(完整版)相似-单元测试基础卷(含答案),推荐文档
(完整word版)相似三角形单元测试卷(含答案)

相似三角形单元测试卷(共100分)一、填空题:(每题5分,共35分)1、已知a =4,b =9,c 是a b 、的比例中项,则c = .2、一本书的长与宽之比为黄金比,若它的长为20cm ,则它的宽 是 cm (保留根号).3、如图1,在ΔABC 中,DE ∥BC ,且AD ∶BD =1∶2,则S S ADE ∆=四边形DBCE : .图1 图2 图34、如图2,要使ΔABC ∽ΔACD ,需补充的条件是 .(只要写出一种)5、如图3,点P 是RtΔABC 斜边AB 上的任意一点(A 、B 两点除外)过点作一条直线,使截得的三角形与RtΔABC 相似,这样的直线可以作 条.图4 图5 图66、如图4,四边形BDEF 是RtΔABC 的内接正方形,若AB =6,BC =4,则DE = .7、如图5,ΔABC 与ΔDEF 是位似三角形,且AC =2DF ,则OE ∶OB = . 二、选择题: (每题5分,共35分)8、若k bac a c b c b a =+=+=+,则k 的值为( ) A 、2 B 、-1 C 、2或-1 D 、不存在9、如图6,F 是平行四边形ABCD 对角线BD 上的点,BF ∶FD=1∶3,则BE ∶EC=( )A 、21 B 、31 C 、32 D 、41 图7 图8 图910、如图7,△ABC 中,DE ∥FG ∥BC ,且DE 、FG 将△ABC 的面积三等分,若BC=12cm ,则FG 的长为( )A 、8cmB 、6cmC 、64cmD 、26cm 11、下列说法中不正确的是( )A .有一个角是30°的两个等腰三角形相似;B .有一个角是60°的两个等腰三角形相似;C .有一个角是90°的两个等腰三角形相似;D .有一个角是120°的两个等腰三角形相似.12、如图9, D 、E 是AB 的三等分点, DF∥EG∥BC , 图中三部分的面积分别为S 1,S 2,S 3, 则S 1:S 2:S 3( ) A.1:2:3 B.1:2:4 C.1:3:5 D.2:3:413、两个相似多边形的面积之比为1∶3,则它们周长之比为( )A .1∶3B .1∶9C .1D .2∶314、下列3个图形中是位似图形的有( )A 、0个B 、1个C 、2个D 、3个 三、解答题(15题8分,16题10分,17题12分,共30分) 15、如图,已知AD 、BE 是△ABC 的两条高,试说明AD ·BC=BE ·AC16、如图所示,小华在晚上由路灯A 走向路灯B,当他走到点P 时, 发现他身后影子的顶部刚好接触到路灯A 的底部,当他向前再步行12m 到达点Q 时, 发现他身前影子的顶部刚好接触到路灯B 的底部,已知小华的身高是1.6m,两个路灯的高度都是9.6m,且AP=QB. (1)求两个路灯之间的距离;(2)当小华走到路灯B时,他在路灯A 下的影长是多少?17.如图,在矩形ABCD 中,AB=12cm ,BC=8cm .点E 、F 、G 分别从点A 、B 、C 三点同时出发,沿矩形的边按逆时针方向移动.点E 、G 的速度均为2cm/s ,点F 的速度为4cm/s ,当点F 追上点G (即点F 与点G 重合)时,三个点随之停止移动.设移动开始后第t 秒时,△EFG 的面积为S (cm 2) (1)当t=1秒时,S 的值是多少?(2)写出S 和t 之间的函数解析式,并指出自变量t 的取值范围;(3)若点F 在矩形的边BC 上移动,当t 为何值时,以点E 、B 、F 为顶点的三角形与以点F 、C 、G 为顶点的三角形相似?