(完整版)高分子化学重点
完整高分子化学知识点

2.名词解释交替共聚物:两种单体在大分子链上严格交替相间排列。
嵌段聚合:两种或两种以上单体分别聚合成链节(或链段)生成嵌段共聚物的一类共聚合反应。
活性聚合:阴离子聚合由链引发、链增长和链终止三个基元反应组成,如聚合体系纯净、无质子供体,阴离子聚合可控制其终止反应,这种无终止;无链转移的聚合反应即为活性聚合。
特征为(1)无链终止;(2)无链转移;(3)引发反应比增长反应快,反应终了时聚合链仍是活的。
异构化聚合:指在链增长反应过程中常常发生原子或原子团的重排过程的反应。
反应程度:高分子缩聚反应中用以表征高分子聚合反应反应深度的量。
计算方法为参加反应的官能团数占起始官能团数的比例。
转化率:进入共聚物的单体量占起始单体量M的百分比。
笼蔽效应:在溶液聚合反应中,浓度较低的引发剂分子及其分解出的初级自由基始终处于含大量溶剂分子的高黏度聚合物溶液的包围之中,一部分初级自由基无法与单体分子接触而更容易发生向引发剂或溶剂的转移反应,从而使引发剂效率降低。
诱导分解:诱导分解(Induced Decomposition)自由基向引发剂转移的反应为诱导分解。
自由基发生诱导分解反应将使引发剂的效率降低,同时也使聚合度降低平均官能度:有两种或两种以上单体参加的混缩聚或共缩聚反应中在达到凝胶点以前的线形缩聚阶段,反应体系中实际能够参加反应的官能团数与单体总物质的量之比。
(每一份子平均带的官能度)凝胶点:开始出现凝胶瞬间的临界反应程度Pc。
高分子:由许多结构相同的简单的单元通过共价键重复连接而成的相对分子质量很大的化合物。
由于对大多数高分子而言,其均由相同的化学结构重复连接而成,故也成为聚合物或高聚物。
计量聚合:指链引发速率在阴离子聚合反应中严格控制条件,以得到接近单分散的聚合物为目的的聚合反应。
配位聚合:单体分子首先在活性种的空位处配位,形成某些形式(σ-π)的配位络合物。
随后单体分子插入过渡金属(Mt)-碳(C)链中增长形成大分子的过程。
高分子化学知识点总结

高分子化学知识点总结
高分子化学是研究高分子物质的结构、性质、合成、加工及应用的学科。
以下是高分子化学的主要知识点总结:
1. 高分子物质的基本概念:高分子物质是由大量重复单元构成的超分子结构。
2. 高分子物质的分类:按照来源可以分为天然高分子和合成高分子;按照结构可以分为线性高分子、支化高分子、交联高分子、共聚高分子等。
3. 高分子物质的性质:高分子物质具有物理性质和化学性质两个方面。
物理性质包括流变学、热学、力学、光学、电学等。
化学性质包括氧化、还原、加成、置换、水解等。
4. 高分子物质的合成方法:包括聚合反应、缩合反应、聚合缩合反应、重排反应、羟化反应、酯交换反应、酯化反应等。
5. 结构表征方法:高分子物质的结构表征方法包括分子量测定、组成分析、形态表征、晶体学、核磁共振、红外光谱、拉曼光谱等。
6. 高分子物质的加工:高分子物质的加工包括塑化加工、固化加工、成型加工、加热处理、冷却处理、表面处理等。
7. 高分子物质的应用:高分子物质广泛应用于塑料、纤维、胶粘剂、涂料、电子材料、医药材料、环保材料等领域。
需要注意的是,以上知识点只是高分子化学的基础,实际上高分子化学是一个非常广泛和深入的领域,需要多读书、多实践,才能掌握其核心和精髓。
高分子化学知识点

高分子化学知识点高分子化学是研究大分子化合物的合成、结构、性质和应用的科学。
在这篇文章中,我们将逐步介绍高分子化学的一些基本概念和知识点。
第一步:高分子化合物高分子化合物是由重复单元(单体)通过共价键连接而成的。
这些单体可以是有机化合物,如乙烯、苯乙烯等;也可以是无机化合物,如硅氧烷等。
共价键的形成使得高分子化合物具有较高的分子量和相对较低的挥发性。
