聚类和判别分析

合集下载

第11章 聚类分析与判别分析

第11章 聚类分析与判别分析

第十一章聚类分析与判别分析聚类分析与判别分析是两类常用多元分析方法。

聚类分析可以将个体或对象分类,使得同一类中的对象之间的相似性比与其他类的对象的相似性更强;而判别分析则可以根据已掌握的样本信息建立判别函数,当遇到新的样本点时根据判别函数可以判断该样本点所属的类别。

第一节聚类分析一、聚类分析的基本思想“物以类聚,人以群分”。

分类处理,在现实中极为普遍。

在生物、经济、社会、人口等领域的研究中,存在着大量量化分类研究。

例如:在生物学中,为了研究生物的演变,生物学家需要根据各种生物不同的特征对生物进行分类;在经济研究中,为了研究不同地区城镇居民生活中的收入和消费情况,往往需要划分不同的类型去研究;在人口学研究中,需要构造人口生育分类模式、人口死亡分类状况,以此来研究人口的生育和死亡规律。

历史上,这些分类方法多半是人们主要依靠经验作定性分类,致使许多分类带有主观性和任意性,特别是对于多因素、多指标的分类问题,定性分类的准确性不好把握。

为了克服定性分类存在的不足,人们把数学方法引入分类中,形成了数值分类学,进而产生了聚类分析这一最常用的技巧。

聚类分析将个体或对象分类,使得同一类中的对象之间的相似性比与其他类的对象的相似性更强。

其目的在于:使类内对象的同质性最大化和类间对象的异质性最大化。

聚类分析通常可以分为两种:Q型聚类和R型聚类。

Q型聚类是对观测个体的分类,R 型聚类是对变量的分类。

二者在数学上是对称的,没有本质区别。

二、符号说明多元统计分析中要注意区分样本和变量。

每个样品有p个指标(变量)从不同方面描述其性质,形成一个p维的向量,可以把n 个样品看成p维空间中的n个点。

X表示第k个变量第j次观测值(或称第j个项目的测量值),即:我们用记号jkX=第k个变量第j次观测值jkp个变量的n个观测值可表示如下:11121121222212121212k p k pj j jk jp n n nknpkp X X X X X X X X j X X X X nX X XX 变量变量变量变量观测观测观测观测记为:1112112122221212k p k p j j jk jp n n nknp X X X X X X X X X X X X X X X X ⎛⎫⎪ ⎪⎪=⎪ ⎪⎪ ⎪ ⎪⎝⎭X 记12(,,,)'jp j j jp X X X X R =∈,表示第j 个样品,它表示p 维空间的一个点。

聚类分析与判别分析

聚类分析与判别分析

(xi yi )2
i
平方欧氏距离(Squared Euclidean) (xi yi )2 i
绝对距离(Block): Si|xi-yi|
切比雪夫距离 (Chebychev ) Maxi|xi-yi|
1
明考夫斯基距离(Minkowski)
(
xi
yi
)q
q
i
10
(2)相似系数
向量x =(x1,…, xp)与y =(y1,…, yp)之间的相似系数:
夹角余弦cosine
Cxy (1) cos xy
xi yi i
xi2 yi2
i
i
cosθ =1,说明x和y完全相似;接近1,x和y比较相似。
cosθ=0,说明x和y完全不一样;接近0,x和y差别很大。
相关系数
(xi x )( yi y)
Pearson correlation Cxy (2) rxy
1
提纲
1 聚类分析
1-1 概述
1-1-1聚类分析的原理 1-1-2 距离和相似系数 1-1-3 类间距离的算法
1-2系统聚类分析(Hierarchical clustering) 1-2-1 基本思想
1-2-2 分类
1-2-3 SPSS 实现
1-3 k-均值聚类 ( K-Means Cluster)
每一种样品都具有多种特性,或称之为具有多种变量。聚类分析是基于
多变量数据,对n个样品进行分类的一种方法,即将那些相似的样品归为一类, 不相似的样品分别归到各自不容的类别中。
目的:寻找数据中潜在的自然分组结构 和感兴趣的关系。
3
自然分组结构 Natural grouping : 例如:有16张牌,如何将他们分为一组一组的牌?

