算法的时间复杂度的具体步骤1
求解算法的时间复杂度的具体步骤

求解算法的时间复杂度的具体步骤是:⑴ 找出算法中的基本语句;算法中执行次数最多的那条语句就是基本语句,通常是最内层循环的循环体。
⑵ 计算基本语句的执行次数的数量级;只需计算基本语句执行次数的数量级,这就意味着只要保证基本语句执行次数的函数中的最高次幂正确即可,可以忽略所有低次幂和最高次幂的系数。
这样能够简化算法分析,并且使注意力集中在最重要的一点上:增长率。
⑶ 用大Ο记号表示算法的时间性能。
将基本语句执行次数的数量级放入大Ο记号中。
如果算法中包含嵌套的循环,则基本语句通常是最内层的循环体,如果算法中包含并列的循环,则将并列循环的时间复杂度相加。
例如:for (i=1; i<=n; i++)x++;for (i=1; i<=n; i++)for (j=1; j<=n; j++)x++;第一个for循环的时间复杂度为Ο(n),第二个for循环的时间复杂度为Ο(n2),则整个算法的时间复杂度为Ο(n+n2)=Ο(n2)。
常见的算法时间复杂度由小到大依次为:Ο(1)<Ο(log2n)<Ο(n)<Ο(nlog2n)<Ο(n2)<Ο(n3)<…<Ο(2n)<Ο(n!)Ο(1)表示基本语句的执行次数是一个常数,一般来说,只要算法中不存在循环语句,其时间复杂度就是Ο(1)。
Ο(log2n)、Ο(n)、Ο(nlog2n)、Ο(n2)和Ο(n3)称为多项式时间,而Ο(2n)和Ο(n!)称为指数时间。
计算机科学家普遍认为前者是有效算法,把这类问题称为P类问题,而把后者称为NP问题。
O(1)Temp=i;i=j;j=temp;以上三条单个语句的频度均为1,该程序段的执行时间是一个与问题规模n无关的常数。
算法的时间复杂度为常数阶,记作T(n)=O(1)。
如果算法的执行时间不随着问题规模n的增加而增长,即使算法中有上千条语句,其执行时间也不过是一个较大的常数。
此类算法的时间复杂度是O(1)。
O(n^2)2.1. 交换i和j的内容sum=0;(一次)for(i=1;i<=n;i++) (n次)for(j=1;j<=n;j++) (n^2次)sum++;(n^2次)解:T(n)=2n^2+n+1 =O(n^2)2.2.for (i=1;i<n;i++){y=y+1; ①for (j=0;j<=(2*n);j++)x++; ②}解:语句1的频度是n-1语句2的频度是(n-1)*(2n+1)=2n^2-n-1f(n)=2n^2-n-1+(n-1)=2n^2-2该程序的时间复杂度T(n)=O(n^2). O(n)2.3.a=0;b=1; ①for (i=1;i<=n;i++) ②{s=a+b; ③b=a; ④a=s; ⑤}解:语句1的频度:2,语句2的频度: n,语句3的频度: n-1,语句4的频度:n-1,语句5的频度:n-1,T(n)=2+n+3(n-1)=4n-1=O(n).O(logn )2.4.i=1; ①while (i<=n)i=i*2; ②解:语句1的频度是1,设语句2的频度是f(n), 则:2^f(n)<=n;f(n)<=logn取最大值f(n)= logn,T(n)=O(logn )O(n^3)2.5.for(i=0;i<n;i++){for(j=0;j<i;j++){for(k=0;k<j;k++)x=x+2;}}解:当i=m, j=k的时候,内层循环的次数为k当i=m时, j 可以取 0,1,...,m-1 , 所以这里最内循环共进行了0+1+...+m-1=(m-1)m/2次所以,i从0取到n, 则循环共进行了: 0+(1-1)*1/2+...+(n-1)n/2=n(n+1)(n-1)/6所以时间复杂度为O(n^3).。
邻接表普里姆算法时间复杂度

邻接表普里姆算法时间复杂度邻接表普里姆算法是一种用于解决最小生成树问题的算法。
在该算法中,我们需要给定一个带权无向图,然后找出一个包含所有顶点且边权值之和最小的树。