请说明理由.AB C ED参考答案一、 填空题:(1)、1或4或16;(2)、±6;(3)、-94;(4)、1.6或2.5;(5)、)15(10 ; (6)、1:8;(7)、∠ACD=∠B 或∠ADC=∠ACB 或AD :AC=AC :AB ;(8)、31.5; (9)、0.2;(10)、3;(11)、2.4;(12)、1:2三、作图题: 23、(略) 四、解答题:24、证明:∵AD 、BE 是△ABC 的高 ∴∠ADC=∠BEC ∵∠C=∠C∴△ADC ∽△BEC ∴AD :BE=AC :BC ∴AD ×BC=BE ×AC25、解:由图得,AB=5,AC=25,BC=5,EF=2,ED=22,DF=10, ∴AB :EF=AC :ED=BC :DF=5:2∴△ABC ∽△DEF26、解:过点C 作C E ∥AD 交AB 于点E ,则CD=AE=2m ,△BCE ∽△B /BA / ∴A / B /:B /B=BE :BC 即,1.2:2= BE :4 ∴BE=2.4∴AB=2.4+2=4.4答:这棵树高4.4m 。
相似单元测试题及答案

相似单元测试题及答案一、选择题(每题2分,共10分)1. 下列哪项不是相似图形的特点?A. 形状相同B. 面积相等C. 大小相同D. 角度相同2. 相似比的定义是什么?A. 两个图形对应边长的比B. 两个图形对应角的比C. 两个图形对应面积的比D. 两个图形对应周长的比3. 若两个三角形相似,它们的对应角相等,对应边成比例,那么它们的对应高也成比例吗?A. 是B. 否4. 相似图形的面积比与边长比的平方相等,这是根据什么定理得出的?A. 相似定理B. 勾股定理C. 毕达哥拉斯定理D. 面积比定理5. 两个相似多边形的对应边数必须相等吗?A. 是B. 否二、填空题(每题2分,共10分)6. 如果两个三角形的相似比是2:3,那么它们的对应边长之比是________。
7. 相似图形的周长比等于它们的________。
8. 两个相似圆的面积比是25:36,那么它们的半径比是________。
9. 根据相似图形的性质,如果两个图形相似,那么它们的对应角________。
10. 在相似三角形中,如果一个三角形的边长是另一个三角形边长的1.5倍,那么它们的面积比是________。
三、简答题(每题5分,共10分)11. 解释为什么相似三角形的对应角相等。
12. 描述如何判断两个多边形是否相似。
四、计算题(每题10分,共20分)13. 已知三角形ABC与三角形DEF相似,且AB:DE = 2:3,求三角形ABC的面积与三角形DEF的面积之比。
14. 如果一个矩形的长是另一个矩形长的1.5倍,宽是另一个矩形宽的0.8倍,求这两个矩形的面积比。
五、论述题(每题15分,共15分)15. 论述相似图形在建筑设计中的应用及其重要性。
答案:一、选择题1. B2. A3. A4. D5. A二、填空题6. 2:37. 相似比8. 5:69. 相等10. 2.25:1三、简答题11. 相似三角形的对应角相等,因为相似三角形的定义就是它们的对应角相等,这是相似三角形的基本性质之一。
相似的单元测试题及答案

相似的单元测试题及答案一、选择题(本题共10分,每题1分)1. 下列哪个选项是相似三角形的定义?A. 面积相等的三角形B. 形状相同的三角形C. 边长成比例的三角形D. 角度相同的三角形2. 相似三角形的对应角相等,对应边成比例,这个性质称为:A. 相似性质B. 等角性质C. 比例性质D. 角度比例性质3. 如果两个三角形的对应边长比为2:3,那么它们的面积比是:A. 2:3B. 4:9C. 6:9D. 8:274. 在相似三角形中,如果一个角是30°,那么它的对应角也是:A. 30°B. 60°C. 90°D. 120°5. 相似三角形的判定定理中,SAS相似准则指的是:A. 两边及其夹角相等B. 三边对应成比例C. 两角对应相等D. 一边对应成比例,其余两边及其夹角相等二、填空题(本题共10分,每空1分)6. 相似三角形的判定定理包括AA准则、SAS准则和______准则。
