消费逐渐转向色拉油等精制油,这说明人们消费水平的提高,追求更精更纯的食品。但从营养的角度来讲,拿来全精炼油(色拉油)作烹调油,是不是合适,值得探讨。 从化学角度讲,现有绝大多数天然油脂95%以上是由饱和及不饱和程度各异的脂肪酸甘油三酯(甘三酯)组成并伴有少量种类繁多的类脂物质。这些类脂物主要包括磷脂、游离脂肪酸、甾醇及甾醇酯、维生素、色素、萜烯类、蜡、脂肪醇、烃类等,它们绝大多数对人体有益无害,但仍有些成分及有些油料的油含有毒成分是一定要去除的。从毛油到色拉油,一般需要经过脱胶(脱磷)、脱酸、脱色、脱臭,有些油品还需脱腊等工序的处理。经过这些精炼过程之后油脂的主要类脂物成分和其中的营养成分的含量会发生系列变化。 (一)、脱酸——游离脂肪酸(FFA) 油脂中含有游离脂肪酸,主要是由于未熟油料种子中尚未合成为酯的脂肪酸。油料因受潮、发热受解脂酶作用或存放过程中氧化分解也能产生FFA。一般未精炼植物油脂中约含有0.5%-5%,受解脂酶分解过的米糠油、棕榈油中FFA可高达到达20%以上。 油脂脱酸的主要目的应体现在:高含量FFA对食用者的口味和菜肴风味的影响较大,并非其本身对人体有什么危害。 (二)、脱胶——磷脂 粗植物油中磷脂含量视油料品种、制取方法而不同,一般为0.1%-3%。大豆油中磷脂含量较高,约为1%-3%。 磷脂对人体虽具有调解代谢、增强体能、健脑、补脑、消除大脑疲劳、增强智商,提高人体记忆力、降低人体血液胆固醇、调节血脂、防止动脉粥样硬化、保护人体肝脏、防止脂肪肝、防止胆结石、防止老年骨质疏松证、防止克山病等功能,并且对油脂具有抗氧化增效的作用,但在油脂精炼中却要首当其冲将其去除的主要原因是:(1)混入油中使油脂颜色深暗、混浊;(2)油中有水或长时间存放,磷脂易吸水,沉淀,加快油脂变质;(3)加热到280℃开始焦苦发黑;(4)磷脂等胶质的存在,直接影响脱酸、脱色、脱臭等后续加工工序的完成。 作为一般的烹调油,从保管及多数地区的烹调习惯即高温烹调来讲,脱磷是必要的。 脱除磷脂的主要工序是脱胶,去除了毛油中76%的磷脂,到脱臭之后,几乎100%地将其去除。 (三)、脱色——色素 油脂中的色素主要是天然色素,包括类胡萝卜素和叶绿素两类。自然界最多的胡萝卜素

基础油生产工艺详解-加拿大石油

PETRO-CANADA AND THE PATENTED HT PURITY PROCESS BASE OIL MANUFACTURE 加拿大石油专利精制处理基础油生产 Lubricant base oils are produced in a series of steps which are designed to enhance certain desirable properties. For paraffinic oils, these include viscosity index, oxidation resistance, thermal stability and low temperature fluidity. Starting from petroleum crude oil, the typical process for making a lubricant base oil is as follows: ? Separation of lighter boiling materials, such as gasoline, diesel, etc. ? Distilla tion to give desired base oil viscosity grades ? Selective removal of impurities, such as aromatics and polar compounds ? Dewaxing to improve low temperature fluidity ? Finishing to improve oxidation resistance and heat stability Generally both Solvent Refined and Hydrocracked base oils are manufactured this way, but differ in the processes used. 润滑油基础油是经过一系列旨在提高某些特性的步骤后生产出来的。对石蜡基基础油来说,这些特性包括粘度指数,抗氧化性,热稳定性和低温流动性。从原油开始,生产基润滑油基础油典型过程在以下几步:。轻沸点材料的分离,比如汽油,柴油等被分离出来; 。蒸馏得到所需要的基础油粘度等级; 。选择性去除杂质,比如:芳烃和极性化合物; 。脱蜡以提高低温流动性; 。最后提高抗氧性和热稳定性; 通常溶剂精制和加氢裂化基础油的生产路径都是这样的,区别只是使用处理方法的不同。 BASE OIL CLASSIFICATION基础油的分类 Before reviewing how base oil is manufactured, we should explain the American Petroleum Institute?s (API) Base Oil Classification system. For engine oils, the API system classifies base oils into five major groups, as shown below: 上面回顾了基础油的生产过程,我们接下来说明API的基础油分类系统。针对发动机油,API分类系统中有五个主要的级别: Group I, or conventional base oils manufactured by Solvent Refining, make up most of the base oil produced in the world today. Containing more than 0.03 wt % Sulphur and less than 90 wt % Saturates, they are less pure than Hydroprocessed or Synthetic base oils. While these groups were originally intended to be used for engine oils, their usage has expanded beyond this area.