7聚类与判别分析

7聚类与判别分析

7聚类与判别分析聚类分析(Cluster analysis)是将相似的对象归类到同一个类别或群组的过程,它是无监督学习的一种常用方法,用于发现数据之间的内在结构和模式。

而判别分析(Discriminant Analysis),又称为鉴别分析,是一种有监督学习的方法,旨在确定将数据正确分类到预定义的类别中的最佳方法。

本文将对聚类分析和判别分析进行详细讨论。

聚类分析主要包括层次聚类和划分聚类两种方法。

层次聚类将数据集中的对象通过一系列分裂与合并的步骤聚成一个层次结构,可以采用“自底向上”(凝聚性聚类)和“自顶向下”(分裂性聚类)的方法进行操作。

凝聚性聚类首先将每个数据点作为一个独立的簇,然后通过计算相似性度量将最相似的两个簇合并成一个新的簇,反复进行直到只剩下一个簇为止。

分裂性聚类则是相反的过程,从一个包含所有数据点的簇开始,逐步将其分裂成更小的簇,直到每个簇只包含一个或少数几个数据点为止。

划分聚类方法则将数据集划分成多个互不重叠的簇,每个簇中的对象之间具有较高的相似度,而不同簇之间的对象具有较低的相似度。

其中最常用的方法是K-means算法,其步骤为:首先选择k个随机的质心(簇中心)作为初始的聚类中心,然后通过计算每个数据点到这些质心的距离,将数据点分配到最近的质心的簇中。

然后重新计算每个簇的质心位置,继续迭代上述步骤直到簇中心不再发生变化或者达到预定的迭代次数为止。

在线性判别分析中,通过找出数据类别间的最佳投影方向(线性判别向量),将高维数据点映射到一维或低维空间中,从而实现分类。

二次判别分析则将线性判别分析中的决策面扩展为二次曲面,可以更好地适应非线性数据集。

聚类分析和判别分析在实际中有不同的应用。

聚类分析广泛应用于市场细分、社交网络分析、图像分析和基因组学等领域,用于发现相似群组或子集,从而提高数据理解和决策。

而判别分析则常用于模式识别、图像分类、文本分类等任务,通过训练分类模型进行预测和分类。

聚类分析与判别分析区别

聚类分析与判别分析区别
ij
表示

cos
!
ij





!

ia

ja




!







!