7. 如果三角形ABC与三角形DEF相似,那么AB:DE=______,∠A=______。
8. 相似三角形的面积比等于它们对应边长的______。
9. 根据相似三角形的性质,如果三角形ABC与三角形DEF相似,且AB=2DE,则三角形ABC的面积是三角形DEF面积的______倍。
10. 在相似三角形中,如果∠BAC=45°,那么∠EDF=______。
三、简答题(本题共20分,每题5分)11. 解释什么是相似三角形,并给出两个相似三角形的例子。
12. 描述如何使用AA准则判定两个三角形是否相似。
13. 说明为什么相似三角形的面积比等于它们对应边长的平方比。
14. 如果一个三角形的边长扩大到原来的两倍,它的面积会如何变化?15. 给出一个实际生活中使用相似三角形性质的例子。
四、计算题(本题共30分,每题10分)16. 已知三角形ABC与三角形DEF相似,AB=6cm,DE=9cm,求BC:EF的比值。
第27章相似单元测试卷(A卷基础篇)(人教版)(解析版)

第27章相似单元测试卷(A卷基础篇)参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)(2019?婺城区模拟)若,则等于()A.B.C.4D.【分析】直接利用已知得出x=3y,进而化简得出答案.【解答】解:∵,∴x=3y,∴==4.故选:C.【点睛】此题主要考查了比例式,正确得出x=3y是解题关键.2.(3分)下列四条线段中,不能成比例的是()A.a=4,b=8,c=5,d=10B.a=2,b=2,c=,d=5C.a=1,b=2,c=3,d=4D.a=1,b=2,c=2,d=4【分析】根据比例线段的概念,让最小的和最大的相乘,另外两条相乘,看它们的积是否相等即可得出答案.【解答】解:A、4×10=5×8,能成比例;B、2×5=2×,能成比例;C、1×4≠2×3,不能成比例;D、1×4=2×2,能成比例.故选:C.【点睛】此题考查了比例线段,理解成比例线段的概念,注意在线段两两相乘的时候,要让最小的和最大的相乘,另外两条相乘,看它们的积是否相等进行判断.3.(3分)(2019?香坊区二模)如图,直线l1∥l2∥l3,直线AC分别交直线l1、l2、l3于点A、B、C,直线DF分别交直线l1、l2、l3于点D、E、F,直线AC、DF交于点P,则下列结论错误的是()A.=B.=C.=D.=【分析】根据平行线分线段成比例定理列出比例式,判断即可.【解答】解:∵l1∥l2∥l3,∴=,A正确,不符合题意;=,B正确,不符合题意;=,C错误,符合题意;==,∴=,D正确,不符合题意;故选:C.【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.4.(3分)(2019?雅安)如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与△A1B1C1相似的是()A.B.C.D.【分析】根据相似三角形的判定方法一一判断即可.【解答】解:因为△A1B1C1中有一个角是135°,选项中,有135°角的三角形只有B,且满足两边成比例夹角相等,故选:B.【点睛】本题考查相似三角形的性质,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.5.(3分)(2019?梧州一模)以原点O为位似中心,作△ABC的位似图形△A'B'C',△ABC与△A'B'C'相似比为1:3,若点C的坐标为(4,1),则点C′的坐标为()A.(12,3)B.(﹣12,3)或(12,﹣3)C.(﹣12,﹣3)D.(12,3)或(﹣12,﹣3)【分析】根据位似变换的性质计算即可.