生物化学核酸生物化学
生物化学-核酸的代谢

感谢您的观看
THANKS
RNA的合成和降解
RNA合成
RNA的合成是指以DNA的一条链为模板,合成RNA的过程。在RNA聚合酶的作用下,按照碱基互补配对原则, 逐个添加核糖核苷酸形成RNA链。
RNA降解
RNA降解是指RNA在细胞内的分解过程。RNA降解由多种酶催化,包括核糖核酸酶和脱氨酶等。这些酶能够将 RNA分解成单核苷酸或更小的片段,以便重新利用或排出体外。
核酸具有紫外吸收特性,最大吸收峰 在260nm处,可用于核酸的定量分析。
核酸分子具有变性和复性的特点,在 一定条件下可以发生解旋和复性过程。
核酸分子具有黏性,可以形成DNA双 螺旋结构,这种黏性与DNA的长度和 浓度有关。
02
核酸的合成
DNA的复制
01
02
03
复制的起始
DNA复制起始于特定的起 始点,称为复制子或复制 起始点。
通过研究DNA损伤修复机制 的异常,可以更好地了解癌 症的发病机制,并开发出更 有效的预防和早期诊断方法 。此外,这种机制的研究也 有助于发现新的治疗靶点, 为癌症治疗提供新的思路。
病毒感染与RNA复制
要点一
总结词
RNA复制是病毒生命周期的重要环节,也是抗病毒药物的 主要作用靶点。
要点二
详细描述
病毒是一种非细胞生物,它们必须寄生在宿主细胞内才能 进行复制和繁殖。RNA复制是病毒生命周期中的关键步骤 之一,它涉及到病毒RNA的合成和转录。这个过程是由病 毒自身的酶催化完成的,而这些酶也成为抗病毒药物的主 要作用靶点。通过抑制病毒RNA复制酶的活性,可以有效 地阻止病毒的复制和传播,从而达到治疗疾病的目的。
05
核酸代谢异常与疾病
基因突变与疾病
生物化学第5章核酸化学

生物化学第5章核酸化学课外练习题一、名词解释1、核苷酸;2、核酸的一级结构;3、增色效应;4、DNA变性;5、T m值;二、符号辨识1、DNA;2、RNA;3、mRNA;4、tRNA;5、rRNA;6、AMP;7、dADP;8、A TP;9、NAD;10、NADP;11、FAD;12、CoA;13、DNase;14、RNase;15、Tm;三、填空1、RNA有三种类型,它们是(), ()和();2、除()只含有DNA或者只含有RNA外,其它生物细胞内既含有DNA也含有RNA;3、核酸具有不同的结构,()通常为双链,()通常为单链;4、原核生物染色体DNA和细胞器DNA为()状双链,真核生物染色体DNA为()双链;5、核苷酸由核苷和()组成,核苷由()和()组成;6、构成核苷酸的碱基与戊糖连接的类型属于()连接,糖的构型为()型;7、稀有碱基在RNA中的含量比在DNA中的丰富,尤其在()中最为突出,约占10%左右;8、具有第二信使功能的核苷酸是()和();9、辅酶类核苷酸包括()、()、()和();10、多聚核苷酸是通过核苷酸的C5’-()与另一分子核苷酸的C3’-()形成磷酸二酯键相连而成的链状聚合物。
11、两个核苷酸之间形成的磷酸二酯键通常称为()磷酸二酯键;12、核酸的一级结构是指单核苷酸之间通过()相连接以及单核苷酸的()及排列顺序;13、真核生物的mRNA分子存在5’-()结构(甲基化的鸟苷酸)和3’-()尾结构;14、1953年,J.Watson和F.Crick提出了著名的()模型;15、DNA分子由两条DNA单链组成,为()双螺旋结构,螺旋中的两条主干链方向(),侧链()互补配对;16、碱基的相互结合具有严格的配对规律,即A与()结合,G 与()结合,这种配对关系,称为();17、碱基互补形成碱基对时,A和T之间形成()个氢键,G与C之间形成()个氢键;18、维持DNA双螺旋结构稳定性的因素包括:两条DNA链之间形成的()、()堆积力和()的负电荷与介质中阳离子的正电荷之间形成的离子键;19、DNA的()结构是指DNA分子通过扭曲和折叠所形成的特定构象;20、超螺旋是DNA()结构的一种形式;21、真核生物的核酸通常与蛋白质复合在一起,称为()。
生物化学课件之核酸的结构和性质