"
ia
ja


cos
!
ij



cos
!
ij
=1

说明两个样品





完全相似

cos
!
ij




















cos
!
ij
=0

说明





完全不一样

cos
!
ij
接近









差别大。把所有两两样品的相似系数都
通过聚类分析可以达到简化数据的目的


众多的样品先聚集成比较好处理的几个类别或子


然后再进行后续的多元分析。
比如在回归分析


有时不对原始数据进行拟合

而是对这些子集
的中心作拟合

可能会更有意义。又比如

为了研
究不同消费者群体的消费行为特征

「聚类分析与判别分析」

「聚类分析与判别分析」

「聚类分析与判别分析」聚类分析和判别分析是数据挖掘和统计学中常用的两种分析方法。

聚类分析是一种无监督学习方法,通过对数据进行聚类,将相似的样本归为一类,不同的样本归入不同的类别。

判别分析是一种有监督学习方法,通过学习已知类别的样本,构建分类模型,然后应用模型对未知样本进行分类预测。

本文将对聚类分析和判别分析进行详细介绍。

聚类分析是一种数据探索技术,其目标是在没有任何先验知识的情况下,将相似的样本聚集在一起,形成互相区别较大的样本群。

聚类算法根据样本的特征,将样本分为若干个簇。

常见的聚类算法有层次聚类、k-means聚类和密度聚类。

层次聚类是一种自下而上或自上而下的层次聚合方法,通过测量样本间的距离或相似性,不断合并或分裂簇,最终形成一个聚类树状结构。

k-means聚类将样本划分为k个簇,通过优化目标函数最小化每个样本点与其所在簇中心点的距离来确定簇中心。

密度聚类基于样本点的密度来判断是否属于同一簇,通过划定一个密度阈值来确定簇的分界。

聚类分析在很多领域中都有广泛的应用,例如市场分割、医学研究和社交网络分析。

在市场分割中,聚类分析可以将消费者按照其购买行为和偏好进行分组,有助于企业制定更精准的营销策略。

在医学研究中,聚类分析可以将不同患者分为不同的亚型,有助于个性化的治疗和药物开发。

在社交网络分析中,聚类分析可以将用户按照其兴趣和行为进行分组,有助于推荐系统和社交媒体分析。

相比之下,判别分析是一种有监督学习方法,其目标是通过学习已知类别的样本,构建分类模型,然后应用模型对未知样本进行分类预测。

判别分析的目标是找到一个决策边界,使得同一类别内的样本尽可能接近,不同类别之间的样本尽可能远离。

常见的判别分析算法有线性判别分析(LDA)和逻辑回归(Logistic Regression)。

LDA是一种经典的线性分类方法,它通过对数据进行投影,使得同类样本在投影空间中的方差最小,不同类样本的中心距离最大。

逻辑回归是一种常用的分类算法,通过构建一个概率模型,将未知样本划分为不同的类别。

聚类分析和判别分析

聚类分析和判别分析

18
24 30 36 42 48 54 60 66 72
0.69
0.77 0.59 0.65 0.51 0.73 0.53 0.36 0.52 0.34
1.33
1.41 1.25 1.19 0.93 1.13 0.82 0.52 1.03 0.49
0.48
0.52 0.30 0.49 0.16 0.35 0.16 0.19 0.30 0.18
i i
( xi x ) 2 ( yi y ) 2
i i
i
当变量的测量值相差悬殊时,要先进行 标准化. 如R为极差, s 为标准差, 则标 准化的数据为每个观测值减去均值后 再除以R或s. 当观测值大于0时, 有人 采用Lance和Williams的距离
1 | xi yi | x y p i i i
Number of Cases in each Cluster Cluster 1 2 3 4 1.000 1.000 2.000 15.000 19.000 .000
Valid Missing
结果解释
参照专业知识,将儿童生长发育分期定为: 第一期,出生后至满月,增长率最高; 第二期,第2个月起至第3个月,增长率次之; 第三期,第3个月起至第8个月,增长率减缓; 第四期,第8个月后,增长率显著减缓。
k-均值聚类:案例
为研究儿童生长发育的分期,调查1253名1月至7岁儿 童的身高(cm)、体重(kg)、胸围(cm)和坐高(cm) 资料。资料作如下整理:先把1月至7岁划成19个月份段, 分月份算出各指标的平均值,将第1月的各指标平均值与出 生时的各指标平均值比较,求出月平均增长率(%),然后 第2月起的各月份指标平均值均与前一月比较,亦求出月平 均增长率(%),结果见下表。欲将儿童生长发育分为四期, 故指定聚类的类别数为4,请通过聚类分析确定四个儿童生 长发育期的起止区间。