它的时间复杂度是多少呢?让我们来探讨一下。
邻接表是一种常用的图的表示方法。
在邻接表中,每个顶点都对应一个链表,链表中存储了与该顶点相邻的顶点的信息。
而普里姆算法就是利用邻接表来实现的。
普里姆算法的基本思想是从一个顶点开始,逐步选择与当前树连接的具有最小权值的边的顶点,直到所有的顶点都被加入到树中。
具体步骤如下:1. 初始化一个空的树和一个空的边集合。
2. 随机选择一个顶点作为起始顶点,并将其加入到树中。
3. 将与起始顶点相邻的边加入到边集合中。
4. 从边集合中选择权值最小的边,并将其连接的顶点加入到树中。
5. 将该边从边集合中移除。
6. 重复步骤4和步骤5,直到所有的顶点都被加入到树中。
那么,这个算法的时间复杂度是多少呢?让我们来分析一下。
初始化树和边集合的时间复杂度是O(1)。
然后,在每一次选择最小权值边的过程中,我们需要遍历整个边集合,找到权值最小的边。
对于一个包含V个顶点的图,边集合中最多有V-1条边,因为最小生成树是一个包含V-1条边的树。
所以,遍历边集合的时间复杂度是O(V-1)。
接下来,将连接的顶点加入到树中的操作需要遍历邻接表中的链表,找到与当前顶点相邻的顶点。
对于一个包含V个顶点的图,邻接表中最多有V个链表,每个链表中最多有V-1个顶点。
所以,遍历邻接表的时间复杂度是O(V^2)。
重复步骤4和步骤5,直到所有的顶点都被加入到树中。
由于每次选择最小权值边时,边集合中的边都会减少一条,所以重复的次数最多为V-1次。
因此,重复步骤4和步骤5的时间复杂度是O(V-1)。
邻接表普里姆算法的时间复杂度可以表示为:O(1) + O(V-1) + O(V^2) + O(V-1)其中,O(1)表示初始化的时间复杂度,O(V-1)表示选择最小权值边的时间复杂度,O(V^2)表示遍历邻接表的时间复杂度,O(V-1)表示重复步骤4和步骤5的时间复杂度。
20年408算法题讲解

20年408算法题讲解20年408算法题是一道典型的贪心算法题,题目为:小明要组织一场成人舞会,舞会的规模长度为n,舞会的人员会持有编号为1到n 的邀请卡。
小明会根据部分人员的意愿来确定人员的座位,根据大家的意愿,小明对部分人员进行了调整位置的要求,每个人有且仅有一个位置调整,要求位置A调整到位置B上。
小明希望通过贪心算法将这些人员安排到舞台的左、右两侧,并使得满足调整要求的人员尽量多。
现请你帮助小明计算一下,通过贪心算法最多有多少人满足调整要求?首先,我们可以将这个问题转化为一个图的问题,其中每个人员对应一个节点,每个位置调整要求对应一条有向边,每个节点的出度表示对应的调整要求个数。
那么问题就转化为找到使得图中满足所有调整要求的边尽量多的节点集合。
然后,我们可以使用贪心算法来解决这个问题。
贪心算法的思想是每次选择局部最优解,并逐步得到全局最优解。
对于这个问题,我们可以从图中选择出度最大的节点开始处理。
假设选择了节点u,那么我们将节点u放入结果集合中,并将与节点u相邻的节点的出度减一。
然后再选择新的出度最大的节点,继续上述过程,直至所有节点的出度均为零。
下面我们来具体实现这个算法。
首先,我们可以定义一个邻接表来表示图,其中每个节点对应一个链表,链表中的元素表示它的相邻节点。
然后,我们可以使用一个数组来记录每个节点的出度。
接下来,我们可以使用堆来选择出度最大的节点,可以利用堆的数据结构来实现。
具体步骤如下:1.构建邻接表和出度数组:遍历所有调整要求,根据调整要求构建邻接表,并将相应节点的出度加一。
2.构建堆:遍历出度数组,将出度非零的节点加入最大堆中。
3.贪心选择:循环从堆中选择出度最大的节点u,将其放入结果集合中,并将与节点u相邻的节点的出度减一,同时更新堆中节点的顺序。
4.终止条件:当堆为空时,结束循环。
5.返回结果:返回结果集合的大小,即为满足调整要求的人员个数。