第二步:聚合反应聚合是指将单体通过共价键连接成高分子化合物的过程。
聚合反应分为两类:加成聚合和缩聚聚合。
加成聚合是指单体中的双键被打开,形成新的共价键;而缩聚聚合是指单体中的官能团(例如羟基、胺基等)通过消除小分子(例如水、醇等)形成新的共价键。
第三步:聚合度聚合度是指高分子化合物中单体重复单元的数量。
它可以用聚合物的平均分子量(Mn)或聚合度分布来表示。
对于线性高分子,聚合度越高,分子量越大。
第四步:高分子结构高分子的结构可以分为线性、支化和交联结构。
线性高分子是指单体以直线形式连接而成的聚合物;支化高分子是指聚合物中存在分支结构;交联高分子是指聚合物中存在交联点,形成三维网络结构。
高分子的结构对其性能和应用有很大影响。
第五步:高分子性质高分子的性质包括力学性能、热性能、光学性能等。
力学性能包括强度、刚度和韧性等;热性能包括熔点、玻璃化转变温度等;光学性能包括透明度、折射率等。
不同的高分子具有不同的性质,使其在不同的领域具有广泛的应用。
第六步:高分子应用高分子在生活中有着广泛的应用。
例如,聚乙烯是一种常见的塑料,可以用于制作包装材料、管道等;聚合物电解质可以用于锂离子电池和燃料电池等能源领域;高分子材料还可以应用于医学、电子、纺织等领域。
总结:高分子化学是一门研究大分子化合物的合成、结构、性质和应用的学科。
了解高分子化学的基本概念和知识点对于理解和应用高分子材料具有重要意义。
通过逐步的学习,我们可以深入了解高分子化学的各个方面,为高分子化学的研究和应用提供基础。
高分子化学知识点总结

高分子化学知识点总结高分子化学是研究高分子化合物的合成、结构、性能和应用的一门学科。
它是化学领域中的一个重要分支,对于材料科学、生物医学、环境保护等众多领域都有着深远的影响。
以下是对高分子化学一些重要知识点的总结。
一、高分子的基本概念高分子化合物是指相对分子质量很大的化合物,其相对分子质量通常在 10^4 到 10^7 之间。
高分子化合物由许多结构单元通过共价键重复连接而成,这些结构单元被称为单体。
例如,聚乙烯是由乙烯单体聚合而成,其结构单元就是乙烯。
高分子的相对分子质量具有多分散性,即同一种高分子化合物中,不同分子的相对分子质量大小不同。
通常用平均相对分子质量来表示高分子的相对分子质量,常见的平均相对分子质量有数均相对分子质量、重均相对分子质量和粘均相对分子质量。
二、高分子的分类根据来源,高分子可以分为天然高分子和合成高分子。
天然高分子如纤维素、蛋白质、淀粉等,是自然界中存在的;合成高分子则是通过人工合成得到的,如聚乙烯、聚丙烯、聚苯乙烯等。
按照高分子的主链结构,可分为碳链高分子、杂链高分子和元素有机高分子。
碳链高分子的主链完全由碳原子组成,如聚乙烯、聚丙烯;杂链高分子的主链除了碳原子外,还含有氧、氮、硫等原子,如聚酯、聚酰胺;元素有机高分子的主链中不含碳原子,而是由硅、磷、钛等元素组成,侧链则为有机基团。
三、高分子的合成方法(一)加聚反应加聚反应是指由不饱和单体通过加成聚合反应生成高分子化合物的过程。
在加聚反应中,单体分子中的双键或三键打开,相互连接形成高分子链。
常见的加聚反应有自由基聚合、离子聚合和配位聚合。
自由基聚合是应用最广泛的一种加聚反应,其反应条件相对简单,通常在加热或引发剂的作用下进行。
引发剂分解产生自由基,引发单体聚合。
离子聚合包括阳离子聚合和阴离子聚合,它们对反应条件要求较高,需要在无水、无氧的环境中进行。
配位聚合可以制备具有规整结构的高分子,如等规聚丙烯。
(二)缩聚反应缩聚反应是指由具有两个或两个以上官能团的单体通过缩合反应生成高分子化合物,并伴随有小分子副产物(如水、醇、氨等)生成的过程。
高分子材料化学重点知识点总结

第一章水溶性高分子水溶性高分子的性能:水溶性;2.增黏性;3.成膜性;4.表面活性剂功能;5.絮凝功能;6.粘接作用。