季戊四醇以甲醛和乙醛为原料

季戊四醇以甲醛和乙醛为原料,在碱性催化剂(氢氧化钙或氢氧化钠。用氢氧化钙的季戊四醇生产工艺称为“钙法”;用氢氧化钠的季戊四醇生产工艺称为“钠法”)存在条件下反应制得。首先甲醛和乙醛缩合生成反应中间物五碳赤丝藻糖(季戊四糖),五碳赤丝藻糖与甲醛反应,还原生成季戊四醇,同时生成甲酸盐。副产物主要有:聚季戊四醇、季戊四醇甲醚类、季戊四醇缩甲醛、树胶和甲醛聚糖。通过合理选择和严格控制反应条件可抑制这些副反应的发生。反应物是甲醛和乙醛混合物水溶液,反应原料配比决定了最终反应产物的比例。使用NaOH为催化剂,副产物为甲酸钠。随着原料配比中甲醛对乙醛的比例增加,相应的产物中二季戊四醇量增加,单季戊四醇量减少。 国外季戊四醇生产多数采用低温钠法,连续缩合,加压脱醛,多效蒸发及先进的精制技术,产品品种多,消耗低,副产品回收完全,污染小。 ) n6 I, o# V9 l* J4 D/ C* 国内生产现状 近年来,中国季戊四醇发展迅速,不仅产能快速增加,而且生产技术也取得较大进步。1997年中国季戊四醇生产能力和产量分别为5万吨和2万吨,2002年分别增加到10万吨以上和5万吨左右。目前中国有季戊四醇生产厂家近30家,其中规模超过万吨级的企业主要有衡阳三化实业公司、湖北宜化集团公司、云天化集团公司和保定化工原料厂等。湖北宜化宜都分公司的万吨季戊四醇生产线投产,新生产线为该公司新增1.5万吨季戊四醇产量,加上原有的1.5万吨产能,该公司已经具备了年产3万吨季戊四醇的生产能力,排名亚洲第一、世界第三,季戊四醇的年销售收入将达到2.5亿元,成为该公司新的利润增长点。该公司为了确保1.5万吨季戊四醇新生产线的竞争优势,购买韩国三洋化学实业公司的单季及双季戊四醇专有技术,生产的季戊四醇羟基含量高达98%,达到国际领先水平。前5年间,中国季戊四醇产能和产量年均增长率分别为15%和20%,表观消费量从1998年的2.8万吨增加到2002年的6.1万吨、2003年的约6万吨,年均增长率约17%。2003年生产能力和产量分别增加到12万吨/年以上和6.5万吨。我国季戊四醇主要生产厂家和生产能力见表1。但是,尽管近年中国季戊四醇产能逐年增加,而前几年进口量呈现上升趋势,2002年进口量高达9822吨。进入2003年国内合成日趋成熟,而且多套万吨级装置发挥应有的规模效应,国内产量快速增长,2003年达到6.5万吨,加上亚洲周边国家季戊四醇装置较少,国际市场需求看好,2003年进口减少到2641吨,而出口大增,达到7848吨。我国近年来季戊四醇产量和进出口见表2。 表1 我国季戊四醇主要生产厂家和生产能力,吨/年