算法的时间复杂度分析如下:构建邻接表和出度数组的时间复杂度为O(m),其中m表示调整要求的数量。
哈希查找的时间复杂度

哈希查找的时间复杂度哈希查找(Hash Search)是一种常用的快速查找算法,通过将数据存储在哈希表中,可以快速地定位到需要查找的元素。
在哈希查找中,关键字的哈希值将决定其在哈希表中的位置,从而实现了快速查找的目的。
本文将探讨哈希查找算法的时间复杂度及其影响因素。
一、哈希查找算法概述哈希查找算法主要分为两个步骤:哈希函数的构造和哈希冲突的处理。
具体步骤如下:1. 哈希函数的构造:根据待查找的关键字的特点,设计一个哈希函数,将关键字映射为哈希值,并将其存储在哈希表中。
2. 哈希冲突的处理:由于哈希函数的映射可能存在冲突(即不同的关键字可能映射到相同的哈希值),需要设计一种冲突解决方法,如开放地址法、链地址法等。
二、哈希查找的时间复杂度分析在理想情况下,哈希查找的时间复杂度为O(1),即常数时间。
这是因为通过哈希函数,可以直接计算得到待查找元素在哈希表中的位置,不需要遍历整个表格,从而实现了快速查找。
然而,在实际应用中,哈希函数的设计和哈希冲突的处理可能会影响查找效率。
如果哈希函数设计得不好,或者哈希表的装载因子过高,会导致哈希冲突的发生频率增加,从而影响查找性能。
三、影响哈希查找时间复杂度的因素1. 哈希函数的设计:好的哈希函数应该能够将关键字均匀地映射到哈希表的各个位置,从而降低哈希冲突的概率。
常用的哈希函数包括除留余数法、平方取中法等。
2. 哈希表的装载因子:装载因子是指哈希表中已存储元素个数与哈希表总大小的比值。
装载因子过高会增加哈希冲突的概率,从而降低查找性能。
通常情况下,装载因子的取值应控制在0.7以下。
3. 哈希冲突的处理方法:常见的哈希冲突解决方法有开放地址法和链地址法。
开放地址法通过线性探测、二次探测等方式寻找下一个可用位置,链地址法则使用链表或其他数据结构存储具有相同哈希值的关键字。
四、总结哈希查找是一种高效的查找算法,可以在常数时间内完成查找操作。
然而,其性能受到哈希函数的设计、哈希表的装载因子和哈希冲突的处理方式的影响。
算法的时间复杂度和空间复杂度-总结

算法的时间复杂度和空间复杂度-总结通常,对于一个给定的算法,我们要做两项分析。
第一是从数学上证明算法的正确性,这一步主要用到形式化证明的方法及相关推理模式,如循环不变式、数学归纳法等。
而在证明算法是正确的基础上,第二部就是分析算法的时间复杂度。
算法的时间复杂度反映了程序执行时间随输入规模增长而增长的量级,在很大程度上能很好反映出算法的优劣与否。
因此,作为程序员,掌握基本的算法时间复杂度分析方法是很有必要的。
算法执行时间需通过依据该算法编制的程序在计算机上运行时所消耗的时间来度量。
而度量一个程序的执行时间通常有两种方法。
一、事后统计的方法这种方法可行,但不是一个好的方法。
该方法有两个缺陷:一是要想对设计的算法的运行性能进行评测,必须先依据算法编制相应的程序并实际运行;二是所得时间的统计量依赖于计算机的硬件、软件等环境因素,有时容易掩盖算法本身的优势。
二、事前分析估算的方法因事后统计方法更多的依赖于计算机的硬件、软件等环境因素,有时容易掩盖算法本身的优劣。
因此人们常常采用事前分析估算的方法。
在编写程序前,依据统计方法对算法进行估算。
一个用高级语言编写的程序在计算机上运行时所消耗的时间取决于下列因素:(1). 算法采用的策略、方法;(2). 编译产生的代码质量;(3). 问题的输入规模;(4). 机器执行指令的速度。
一个算法是由控制结构(顺序、分支和循环3种)和原操作(指固有数据类型的操作)构成的,则算法时间取决于两者的综合效果。
为了便于比较同一个问题的不同算法,通常的做法是,从算法中选取一种对于所研究的问题(或算法类型)来说是基本操作的原操作,以该基本操作的重复执行的次数作为算法的时间量度。