造纸行业中的水溶性高分子:(1)聚丙烯酰胺:1)分子量小于100万:主要用于纸浆分散剂;2)分子量在100万和500万之间:主要用于纸张增强剂;3)分子量大于500万:造纸废水絮凝剂(超高分子量);(2)聚氧化乙烯:用作纸浆长纤维分散剂,用作餐巾纸、手帕纸、茶叶袋滤纸,湿强度很高;(3)聚乙烯醇:强粘结力和成膜性;用作涂布纸的颜料粘合剂;纸张施胶剂;纸张再湿性粘合剂。
日用品、化妆品行业中的水溶性高分子:对乳化或悬浮状态的分散体系起稳定作用,另外具有增稠、成膜、粘合、保湿功能等。
壳聚糖:优良的生物相容性和成膜性;显著的美白效果;修饰皮肤及刺激细胞再生的功能水处理行业中的水溶性高分子:(1)聚天冬氨酸(掌握其一):1)以天冬氨酸为原料:(方程式);2)以马来酸酐为原料:(方程式);特点:生物降解性好;可用于高热和高钙水。
1996年Donlar公司获美国总统绿色化学挑战奖;(2)聚环氧琥珀酸(方程式)特点:无磷、无氮,不会引起水体的富营养化。
第二章、离子交换树脂离子交换树脂的结构与性能要求:(1)结构要求:1)其骨架或载体是交联聚合物,2)聚合物链上含有可以离子化的功能基。
(2)性能要求:a、一定的机械强度;b、高的热稳定性、化学稳定性和渗透稳定性;c、足够的亲水性;d、高的比表面积和交换容量;e、合适的粒径分布。
离子交换树脂的分类:(1)按照树脂的孔结构可以分为凝胶型(不含不参与聚合反应的其它物质,透明)和大孔型(含有不参与聚合反应物质,不透明)。
(2)根据所交换离子的类型:阳离子交换树脂(-SO3H);阴离子交换树脂(-N+R3Cl-);两性离子交换树脂离子交换树脂的制备:(1)聚苯乙烯型:(方程式)离子交换树脂的选择性:高价离子,大半径离子优先离子交换树脂的再生:a. 钠型强酸型阳离子交换树脂可用10%NaCl溶液再生;b. OH型强碱型阴离子交换树脂则用4%NaOH溶液再生。
北京化工大学《高分子化学》 各章要求、重点内容

《高分子化学》各章要求及重点内容第一章 绪论一、基本要求1、掌握高分子化学的基本概念。
2、对重要的相关概念进行辨析。
3、掌握聚合物的分类与命名。
4、正确写出常用聚合物的名称、分子式、聚合反应式。
二、主要内容 1、基本概念单体、高分子、大分子、聚合物、低聚物(齐聚物); 结构单元、重复单元、单体单元、链节; 主链、侧链、端基、侧基;聚合度、相对分子质量、相对分子质量分布等;加聚反应、缩聚反应、加聚物、缩聚物、连锁聚合、逐步聚合; 2、聚合物的分类、命名及典型聚合物的命名、来源、结构特征 - 表1-5、1-6、1-7、1-8、内容合成高分子、天然高分子;碳链聚合物、杂链聚合物、元素有机聚合物、无机高分子; 聚酯、聚酰胺、聚氨酯、聚醚、聚脲、聚砜。
3、聚合反应的分类及聚合反应式 聚合物分子式(结构式)、结构单元-重复单元的区别与联系; 聚合反应的分类及聚合反应式写法;加成聚合与缩合聚合、连锁聚合与逐步聚合的联系与区别。
第二章 逐步聚合要求一、基本要求1、掌握逐步聚合的基本概念;2、逐步聚合反应分类(从不同的角度分类)3、比较线形逐步聚合与体型逐步聚合反应;4、线形逐步聚合反应聚合度的计算与控制(单体等摩尔比反应与非等摩尔比反应);5、体型逐步聚合凝胶点的控制;6、正确书写重要逐步聚合聚合物的合成反应式;7、比较连锁聚合与逐步聚合,讨论影响两类反应速率及产物分子量的因素。
二、主要内容 1、基本概念平衡缩聚与不平衡缩聚、线形缩聚与体形缩聚、均缩聚、混缩聚、共缩聚; 缩合聚合、逐步加聚反应(聚加成反应)、氧化偶取联聚合、加成缩合聚合、分解缩聚。