判别分析与聚类分析的基本原理

判别分析与聚类分析的基本原理

判别分析与聚类分析的基本原理数据分析是在如今信息时代中,越来越重要的一项技能。

在数据分析的过程中,判别分析和聚类分析是两个非常重要的方法。

本文将介绍判别分析和聚类分析的基本原理,以及它们在数据分析中的应用。

一、判别分析的基本原理判别分析是一种用于分类问题的统计方法,其目的是通过学习已知类别的样本数据,来构建一个分类器,从而对未知样本进行分类。

判别分析的基本原理可以简单概括为以下几个步骤:1. 数据预处理:首先需要对数据进行预处理,包括数据清洗、缺失值处理、特征选择等,以获得更好的数据质量。

2. 特征提取:在进行判别分析之前,需要将原始数据转化为有效的特征。

特征提取的方法有很多种,常用的包括主成分分析、线性判别分析等。

3. 训练分类器:利用判别分析算法对已知类别的样本数据进行训练,建立分类模型。

常用的判别分析方法有线性判别分析、二次判别分析等。

4. 分类预测:通过训练好的分类器,对未知样本进行分类预测。

分类预测的结果可以是离散的类标签,也可以是概率值。

判别分析广泛应用于医学、金融、市场营销等领域。

例如,在医学领域,可以利用判别分析来预测疾病的状态,辅助医生做出诊断决策。

二、聚类分析的基本原理聚类分析是一种无监督学习方法,其目的是将相似的数据对象分组,使得同一组内的对象相似度较高,不同组间的相似度较低。

聚类分析的基本原理可以概括为以下几个步骤:1. 选择相似性度量:首先需要选择一个合适的相似性度量,用于评估数据对象之间的相似程度。

常用的相似性度量包括欧氏距离、曼哈顿距离等。

2. 选择聚类算法:根据具体的问题需求,选择合适的聚类算法。

常用的聚类算法有K-means、层次聚类等。

3. 确定聚类数目:根据实际问题,确定聚类的数目。

有些情况下,聚类数目事先是已知的,有些情况下需要通过评价指标进行确定。

4. 根据聚类结果进行分析:将数据对象划分到各个聚类中,并对聚类结果进行可视化和解释。

聚类分析被广泛应用于市场分析、图像处理、社交网络等领域。

聚类分析与判别分析

聚类分析与判别分析

第一节聚类分析统计思想一、聚类分析的基本思想1.什么是聚类分析俗语说,物以类聚、人以群分。

当有一个分类指标时,分类比较容易。

但是当有多个指标,要进行分类就不是很容易了。

比如,要想把中国的县分成若干类,可以按照自然条件来分:考虑降水、土地、日照、湿度等各方面;也可以考虑收入、教育水准、医疗条件、基础设施等指标;对于多指标分类,由于不同的指标项对重要程度或依赖关系是相互不同的,所以也不能用平均的方法,因为这样会忽视相对重要程度的问题。

所以需要进行多元分类,即聚类分析。

最早的聚类分析是由考古学家在对考古分类中研究中发展起来的,同时又应用于昆虫的分类中,此后又广泛地应用在天气、生物等方面。

对于一个数据,人们既可以对变量(指标)进行分类(相当于对数据中的列分类),也可以对观测值(事件,样品)来分类(相当于对数据中的行分类)。

2.R型聚类和Q型聚类对变量的聚类称为R型聚类,而对观测值聚类称为Q型聚类。

这两种聚类在数学上是对称的,没有什么不同。

聚类分析就是要找出具有相近程度的点或类聚为一类;如何衡量这个“相近程度”?就是要根据“距离”来确定。

这里的距离含义很广,凡是满足4个条件(后面讲)的都是距离,如欧氏距离、马氏距离…,相似系数也可看作为距离。

二、如何度量距离的远近:统计距离和相似系数1.统计距离距离有点间距离好和类间距离2.常用距离统计距离有多种,常用的是明氏距离。

3.相似系数当对个指标变量进行聚类时,用相似系数来衡量变量间的关联程度,一般地称为变量和间的相似系数。

常用的相似系数有夹角余弦、相关系数等。

夹角余弦:相关系数:对于分类变量的研究对象的相似性测度,一般称为关联测度。

第二节如何进行聚类分析一、系统聚类1.系统聚类的基本步骤2.最短距离法3.最长距离法4.重心法和类平均法5.离差平方和法二、SPSS中的聚类分析1、事先要确定分多少类:K均值聚类法;2、事先不用确定分多少类:分层聚类;分层聚类由两种方法:分解法和凝聚法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