tRNA怎样识别 mRNA上相应 的密码子
RNA的三级结构
tRNA二级结构中突环上未配对的碱基, 由于RNA链的再度扭曲而与另一突环上 的未配对碱基相遇,形成新的氢键配对 关系,其结果是平面花形结构变成立体 花形结构。
tRNA的三级结构象一个倒写的L形字母。
DNA的三级结构-超螺旋
电 话 线 的 螺 旋 和 超 螺 旋
书写方法
A G T G C T
5 P
P
P
P
P
P
OH 3
5 pApCpTpGpCpT-OH 3
5 A C T G C T 3
二、核酸的高级结构 1、DNA 二级结构——双螺旋结构模型 DNA双螺旋结构模型提出的依据 目前公认的DNA双螺旋结构模型的建立,主要有两 方面依据: I 、DNA碱基组成的定量分析; II、DNA纤维和DNA晶体的X光衍射分析。 Wastson和Crick两人在1953年提出的DNA分子双 螺旋结构模型在分子生物学发展上具有划时代 的贡献,为分子生物学和分子遗传性的发展奠 定了基础。
(1)主链 核酸的主链骨架是磷酸和戊糖相间排列成的长链, 碱基挂在戊糖的另一侧。 (2)核酸分子的两个末端: 5’-OH末端(5’-末端)和3’-OH末端(3’-末端)
(3)一级结构的书写方向规定为5’-末端3’-末端 ① 线条书写:竖线表示核糖的碳链,A、C、T、G 表示不同的碱基,P代表磷酸基,由P引出的斜线 一端与C3’相连,另一端与C5’相连。 ② 文字式书写:P在碱基左侧,表示P在C5’位置上, P在碱基右侧,表示P在C3’位置上。有时,P也可 以省略,这两种写法对DNA与RNA分子都适用。
嘧啶(pyrimidine)
5 4 3 2 N
O
生物化学第三章核酸

第三节 RNA的结构与功能
Structure and Function of RNA
• DNA和RNA的区别
不同点 戊糖 碱基 二级结构 碱基互补配对 种类 RNA 核糖 G C A U 单链 忠实性较低 多 (mRNA,rRNA, tRNA 等) DNA 脱氧核糖 G C A T 双链 忠实性高 少
碱基互补配对: 腺嘌呤/胸腺嘧啶(A-T)
4.双螺旋表面存在大沟和小沟
小沟
大沟
(二) DNA二级结构的多样性
• 三种DNA构型的比较
螺距 旋向 (nm) 每圈碱 基数 螺旋直径 (nm) 骨架 走行
存在条件
A型 右手 B型 右手
2.3 3.54
11 10.5
2.5 2.4
平滑 平滑
体外脱水 生理条件
(二)碱基
碱基(base)是含氮的杂环化合物。
腺嘌呤
嘌呤 碱基 嘧啶 鸟嘌呤 存在于DNA和RNA中
胞嘧啶
尿嘧啶 胸腺嘧啶 仅存在于RNA中 仅存在于DNA中
NH2
嘌呤(purine,Pu)
N 7 8 9 NH
N
N
NH
5 4
6 3 N
1N 2
腺嘌呤(adenine, A)
O N
N
NH
NH
鸟嘌呤(guanine, G)
(二) 原核生物DNA的环状超螺旋结构
原核生物DNA多为环状,以负超螺旋的形 式存在,平均每200碱基就有一个超螺旋形成。
DNA超螺旋结构的电镜图象
(三) DNA在真核生物细胞核内的组装
真核生物染色体由DNA和蛋白质构成
基本单位是核小体
DNA染色质呈现出的串珠样结构。 染色质的基本单位是核小体(nucleosome)。
生物化学第二章核酸化学

核酸分类及命名规则
核酸可分为DNA和RNA两大类,根据来源不同可分为基因组DNA、病毒DNA、mRNA、tRNA、 rRNA等。
核酸的命名通常包括种类、来源和特定序列信息,如人类基因组DNA可命名为hgDNA,mRNA可命 名为信使RNA等。
02
DNA结构与性质
DNA双螺旋结构模型
DNA由两条反向平行的多核苷酸链 组成,形成右手螺旋结构。
长约21nt的双链RNA,可引导RISC复合物识别并切割靶mRNA,实现基因沉默。
其他小分子RNA
如piRNA、snoRNA等,在基因表达调控、RNA修饰等方面发挥作用。
04
核酸理化性质与分离纯化方法
核酸溶解度和沉淀条件
溶解度
核酸在不同溶剂中的溶解度不同,一般易溶于水,难溶于乙醇、乙醚等有机溶 剂。其溶解度受温度、pH、离子强度等因素的影响。
非同源重组
发生在非同源序列之间的重组过程。这种重 组不依赖于序列之间的相似性,而是通过一 些特殊的蛋白质和酶的作用来实现DNA片 段的连接。非同源重组可能导致基因的重排 和染色体的不稳定,进而对生物体产生遗传 影响。
07
总结与展望
核酸化学领域重要成果回顾
核酸结构与功能研
究
揭示了DNA双螺旋结构和RNA多 种功能,阐明了遗传信息存储、 传递和表达机制。
05
核酸酶及其作用机制
限制性内切酶和外切酶作用方式
限制性内切酶
识别DNA分子中的特定核苷酸序 列,并在该序列内部进行切割, 产生特定的DNA片段。
外切酶
从DNA或RNA链的末端开始,逐 个水解核苷酸,释放单个的核苷 酸或寡核苷酸。
DNA连接酶在基因工程中应用
连接DNA片段
生物化学—核酸的性质