官能团与官能度、平均官能度、官能团等活性理论、反应程度与转化率、当量系数与过量分率; 热塑性树脂与热固型树脂、凝胶点、结构预聚物与无规预聚物; 2、线性逐步聚合相对分子质量控制方法及其计算(1)等物质量反应:PX n -=11封闭体系: )1/(+=K K P 1+=K X n开放体系: wnPnKC X0=(2)非等物质量反应:aAa + bBb (过量)体系:当量系数:B A N N r = 过量分率:AA B N N N q -= 关系:r=1/(1+q) rPr r X n 211-++= )1(22P q q X n -++= aAa + bBb + Cb 体系:,2BBANNN r +=AB NN q ,2= 聚合度计算公式同前3、体型逐步聚合凝胶点的控制官能团等当量:平均官能度:∑∑=iii Nf N f 凝胶点: fP c2=官能团非等当量:所有分子数未过量官能团数⨯=2f 凝胶点: fP c 2= 三、分析应用(1)官能团等活性理论的分析、运用(与自由基聚合、共聚合中等活性理论比较)。
高分子化学复习重点

1. 自由基聚合按引发剂的分解方式:热分解型与氧化还原型2.热分解引发a.偶氮类引发剂:代表品种:偶氮二异丁腈(AIBN):分解只形成一种自由基,无诱导分解,常温下稳定,贮存安全。
80℃以上会剧烈分解分解速度与取代基有关:烯丙基、苄基>叔烷基>仲烷基>伯烷基b.过氧化类引发剂——最简单的过氧化物:过氧化氢活化能较高,一般不单独用作引发剂。
过氧化类引发剂的典型代表:过氧化二苯甲酰(BPO)。
分解温度:60~80℃,BPO 的分解分两步:第一步分解成苯甲酰自由基,第二步分解成苯基自由基,放出CO2c.无机过氧化类引发剂代表品种为过硫酸盐,如过硫酸钾(K2S2O8)和过硫酸铵[(NH4)2S2O8]。
水溶性引发剂,主要用于乳液聚合和水溶液聚合。
分解温度:60~80℃5.氧化—还原引发体系优点:活化能低(40~60kJ/mol);引发温度低(0~50℃),聚合速率大◆水溶性氧化—还原引发体系, 用于乳液聚合和水溶液聚合◆油溶性氧化—还原引发体系, 溶液聚合和本体聚合。
最常用的油溶性氧化—还原引发体系:过氧化二苯甲酰(BPO)—N, N二甲基苯胺(DMBA)。
6.电荷转移络合物引发:富电子分子和缺电子分子之间反应,可以生成电荷转移络合物(CTC),电荷转移络合物可以自发地或在光、热的作用下分解,产生自由基引发烯类单体进行自由基聚合。
本质:氧化--还原体系。
特点是体系活化能低(40kJ/mol)、可在低温下进行。
7.热引发:单体在没有引发剂的条件下,受热发生的聚合反应。
8.光引发:在紫外光作用下引起单体聚合特点:引发聚合活化能低,易控制,产物纯,结果重复性高9.光敏剂的光分解引发:在光的作用下,光引发剂发生光分解,产生两个自由基而引发聚合10辐射引发:在高能射线辐照下引起单体聚合反应11.等离子体引发:机理主要是自由基聚合反应12.引发剂分解动力学a. 初级自由基的生成:引发剂分解(均裂)形成自由基,为吸热反应,活化能高,反应速度慢。
《高分子化学》考研复习大纲

《高分子化学》考研复习大纲绪论高分子化合物的基本概念,高分子的分类方式及命名方法,不同聚合反应类型及聚合反应式,聚合物的不同平均分子量的定义及计算方法,高分子的多层次结构。
第二章缩聚和逐步聚合缩聚和逐步聚合的相互关系,单体的官能度对缩聚反应的影响,线形缩聚的逐步特性和可逆平衡以及副反应,影响聚酯化动力学的因素,线形缩聚物聚合度的计算及控制方法,体形缩聚中凝胶点的定义及Carothers法凝胶点的预测,缩聚反应主要产品及高性能缩聚高分子材料简介。
第三章自由基聚合烯类单体取代基的电子效应和位阻效应对聚合反应类型和能力的影响,自由基聚合的引发剂类型,自由基聚合机理及基元反应特征,自由基聚合反应速率,自由基聚合动力学链长、链转移及聚合度的相互关系,影响自由基聚合反应的因素,阻聚和缓聚,可控“活性”自由基聚合的基本概念。