【解答】解:∵△ABC与△A'B'C'相似比为1:3,若点C的坐标为(4,1),∴点C′的坐标为(4×3,1×3)或(4×(﹣3),1×(﹣3)),∴点C′的坐标为(12,3)或(﹣12,﹣3),故选:D.【点睛】本题考查的是位似变换,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.6.(3分)(2019?邯郸模拟)如图,△OAB∽△OCD,OA:OC=3:2,∠A=α,∠C=β,△OAB与△OCD 的面积分别是S1和S2,△OAB与△OCD的周长分别是C1和C2,则下列等式一定成立的是()A.B.C.D.【分析】根据相似三角形的性质判断即可.【解答】解:∵△OAB∽△OCD,OA:OC=3:2,∠A=α,∠C=β,∴,A错误;∴,C错误;∴,D正确;不能得出,B错误;故选:D.【点睛】本题考查了相似三角形的性质,熟练掌握相似三角形的性质定理是解题的关键.7.(3分)(2018秋?苏州期末)我们把宽与长的比值等于黄金比例的矩形称为黄金矩形.如图,在黄金矩形ABCD(AB>BC)的边AB上取一点E,使得BE=BC,连接DE,则等于()A.B.C.D.【分析】设AB=a,根据黄金矩形的概念求出BC,结合图形计算,得到答案.【解答】解:设AB=a,∵矩形ABCD为黄金矩形,∴BC=a,∴AE=a﹣a=a,∴==,故选:B.【点睛】本题考查的是黄金分割、矩形的性质,掌握黄金比值为是解题的关键.8.(3分)(2019春?宿豫区期中)如图,在△ABC中,∠C=90°,∠A=30°,D是AC的中点,过点D 沿直线剪下一个与△ABC相似的小三角形纸板,则不同的剪法共有()A.1种B.2种C.3种D.4种【分析】根据相似三角形的判定方法分别利用平行线以及垂直平分线的性质得出对应角相等即可得出.【解答】解:如图所示:当DF∥BC时,△ADF∽△ACB;当DG∥AB时,△CDG∽△ABC;当DE⊥AB时,△ADE∽△ABC;故过点P的△ABC的相似线最多有3条.故选:C.【点睛】此题主要考查了相似三角形的性质,正确掌握相似三角形的性质定理作出辅助线是解题关键.9.(3分)(2018秋?嘉兴期末)如图,有一块三角形余料ABC,BC=120mm,高线AD=80mm,要把它加工成一个矩形零件,使矩形的一边在BC上,点P,M分别在AB,AC上,若满足PM:PQ=3:2,则PM的长为()A.60mm B.mm C.20mm D.mm【分析】利用相似三角形的性质构建方程即可解决问题.【解答】解:如图,设AD交PN于点K.∵PM:PQ=3:2,∴可以假设MP=3k,PQ=2k.∵四边形PQNM是矩形,∴PM∥BC,∴△APM∽△ABC,∵AD⊥BC,BC∥PM,∴AD⊥PN,∴=,解得k=20mm,∴PM=3k=60mm,故选:A.【点睛】本题考查相似三角形的应用,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.10.(3分)(2019?宣恩县一模)如图,菱形ABCD中,EF⊥AC于点H,分别交AD及CB的延长线交于点E、F,且AE:FB=1:2,则AH:HC的值为()A.B.C.D.【分析】易证△AGE是等腰三角形,从而可知EH=HG,再证明△AEG∽△BFG,△AEH∽△CFH,利用相似三角形的性质即可求出答案.【解答】解:设EF与AB交于点G,∵四边形ABCD是菱形,∴∠BAC=∠DAC,∵EF⊥AC,∴△AGE是等腰三角形,∴EH=HG,∵AD∥CF,∴△AEG∽△BFG,∴==,∴,∴,∵AD∥CF,∴△AEH∽△CFH,∴=,故选:B.【点睛】本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定,本题属于中等题型.二.