米糠预处理工艺过程及原理

米糠预处理工艺过程及原理 传统预处理工艺 米糠浸出制油前的预处理,传统工艺主要有造粒成型和蒸炒(烘炒)成型两种。这两种方式虽然工艺成熟、稳定,但也有不少弊端,如动力、蒸汽消耗大,粉末度大,色泽深,干粕残油高,溶剂损耗大,浸出设备的生产率低,易使平转浸出器产生搭桥现象,精炼得率低等。 膨化预处理工艺 膨化成型保鲜原理 膨化亦称为结构化或组织化,即利用膨化机的不等距非标准螺旋系统的挤压推进,米糠间隙中的气体被挤出,并迅速被物料填充,米糠受剪切作用而产生回流,使机膛内的压力增大,随着螺旋与机膛间的摩擦使米糠的晶体达到充分混合、挤压、加热、胶合、糊化而产生组织变化,脂肪层结构遭到破坏;同时机械能转化为热能,机膛内温度很快升高到125℃左右,有效的钝化了米糠中的各种酶的活性,破坏了脂肪层结构;米糠被挤压到出口处时,淀粉、蛋白质转化为粘性状态,压力由高压瞬间变为常压,造成水分迅速地从组织结构中蒸发出来,使其内部形成无数的微孔结构,冷却干燥后,米糠即膨化成型。 工艺流程 原料米糠→糠粞分离→调质→油料膨化机→冷却→(包装计量)→浸出车间→精炼车间→成品油 膨化前准备 米糠进入膨化机前必须预先进行糠粞分离。因为原料中如含有较多的碎米和粗糠壳等杂质,会加快膨化机的磨损,更重要的是碎米含有较多的淀粉,使米糠在膨化过程中形成不了适当的压力,而且会使膨化物料结构松散,达不到良好的膨化效果,极易增加浸出料的粉末度和干粕残油,而影响浸出效果。 原料米糠的水分对膨化机的工作甚有影响,它直接决定膨化后的弹性与塑性。米糠水分过高,物料弹性差,不能产生足够的压力和热能适宜的破坏油细胞和酶;而水分过低,物料塑性差,会使膨化温度过高,物料焦化,加深物料颜色,并易堵塞膨化机,也不能产生良好的膨化物料。根据使用结果,米糠入机前水分应控制在11~13%为宜。

湖南呋喃树脂深加工项目可行性研究报告

湖南呋喃树脂深加工项目可行性研究报告 规划设计/投资分析/产业运营

报告摘要说明 呋喃又称糠醇,本身进行均聚或与其它单体进行共缩聚而得到的缩聚 产物,糠醇与脲醛、酚醛、酮醛合成多种产物,习惯上称为呋喃树脂。其 中以糠醇酚醛树脂、糠醇尿醛树脂应用较多。 糠醇树脂是由糠醇为主体与甲醛缩聚而成的(改性产品又添加了尿素),外观为深褐色至黑色的液体或固体,耐热性和耐水性都很好,耐化学腐蚀 性极强,对酸、碱、盐和有机溶液都有优良的抵抗力,是优良的防腐剂。 糠醇树脂强度高,是木材、橡胶、金属和陶瓷等优良的粘结剂,也可用于 生产涂料。 该呋喃树脂项目计划总投资17137.59万元,其中:固定资产投资11837.35万元,占项目总投资的69.07%;流动资金5300.24万元,占 项目总投资的30.93%。 本期项目达产年营业收入37851.00万元,总成本费用28539.30 万元,税金及附加320.69万元,利润总额9311.70万元,利税总额10916.76万元,税后净利润6983.78万元,达产年纳税总额3932.99 万元;达产年投资利润率54.33%,投资利税率63.70%,投资回报率40.75%,全部投资回收期3.95年,提供就业职位586个。 呋喃树脂是指以具有呋喃环的糠醇和糠醛作原料生产的树脂类的总称,其在强酸作用下固化为不溶的固形物,在机械工业的铸造工艺中作砂芯粘

结剂,广泛应用于汽车、机床、船舶、飞机,风电、通用机械、精密仪器等产品的铸件生产和高档精密出口铸件的生产。 呋喃树脂属热固性树脂,受热时能彼此交联固化而无需添加固化剂。酸在固化反应中起催化作用,还可降低热固化时所需的温度。根据施工工艺的特殊需要,可引入催化型固化剂,无需加热就能在室温下迅速交联固化。固化交联时要放出低分子物质,故固化时体积收缩率较大,其延伸率很低,呈现脆性。

相关文档
最新文档