第四章共聚合反应共聚物的类型及研究共聚反应的意义,二元共聚物组成微分方程、共聚行为的判断以及共聚物组成随转化率的变化规律,共聚物组成分布的控制,竞聚率的定义及其对共聚反应中的作用,单体和自由基的相对活性,Q-e概念及意义。
第五章聚合方法本体聚合、溶液聚合、悬浮聚合、乳液聚合方法的基本概念。
第六章离子聚合阴离子聚合和阳离子聚合反应单体,阴离子聚合和阳离子聚合的引发剂类型,阴离子聚合和阳离子聚合机理及各基元反应特征,阴离子聚合反应动力学,活性聚合的特点及应用。
第七章配位聚合配位聚合的基本概念,配位聚合的引发剂类型,聚合物的立体异构现象。
第八章开环聚合开环聚合的基本概念,开环聚合热力学特征,环醚、己内酰胺及羰基化合物的开环聚合。
第九章聚合物的化学反应高分子化学反应中的基团反应因素,接枝、嵌段、扩链及交联反应的基本概念,降解与老化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.解释重复单元,结构单元,单体单元,单体含义单体:能够进行聚合反应,并构成高分子基本结构组成单元的小分子化合物 重复单元:重复组成高分子分子结构的最小的结构单元。
结构单元:构成高分子主链结构组成的单个原子或原子团。
单体单元:高分子分子结构中由单个单体分子衍生而来的 最大的结构单元2 聚合度:单个聚合物分子中所含单体单元的数目。
以重复单元数为基准,即聚合物大分子链上所含重复单元数目的平均值,以D P 表示;以结构单元数为基准,即聚合物大分子链上所含结构单元数目的平均值,以X n 表示3 阻聚常数即阻聚剂的链转移常数,C s =K t r /K p 4.半衰期:指引发剂分解至起始浓度一半所需时间 5.凝胶点:开始出现凝胶瞬间的临界反应程度6.凝胶现象:在交联逐步聚合反应过程中,随着聚合反应的进行,体系粘度突然增大,失去流动性,反应及搅拌所产生的气泡无法从体系中逸出,可看到凝胶或不溶性聚合物明显生成的实验现象7.自动加速效应竞聚率:随着聚合反应的进行,单体转化率(c %)逐步提高,【I 】【M 】逐渐下降,聚合反应速率R p 理应下降,但在许多聚合体系中,R p 不但不下降,反而显著升高,这种现象是没有任何外界因素影响,在反应过程中自动发生的,因而称为自动加速现象;是指聚合反应中期,反应速率自动增加的现象。
8.竞聚率:同一种自由基均聚和共聚链增长速率常数之比,r 1=k 11/k 12 r 2=k 22/k 219.乳液聚合:单体在水中分散成乳液状态的聚合。
体系有单体、水、水溶性引发剂、水溶性乳化剂组成。
10.引发剂:通常是一些可在聚合温度下具有适当的分解速率,生成自由基,并能引发单体聚合的化合物。
11.胶束:表面活性剂在溶液中的浓度达到某一临界值,如果浓度继续增加,表面活性剂分子中的长链亲油基团通过分子间吸引力相互缔合,自身相互抱成团,而亲水基团则伸向水中,与水分子结合形成聚集体,即胶束。
12.配位聚合:是指采用金属有机化合物与过渡金属化合物的络合体系作为引发剂的聚合反应。
13.交联:是使线型聚合物转化成为具有三维空间网状结构、不溶不熔的聚合物过程。
14.逐步聚合 :通常是由单体所带的两种不同的官能团之间发生化学反应而进行的。
15.时温等效原理16.缩聚反应:带有两个或者两个以上官能团的单体之间连续、重复进行的缩合反应,称为缩合聚合反应,即缩聚反应。
17.数均分子量:聚合物中用不同分子量的分子数目统计的平均分子量。
18诱导期:在聚合反应初期,引发剂分解产生的初级自由基首先被体系中杂质消耗,使聚合反应速率实际为零,故此阶段称为诱导期 19阻聚剂:能与链自由基反应生成非自由基或不能引发单体聚合的低活性自由基而使聚合反应完全停止的化合物。
20 链转移速率常数是链转移速率常数和增长速率常数之比,代表链转移反应与链增长反应的竞争能力。