1、时间复杂度(1)时间频度一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。
但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。
并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。
求时间复杂度的方法

①for(i=1;i<=n;i++)②for(j=1;j<=i;j++)③for(k=1;k<=j;k++)④++x;
解:以上算法中频度最大的是语句④,其频度可以通过求和公式求得:
所以,该算法的时间复杂度为立方阶,记作T(n)=O(n3)。例3有如下算法:
例6有如下算法:
voidfun(inta[],intn,intk){inti;
if(k==n-1)
for(i=0;i<n;i++)printf("%d",a[i]);else
{for(i=k;i<n;i++)a[i]=a[i]+i;fun(a,n,k+1);}}
解:设fun(a,n,k)的执行时间为T(k),由算法可以得到时间复杂度的递归关系如下:
则:
所以,该算法的时间复杂度T(n)=O(n2)
例5有如下算法:
i=s=0;while(s<n){i++;s=s+i;}
解:假设循环执行k次,则有:
k=1时,i=1,s=0+1k=2时,i=2,s=0+1+2k=3时,i=3,s=0+1+2+3
…
执行到k次时,。
由于s<n,即
,所以
,该算法的时间复杂度
。
3.迭代法
当算法中包含递归函数时,其时间复杂度也会被转化为一个递归方程,上述两种方法此时不再适用。递归方程的形式多种多样,其求解方法也是不一而足,比较常用是迭代法。其基本步骤是迭代地展开递归方程的右端,使之成为一个非递归的和式,然后通过对和式的估计来得到时间复杂度T(n)。
时间的复杂度详解

时间的复杂度详解时间复杂度是衡量算法运行时间的一种度量方式,用大O符号(O)来表示。
它描述了算法所需的计算步骤数随问题规模的增长率。
在计算机科学中,时间复杂度主要关注的是算法在处理大规模问题时所需的时间。
为了更好地理解时间复杂度,我们需要先了解一些基本概念。
1.基本操作在算法中,基本操作是指运算的最小单位。
它们通常是赋值、比较、运算、访问数组元素等。
基本操作的数量是衡量算法运行时间的关键。
2.渐近表示法时间复杂度使用大O符号来表示,表示算法运行时间的上界。
例如,如果一个算法的时间复杂度为O(n),意味着算法的运行时间最多是输入规模n的某个常数倍。
大O符号忽略了低阶项和常数项,只关注随问题规模增长最快的那一项。
下面我们来详细讨论几个常见的时间复杂度。
1.常数时间复杂度O(1)无论输入规模大小,常数时间复杂度的算法都具有固定的运行时间。
例如,访问数组元素或者执行一个赋值语句。
常数时间复杂度通常是最理想的情况,但在实际中很难实现。
2.线性时间复杂度O(n)线性时间复杂度表示随着输入规模n的增长,算法的运行时间也会线性增长。
例如,遍历一个数组或者链表中的所有元素。
每个元素都需要进行常数次的基本操作,所以总的时间复杂度为O(n)。
3.对数时间复杂度O(log n)对数时间复杂度通常出现在数据规模减半的情况下。
例如,在二分查找算法中,每次查找都可以将问题规模减半。
对数时间复杂度的算法是非常高效的,因为随着问题规模的增长,算法的运行时间只会以对数方式增长。
4.平方时间复杂度O(n^2)平方时间复杂度表示随着输入规模n的增长,算法的运行时间会呈平方级别增长。
例如,嵌套循环中的每次迭代都需要进行常数次的基本操作。
平方时间复杂度的算法常常效率较低,通常不适用于处理大规模问题。
5.指数时间复杂度O(2^n)指数时间复杂度表示随着输入规模n的增长,算法的运行时间呈指数级别增长。