聚类和判别分析SPSS(中文版)统计分析实用教程(第版)电子工业出版社*第九章聚类和判别分析SPSS(中文版)统计分析实用教程(第版)电子工业出版社*主要内容聚类和判别分析简介二阶聚类K均值聚类系统聚类判别分析SPSS(中文版)统计分析实用教程(第版)电子工业出版社*聚类和判别分析简介基本概念()聚类分析聚类分析的基本思想是找出一些能够度量样本或指标之间相似程度的统计量以这些统计量为划分类型的依据把一些相似程度较大的样本(或指标)聚合为一类把另外一些彼此之间相似程度较大的样本又聚合为一类。

根据分类对象的不同聚类分析可分为对样本的聚类和对变量的聚类两种。

()判别分析判别分析是判别样本所属类型的一种统计方法。

SPSS(中文版)统计分析实用教程(第版)电子工业出版社*聚类和判别分析简介基本概念()二者区别不同之处在于判别分析是在已知研究对象分为若干类型(或组别)并已取得各种类型的一批已知样本的观测量数据的基础上根据某些准则建立判别式然后对未知类型的样本进行差别分析。

SPSS(中文版)统计分析实用教程(第版)电子工业出版社*样本间亲疏关系的度量()连续变量的样本间距离常用度量主要方法有欧氏距离(EuclideanDistance)、欧氏平方距离(SquaredEuclideanDistance)、切比雪夫距离(ChebychevDistance)、明可斯基距离(MinkowskiDistance)、用户自定义距离(CustomizeDistance)、Pearson相关系数、夹角余弦(Cosine)等。

(公式见教材表)()顺序变量的样本间距离常用度量常用的有统计量(Chisquaremeasure)和统计量(Phisquaremeasure)。

具体计算公式参见节表。

聚类和判别分析简介SPSS(中文版)统计分析实用教程(第版)电子工业出版社*主要内容聚类和判别分析简介二阶聚类K均值聚类系统聚类判别分析SPSS(中文版)统计分析实用教程(第版)电子工业出版社*二阶聚类基本概念及统计原理()基本概念二阶聚类(TwoStepCluster)(也称为两步聚类)是一个探索性的分析工具()为揭示自然的分类或分组而设计是数据集内部的而不是外观上的分类。

它是一种新型的分层聚类算法(HierarchicalAlgorithms),目前主要应用到数据挖掘(DataMining)和多元数据统计的交叉领域模式分类中。

该过程主要有以下几个特点:分类变量和连续变量均可以参与二阶聚类分析该过程可以自动确定分类数可以高效率地分析大数据集用户可以自己定制用于运算的内存容量。

SPSS(中文版)统计分析实用教程(第版)电子工业出版社*二阶聚类基本概念及统计原理()统计原理两步法的功能非常强大而原理又较为复杂。

他在聚类过程中除了使用传统的欧氏距离外为了处理分类变量和连续变量它用似然距离测度它要求模型中的变量是独立的分类变量是多项式分布连续变量是正态分布的。

分类变量和连续变量均可以参与两步聚类分析。

SPSS(中文版)统计分析实用教程(第版)电子工业出版社*二阶聚类基本概念及统计原理()分析步骤第步构建聚类特征树:对每个观测变量考察一遍确定类中心。

根据相近者为同一类的原则计算距离并把与类中心距离最小的观测量分到相应的各类中去。

这个过程称为构建一个分类的特征树(CF)。

第步对聚类特征树的节点进行分组:为确定最好的类数对每一个聚类结果使用Akaik判据(AIC)或贝叶斯判据(BIC)作为标准进行比较得出最后的聚类结果。

SPSS(中文版)统计分析实用教程(第版)电子工业出版社*二阶聚类SPSS实例分析【例】某机构为了调查学生性别和所学专业与毕业后初始工资的情况调查抽取了个学生的数据如表所示(其中“性别”代表男性代表女性“学科”代表农学代表建筑代表地质代表商务代表林学代表教育代表工程代表艺术)试根据样本指标进行聚类分析。