一、核酸的水解
(一)酸水解
对酸敏感性: 糖苷键 磷酸酯键 嘌呤碱糖苷键 嘧啶碱糖苷键
(二)碱水解
DNA一般对碱稳定。
RNA 的磷酸酯键易被碱水解,产生核苷酸混 合物。
(三)酶水解
(1)底物专一性 ribonuclease, RNase deoxyribonuclease,DNase
应用:
是否存在同源基因;
基因拷贝数多少;
基因片段大小…
Northern blot 是一种将变性RNA转移到滤膜上,利用分子杂 交原理研究基因表达规律的分析技术.
Western blot 将蛋白质转移到滤膜上,根据抗原与抗体可以结 合的原理进行的蛋白质分析鉴定方法.
(二)核酸变性的因素 1. 过酸、过碱 2. 变性剂 (尿素,甲醛) 3. 热变性
特点:爆发式
Tm(melting temperature)
称为核酸解链温度(或融解温度)。即加热变性 使DNA双螺旋结构丧失一半含量
C-G%=(Tm-69.3) X 2.44
2. DNA的均一性 3. 介质中的离子强 度
(三)核酸复性(renaturation)
变性DNA在适当条件下,可使两条彼此分开 的链重新结合成为双螺旋结构,使其物理、化 学性质及生物活性得到恢复,这一过程称为复 性。
DNA复性后紫外吸收降低称为减色效应 (hypochromic effect)。
=40 g/ml RNA 测纯度:OD260/OD280
DNA(1.8), RNA(2.0)
四、核酸的变性、复性 (一)核酸变性定义
天然核酸在某些物理或化学因素作用下, 双螺旋区的氢键断裂, 变成单链。其紫外吸收 增高,黏度下降,生物活性全部或部分丧失。 这种现象称为核酸的变性。
第三章 核酸——生物化学(ssy)

螺旋直径为2nm,相邻碱基
平面距离0.34nm,螺旋一圈
螺距3.4nm,一圈10对碱基。
碱基垂直螺旋轴居双螺旋内
側,与对侧碱基形成氢键配 对 ( 互 补 配 对 形 式 : A=T; GC) 。
碱基互补配对 A T G C
氢键维持双链横向稳定性
碱基堆积力维持双链纵向
稳定性。 离子键屏蔽磷酸基团之间 的静电斥力
5′端
C
A
G
3′端
书写方法
A
G
T
G
C
T
线条式
5 P
P
P
P
P
P
OH 3
字母式
5 pApCpTpGpCpT-OH 3
5 A C T G C T 3
2、 DNA二级结构-双螺旋结构
碱基组成分析 Chargaff 规则:[A] = [T] [G] [C] 碱基的理化数据分析 A-T、G-C以氢键配对较合理
第 三 章 核 酸 化 学
返回
俗
语
生物亲代与子代之间,在形态、结构和生理 功能上常常相似的现象,就是遗传现象。
牛的后代仍然是牛 早在公元前3世纪,《吕氏春 秋》中就记载着“夫种麦而得麦, 种稷而得稷,人不怪也”
金丝猴的后代 仍然是金丝猴
思考: 到底是什么物质在亲子代的遗传 中起作用呢?
2004年12月26日,圣诞节欢乐的气氛尚未结束, 此时,位处南亚的印尼发生了史上第四大强震, 芮氏规模9.0,引发波及东南亚8个国家的海啸。
b. 多磷酸核苷酸:
指含两个以上磷酸基的核苷酸,如ADP 、ATP 、 GDP、 GTP 、 UDP和UTP等.
ATP在细胞能量代谢上起着极其重要的作用。
生物化学 第13章 核酸结构

Cytosine Thymine Uracil
Adenine
Guanine
Phosphate
Nitrogenous base
Pentose sugar
HOCH2
OH
HOCH2
OH
HO
H
Ribose (in RNA) Doxyribose (in DNA)
(二)核酸的基本结构单位——核苷酸
6、核苷酸的衍生物
OH
2´ H (O)H
(二)核酸的基本结构单位——核苷酸
4、核苷酸 nucleotide
核苷酸是核苷的磷酸酯。作为DNA或RNA结构单元的核 苷酸分别是5′-磷酸-脱氧核糖核苷和5′-磷酸-核糖核苷。
O
HO P OH2C O B OH
O
HO P OH2C O B OH
OH OH
OH
核糖核苷酸
脱氧核糖核苷酸
3、mRNA一级结构的特 点
真核细胞mRNA的3’-末端有一段长达200个核 苷酸左右的聚腺苷酸(polyA) ,5’-末端有一个 甲基化的鸟苷酸,称为“帽子结构” 。
问题:大部分真核细胞mRNA的3′-末端都具有多聚( )
三、DNA的高级结构
1953年,J. Watson 和F. Crick 在前人研 究工作的基础上,根 据 DNA 结 晶 的 X- 衍 射图谱和分子模型, 提出了著名的DNA双 螺旋结构模型,并对 模型的生物学意义作 出了科学的解释和预 测。
(三)多聚核苷酸
多聚核苷酸是通过核苷酸的5’-磷酸基与 另一分子核苷酸的C3’-OH形成磷酸二酯 键相连而成的链状聚合物。
由脱氧核糖核苷酸聚合而成的称为DNA 链;
由核糖核苷酸聚合而成的则称为RNA链。