向单体的链转移常数k k C21 逐步加成聚合反应:形成大分子的方式如同连锁聚合那样是通过单体反复加成而进行的,而动力学过程如同缩聚那样是随着反应时间的延长聚合物的相对分子质量逐步增大。
通常没有小分子副产物生成。
22 悬浮聚合:悬浮聚合一般是单体以液滴状悬浮在水中的聚合,体系主要由单体、水、油溶性引发剂、分散剂四部分组成。
简答题1.逐步聚合的实施方法有熔融聚合、溶液聚合、界面缩聚、固相缩聚等(1)熔融缩聚是单体和聚合产物均处于熔融状态下的聚合反应。
是最简单的缩聚方法。
只有单体和少量催化剂。
优点:产物纯净,分离简单;通常以釜式聚合,生产设备简单;是工业上和实验室常用的方法。
(2)溶液缩聚是单体在溶剂中进行的一种聚合反应.溶剂可以是纯溶剂,也可以是混合溶剂.所用的单体一般活性较高,聚合温度可以较低,副反应也较少。
用于一些耐高温高分子的合成,如聚砜、聚酰亚胺聚苯醚(3)界面缩聚是将两种单体溶于两种互不相溶的溶剂中,混合后在两相界面处进行的缩聚反应。
单体活性高,反应快,可在室温下进行;产物分子量可通过选择有机溶剂来控制;对单体纯度和当量比要求不严格,反应主要与界面处的单体浓度有关;原料酰氯较贵,溶剂回收麻烦,应用受限。
(4) 固相缩聚是在玻璃化温度以上、熔点以下的固态所进行的缩聚。
它是上述三种方法的补充。
2.连锁聚合和逐步聚合的三个主要区别答(1)增长方式:连锁聚合总是单体与活性种反应,逐步聚合是官能团之间的反应,官能团可以来自于单体、低聚体、多聚体、大分子 (2)单体转化率:连锁聚合的单体转化率随着反应的进行不断提高,逐步聚合的单体转换率在反应的一开始就接近100%(3)聚合物的分子量:连锁聚合的分子量一般不随时间而变,逐步聚合的分子量随时间的增加而增加。
3 控制线性缩聚反应的分子量可以采取什么措施?因为缩聚物的分子两端仍保留着可继续反应的官能团,因此控制聚合物反应的分子量可以采取端基封锁的控制方法:在两官能团等当量的基础上使某官能团稍过量或加入少量单官能团物质。
官能团的极少过量,对产物分子量就有显著影响;在线形缩聚中,要得到高分子量,必须保持严格的等当量比。
4.简述线性缩聚的逐步机理线性缩聚的逐步机理——逐步和平衡。
(1)线性缩聚反应的逐步性缩聚反应形成聚合物是官能团之间相互反映的结果。
缩聚早期,单体很快消失,转变成二聚体、三聚体、四聚体等低聚物,转化率很高,但反应程度不高,以后的缩聚反应在低聚物之间进行。
聚合度随反应时间增加。
延长聚合时间的主要目的是提高反应程度和分子量,而不在于提高转化率。
缩聚早期,单体的转化率就很高,而分子量和反应程度就很低。
(2)线性缩聚反应的平衡性许多缩聚反应是可逆的,其反应程度可有平衡常数来衡量,根据其大小,可将线性缩聚大致分成三类:①平衡常数小,如聚酯化反应,K ≈4,低分子副产物水的存在对聚合物相对分子质量影响很大,应除去②平衡常数中等时,如聚酰胺化反应,K≈300-500,水对聚合物相对分子质量有所影响③平衡常数很大或看做不可逆,如聚碳酸酯和聚砜一类的缩聚,平衡常数总在几千以上。
不同的缩聚反应其可逆平衡程度不同。
5.影响线性缩聚物聚合度的因素有哪些?两单体非等化学计量如何控制聚合度?答:(1)影响线形缩聚物聚合度的因素有:①反应程度p 缩聚物的聚合度随反应程度的增加而增加;②平衡常数K 对于可逆缩聚反应,平衡常数对反应程度产生影响,进一步影响聚合度,密闭体系中聚合度与平衡常数有下列定量关系:Xn=l/(1一p)=K+l,敞开体系中聚合度、残留小分子及平衡常数之间有下列定量关系:)/(wnpnKX=wnK/≈③基团的摩尔比反应基团的摩尔比影响反应程度,进一步影响聚合度;④反应条件如反应温度、反应器内压力、催化剂、单体纯度和浓度、搅拌、惰性气体等。