(数据参见教材P)第步分析:由于自变量中不仅有连续属性也有分类变量故采用二阶聚类进行分析。

第步数据组织:按表所示定义变量输入数据并保存。

SPSS(中文版)统计分析实用教程(第版)电子工业出版社*二阶聚类第步二阶聚类设置:按“分析→分类→两步聚类”顺序打开“二阶聚类分析”对话框并按下图进行设置。

SPSS(中文版)统计分析实用教程(第版)电子工业出版社*二阶聚类第步主要结果及分析:二阶聚类的模型概要和聚类质量情况从中可以看出此算法采用的是两步(二阶)聚类共输入个变量将所有个案聚成类。

聚类的平均轮廓值为(其范围值为~值越大越好)说明聚类质量较好。

聚类个案情况图可以看出各类所占的比例情况SPSS(中文版)统计分析实用教程(第版)电子工业出版社*二阶聚类第步主要结果及分析:各个案所属的分类号情况SPSS(中文版)统计分析实用教程(第版)电子工业出版社*主要内容聚类和判别分析简介二阶聚类K均值聚类系统聚类判别分析SPSS(中文版)统计分析实用教程(第版)电子工业出版社*K均值聚类基本概念及统计原理()基本概念K均值聚(也称快速聚类)是由用户指定类别数的大样本资料的逐步聚类分析。

它先对数据进行初始分类然后逐步调整得到最终分类数。

分类变量和连续变量均可以参与两步聚类分析。

()统计原理如果选择了n个数值型变量参与聚类分析最后要求聚类数为k。

由系统首先选择k个观测量(也可以是用户指定)作为聚类的目标n 个变量组成n维空间。

每个观测量在n维空间中是一个点。

K个事先选定的观测量就是k个聚类中心也称为初始类中心。

按照距这几个类中心的距离最小的原则把观测量分派到各类中心所在的类中去形成第一次迭代形成的k类。

SPSS(中文版)统计分析实用教程(第版)电子工业出版社*K均值聚类根据组成每一类的观测量计算每个变量的均值每一类中的n个均值在n维空间中又形成k个点这就是第二次迭代的类中心。

按照这种方法迭代下去直到达到指定的迭代次数或达到中止迭代的判据要求时迭代就停止了聚类过程也就结束了。

()分析步骤第步指定聚类数目k第步确定k个初始类中心第步根据距离最近原则进行分类第步重新确定k个类中心第步迭代计算。

SPSS(中文版)统计分析实用教程(第版)电子工业出版社*K均值聚类SPSS实例分析【例】测量名大学生对《高等数学》的心理状况和学习效果主要包括四个因素:学习动机、学习态度、自我感觉、学习效果具体数据如下表所示。

试将该名学生分成类以分析不同心理状况下学生的学习效果。

编号学习动机学习态度自我感觉学习效果SPSS(中文版)统计分析实用教程(第版)电子工业出版社*K均值聚类第步分析:由于已知分成类故可采用K均值聚类法。

第步数据组织:按如上表的表头所示建立变量将“编号”变量的数据类型设为字符型(作为标识变量)。

第步快速聚类设置按“分析→分类→K均值聚类”顺序打开“K 均值聚类分析”对话框将“学习动机”、“学习态度”、“自我感觉”、“学习效果”四个变量选入“变量”列表框。