例如,在TSP(旅行商问题)的暴力求解方法中,对于每个城市,旅行商都需要选择下一个未访问的城市,因此总的时间复杂度会呈指数级别增长。
各种排序算法的时间复杂度和空间复杂度(阿里)

各种排序算法的时间复杂度和空间复杂度(阿⾥)⼆分查找法的时间复杂度:O(logn) redis,kafka,B+树的底层都采⽤了⼆分查找法参考:⼆分查找法 redis的索引底层的跳表原理实现参考:⼆分查找法参考:⼆分查找法:1.⼆分查找⼆分查找也称为折半查找,它是⼀种效率较⾼的查找⽅法。
⼆分查找的使⽤前提是线性表已经按照⼤⼩排好了序。
这种⽅法充分利⽤了元素间的次序关系,采⽤分治策略。
基本原理是:⾸先在有序的线性表中找到中值,将要查找的⽬标与中值进⾏⽐较,如果⽬标⼩于中值,则在前半部分找,如果⽬标⼩于中值,则在后半部分找;假设在前半部分找,则再与前半部分的中值相⽐较,如果⼩于中值,则在中值的前半部分找,如果⼤于中值,则在后半部分找。
以此类推,直到找到⽬标为⽌。
假设我们要在 2,6,11,13,16,17,22,30中查找22,上图所⽰,则查找步骤为:⾸先找到中值:中值为13(下标:int middle = (0+7)/2),将22与13进⾏⽐较,发现22⽐13⼤,则在13的后半部分找;在后半部分 16,17,22,30中查找22,⾸先找到中值,中值为17(下标:int middle=(0+3)/2),将22与17进⾏⽐较,发现22⽐17⼤,则继续在17的后半部分查找;在17的后半部分 22,30查找22,⾸先找到中值,中值为22(下标:int middle=(0+1)/2),将22与22进⾏⽐较,查找到结果。
⼆分查找⼤⼤降低了⽐较次数,⼆分查找的时间复杂度为:O(logn),即。
⽰例代码:public class BinarySearch {public static void main(String[] args) {int arr[] = {2, 6, 11, 13, 16, 17, 22, 30};System.out.println("⾮递归结果,22的位置为:" + binarySearch(arr, 22));System.out.println("递归结果,22的位置为:" + binarySearch(arr, 22, 0, 7));}//⾮递归static int binarySearch(int[] arr, int res) {int low = 0;int high = arr.length-1;while(low <= high) {int middle = (low + high)/2;if(res == arr[middle]) {return middle;}else if(res <arr[middle]) {high = middle - 1;}else {low = middle + 1;}}return -1;}//递归static int binarySearch(int[] arr,int res,int low,int high){if(res < arr[low] || res > arr[high] || low > high){return -1;}int middle = (low+high)/2;if(res < arr[middle]){return binarySearch(arr, res, low, middle-1);}else if(res > arr[middle]){return binarySearch(arr, res, middle+1, high);}else {return middle;}}}其中冒泡排序加个标志,所以最好情况下是o(n)直接选择排序:排序过程:1 、⾸先在所有数据中经过 n-1次⽐较选出最⼩的数,把它与第 1个数据交换,2、然后在其余的数据内选出排序码最⼩的数,与第 2个数据交换...... 依次类推,直到所有数据排完为⽌。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