(2)两单体非等化学计量,通过控制原料单体的摩尔比来控制聚合度,可按下式进行计算:1,211<=-++baNNrrprrXn式中,Na、Nb为a、b的起始基团数;Xn为数均聚合度;r为基团数比;p为反应程度。
6.什么是交替共聚物?要制备交替共聚物对单体有什么要求?交替共聚物指两种结构单元交替排列的共聚物。
两种单体双键的电子云密度大小相差得越大越有利于交替共聚。
7下列烯类单体适于何种机理聚合?自由基聚合、阳离子聚合还是阴离子聚合?并说明原因。
答:CH2=CHCl:适合自由基聚合,Cl原子是吸电子基团,也有共轭效应,但均较弱。
CH2=C(CH3)COOR:自由基及阴离子聚合,共轭结构,一个吸电子基团。
CH2=CHCN:自由基及阴离子聚合,CN为吸电子基团。
CH2=C(CN)2:阴离子聚合,两个吸电子基团(CN)。
CH2=CHCH3:配位聚合,甲基(CH3)供电性弱。
CH2=C(CH3)2:阳离子聚合,两个甲基有利于双键电子云密度增加和阳离子的进攻CH2=CHC6H5:三种机理均可,共轭体系。
CF2=CF2:自由基聚合,对称结构,但氟原子半径小。
CH2=C(CN)COOR:阴离子聚合,取代基为两个吸电子基(CN及COOR)CH2=CH-CH=CH2:自由基,阴离子,对称结构,共轭体系8.为什么说传统的自由基聚合的机理特征是慢引发、快增长、速终止?在聚合过程中,聚合物的聚合度,转化率,聚合产物中的物种变化趋势如何?答:自由基聚合机理由链引发、链增长、链终止等基元反应组成,链引发是形成单体自由基(活性种)的反应,引发剂引发由 2步反应组成,第一步为引发剂分解,形成初级自由基 R·.,第二步为初级自由基与单体加成,形成单体自由基。
以上 2步反应动力学行为有所不同。
第一步引发剂分解是吸热反应,活化能高,反应速率和分解速率常数小。
第二步是放热反应,活化能低,反应速率大,因此总引发速率由第一步反应控制。
链增长是单体自由基打开烯类分子的π键,加成,形成新自由基,新自由基的活性并不衰减,继续与烯类单体连锁加成,形成结构单元更多的链自由基的过程。
链增长反应活化能低,约 20~34 kJ·mol-1 ,增长极快。
链终止是自由基相互作用而终止的反应。
链终止活化能很低,仅 8~21 kJ·mol-1 ,甚至低至零。
终止速率常数极高,为 106 ~108 L-1·mol -1·s 。
比较上述三种反应的相对难易程度,可以将传统自由基聚合的机理特征描述成慢引发,快增长,速终止。
在自由基聚合过程中,只有链增长反应才使聚合度增加,增长极快,1s内就可使聚合度迅速增加到成千上万,不能停留在中间阶段。
因此反应产物中除少量引发剂外,仅由单体和聚合物组成。
前后生成的聚合物分子量变化不大,随着聚合的进行,单体浓度渐降,转化率逐渐升高,聚合物浓度相应增加。
延长聚合时间主要是提高转化率。
聚合过程体系黏度增加,将使速率和分子量同时增加。
9.试写出氯乙烯以偶氮氮二异庚腈为引发剂聚合时的各个基元反应?10.是举例说明两种单体进行理想共聚、交替共聚、非理想共聚的必要条件?11.试述Q、e概念,如何根据Q、e值来判断单体间的共聚性质?Q、e概念是指单体的共轭效应因子Q和极性效应因子e与单体的竞聚率相关联的定量关系式:Q值越大,表示共轭效应越大,也就是单体转换成自由基越容易。
E值代表极性,带吸电子取代基的烯类单体e为正值,带推电子取代基的烯类单体e为负值。
Q、e与单体间的共聚性质的关系如下:①Q值相差较大的单体对难以共聚②Q、e相近的单体对易发生理想共聚③e值相差较大的单体对易发生交替共聚。
12.试从单体、引发剂、聚合方法及反应的特点等方面对自由基聚合、阴离子和阳离子聚合反应进行比较13.分别叙述进行阴阳离子聚合时,控制聚合反应速度和聚合物相对分子质量的方法答:离子聚合时,溶剂和温度对聚合速率、产物聚合度和立构规整性都有影响,应该综合考虑,其中首先要考虑溶剂性质。