将“编号”变量移入“个案标记依据”框中将“聚类数”设为。

其余“迭代”、“保存”和“选项”设置参见教材。

SPSS(中文版)统计分析实用教程(第版)电子工业出版社*K均值聚类第步主要结果及分析:初始聚类中心表由于没有指定初始聚类中心列出了由系统指定的类中心。

与原数据比较发现它们分别是第、第和第号个案。

Cluster学习动机学习态度自我感觉学习效果SPSS(中文版)统计分析实用教程(第版)电子工业出版社*K均值聚类第步主要结果及分析:迭代历史表由表可知第一次迭代后个类的中心点分别变化了和。

一共进行了次迭代达到聚类结果的要求(达到最大迭代次数)聚类分析结束。

SPSS(中文版)统计分析实用教程(第版)电子工业出版社*K均值聚类最终聚类中心表如第类的学习动机值为学习态度值为自我感觉值为学习效果值为。

样本数情况可看出第类中分别含有个样本聚类学习动机学习态度自我感觉学习效果聚类有效缺失SPSS(中文版)统计分析实用教程(第版)电子工业出版社*K均值聚类分类保存情况查看数据文件可看到多出两个变量分别表示每个个案的具体分类归属和与类中心的距离。

SPSS(中文版)统计分析实用教程(第版)电子工业出版社*主要内容聚类和判别分析简介二阶聚类K均值聚类系统聚类判别分析SPSS(中文版)统计分析实用教程(第版)电子工业出版社*系统聚类基本概念与统计原理()基本概念系统聚类是效果最好且经常使用的方法之一国内外对它进行了深入的研究系统聚类在聚类过程中是按一定层次进行的。

具体分成两种分别是Q型聚类和R型聚类Q型聚类是对样本(个案)进行的分类它将具有共同特点的个案聚集在一起以便对不同类的样本进行分析R型聚类是对变量进行的聚类它使具有共同特征的变量聚在一起以便对不同类的变量进行分析。

SPSS(中文版)统计分析实用教程(第版)电子工业出版社*系统聚类基本概念与统计原理()统计原理系统聚类是根据个案或变量之间的亲疏程度将最相似的对象聚集在一起。

根据系统聚类过程的不同又分为凝聚法和分解法两种。

凝聚法的原理是将参与聚类的每个个案(或变量)视为一类根据两类之间的距离或相似性逐步合并直到合并为一个大类为止分解法的原理是将所有个案(或变量)都视为一类然后根据距离和相似性逐层分解直到参与聚类的每个个案(或变量)自成一类为止。

在层次聚类中度量数据之间的亲疏程度是极为关键的。

在衡量样本与样本之间的距离时一般使用的距离有EulcideanDistance、SquaredEuclideanDistance、切比雪夫距离、Block 距离、明可斯基距离(Minkowshi)、夹角余弦(Cosine)等。

SPSS(中文版)统计分析实用教程(第版)电子工业出版社*系统聚类基本概念与统计原理()统计原理衡量样本数据与小类、小类与小类之间亲疏程度的度量方法主要有以下种:最短距离法(NearestNeighbor)最长距离法(FurthestNeighbor)类间平均链锁法(BetweengroupsLinkage)类内平均链锁法(WithingroupsLinkage)重心法(CentriodClustering)中间距离法(MedianClustering)离差平方和(Ward’sMethod)。

SPSS(中文版)统计分析实用教程(第版)电子工业出版社*系统聚类SPSS实现举例【例】已知例儿童的血中血红蛋白、钙、镁、铁、锰、铜的含量如下表试对数据进行变量聚类分析。

ordercamgfemncuhemoglordercamgfemncuhemoglSPSS(中文版)统计分析实用教程(第版)电子工业出版社*系统聚类第步分析:根据题目要求需进行变量聚类分析(即R型聚类)故采用系统聚类分析中的R型聚类进行处理。

第步数据组织:如上表定义七个变量:“order”(编号)、“ca”(钙)、“mg”(镁)、“fe”(铁)、“mn”(锰)、“cu”(铜)和“hemogl”(血红蛋白)其中“order”为字符串型其余变量为数值型。

相关文档
最新文档