算法的时间复杂度的具体步骤
⑴找出算法中的基本语句;
算法中执行次数最多的那条语句就是基本语句,通常是最内层循环的循环体。
⑵计算基本语句的执行次数的数量级;
只需计算基本语句执行次数的数量级,这就意味着只要保证基本语句执行次数的函数中的最高次幂正确即可,可以忽略所有低次幂和最高次幂的系数。
这样能够简化算法分析,并且使注意力集中在最重要的一点上:增长率。
⑶用大Ο记号表示算法的时间性能。
将基本语句执行次数的数量级放入大Ο记号中。
如果算法中包含嵌套的循环,则基本语句通常是最内层的循环体,如果算法中包含并列的循环,则将并列循环的时间复杂度相加。
例如:
for (i=1; i<=n; i++)
x++;
for (i=1; i<=n; i++)
for (j=1; j<=n; j++)
x++;
第一个for循环的时间复杂度为Ο(n),第二个for循环的时间复杂度为Ο(n2),则整个算法的时间复杂度为Ο(n+n2)=Ο(n2)。
常见的算法时间复杂度由小到大依次为:
Ο(1)<Ο(log2n)<Ο(n)<Ο(nlog2n)<Ο(n2)<Ο(n3)<…<Ο(2n)<Ο(n!)
Ο(1)表示基本语句的执行次数是一个常数,一般来说,只要算法中不存在循环语句,其时间复杂度就是Ο(1)。
Ο(log2n)、Ο(n)、Ο(nlog2n)、Ο(n2)和Ο(n3)称为多项式时间,而Ο(2n)和Ο(n!)称为指数时间。
计算机科学家普遍认为前者是有效算法,把这类问题称为P类问题,而把后者称为NP问题。
O(1)
Temp=i;i=j;j=temp;
以上三条单个语句的频度均为1,该程序段的执行时间是一个与问题规模n无关的常数。
算法的时间复杂度为常数阶,记作T(n)=O(1)。
如果算法的执行时间不随着问题规模n的增加而增长,即使算法中有上千条语句,其执行时间也不过是一个较大的常数。
此类算法的时间复杂度是O(1)。
O(n^2)
2.1. 交换i和j的内容
sum=0;(一次)
for(i=1;i<=n;i++) (n次)
for(j=1;j<=n;j++) (n^2次)
sum++;(n^2次)
解:T(n)=2n^2+n+1 =O(n^2)
2.2.
for (i=1;i<n;i++)
{
y=y+1; ①
for (j=0;j<=(2*n);j++)
x++; ②
}
解:语句1的频度是n-1
语句2的频度是(n-1)*(2n+1)=2n^2-n-1
f(n)=2n^2-n-1+(n-1)=2n^2-2
该程序的时间复杂度T(n)=O(n^2).
O(n)
2.3.
a=0;
b=1; ①
for (i=1;i<=n;i++) ②
{
s=a+b;③
b=a;④
a=s;⑤
}
解:语句1的频度:2,
语句2的频度:n,
语句3的频度:n-1,
语句4的频度:n-1,
语句5的频度:n-1,
T(n)=2+n+3(n-1)=4n-1=O(n).
O(logn )
2.4.
i=1; ①
while (i<=n)
i=i*2; ②
解:语句1的频度是1,
设语句2的频度是f(n), 则:2^f(n)<=n;f(n)<=logn
取最大值f(n)= logn,
T(n)=O(logn )
O(n^3)
2.5.
for(i=0;i<n;i++)
{
for(j=0;j<i;j++)
{
for(k=0;k<j;k++)
x=x+2;
}
}
解:当i=m, j=k的时候,内层循环的次数为k当i=m时, j 可以取0,1,...,m-1 , 所以这里最内循环共进行了0+1+...+m-1=(m-1)m/2次所以,i从0取到n, 则循环共进行了: 0+(1-1)*1/2+...+(n-1)n/2=n(n+1)(n-1)/6所以时间复杂度为O(n^3).。