填空题(共8小题,满分24分,每小题3分)11.(3分)(2018秋?宜兴市期末)如果═3且b+d+f=3,则a+c+e=9.【分析】根据比例的性质解答即可.【解答】解:由果═3可得:,因为b+d+f=3,所以a+c+e=9,故答案为:9【点睛】此题考查比例的性质,关键是根据比例的性质解答.12.(3分)(2018秋?秦淮区期末)如图,E、F是线段AB的两个黄金分割点,AB=1,则线段EF的长为﹣2.(结果保留根号)【分析】根据黄金比为分别求出AF、BE,结合图形计算,得到答案.【解答】解:∵E、F是线段AB的两个黄金分割点,∴AF=BE=AB=,∴EF=AF+BE﹣AB=﹣2,故答案为:﹣2.【点睛】本题考查的是黄金分割,掌握黄金比为是解题的关键.13.(3分)(2018秋?杨浦区期中)如图,在△ABC中,点E、D在边AC上,点F、M在边AB上,且AE =ED=DC,FE∥MD∥BC,如果FD的延长线交BC的延长线于N,那么的值为.【分析】首先证明EF:BC=1:3,再利用全等三角形的性质证明EF=CN即可解决问题.【解答】解:∵EF∥DM∥BC,AE=DE=CD,∴==,∵∠EDF=∠CDN,∠FED=∠NCD,ED=DC,∴△EFD≌△CND(AAS),∴EF=CN,∵CN:BC=1:3,∴CN:BN=1:4,∴=,故答案为.【点睛】本题考查平行线分线段成比例定理,全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.14.(3分)(2018秋?鼓楼区期末)如图,△ABC中,AB=6,AC=12,点D、E分别在AB、AC上,其中BD=x,AE=2x.当△ADE与△ABC相似时,x的值可能是x=1.2或x=3.【分析】分△ADE∽△ABC和△AED∽△ABC两种情况,依据相似三角形的性质求解,结合0<BD<6取舍即可得.【解答】解:∵AB=6,AC=12,BD=x,AE=2x,∴AD=6﹣x,AE=2x,若△ADE∽△ABC,则=,即=,解得x=3,若△AED∽△ABC,则=,即=,解得x=1.2;综上,x的值可能是0<x<6中的任意实数,故答案为:x=1.2或x=3.【点睛】本题主要考查相似三角形的判定,相似的基本图形可分别记为“A”型和“X”型,如图所示在应用时要善于从复杂的图形中抽象出这些基本图形.15.(3分)(2019?西藏)如图,在Rt△ABC中,∠ACB=90°,点D是边AB上的一点,CD⊥AB于D,AD=2,BD=6,则边AC的长为4.【分析】根据射影定理列式计算即可.【解答】解:由射影定理得,AC2=AD?AB=2×(2+6),解得,AC=4,故答案为:4.【点睛】本题考查的是射影定理,直角三角形中,每一条直角边是这条直角边在斜边上的射影和斜边的比例中项.16.(3分)(2018秋?密云区期末)小慧要测量校园内大树高AB.她运用物理课上学习的“光在反射时,入射角等于反射角”的知识解决了问题.如图,在水平地面上E点处放一面平面镜,镜子与大树的距离EA=8米.小慧沿着AE的方向走到C点时,她刚好能从镜子中看到大树的顶端B.已知CE=2米,小慧的眼睛距地面的高度DC=1.5米.则该棵大树的高度AB=6米.【分析】根据反射定律,∠1=∠2,又因为FE⊥EC,所以∠3=∠4,再根据垂直定义得到∠BAE=∠DCE,所以可得△BAE∽△DCE,再根据相似三角形的性质解答.【解答】解:根据题意可得:∠AEB=∠CED,∠BAE=∠DCE=90°,∴△ABE∽△CDE,∴=,∴,∴AB=6(米),故答案为:6.【点睛】本题考查相似三角形性质的应用.解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.17.(3分)(2019?丹阳市一模)如图,在△ABC中,AC>AB,点D在BC上,且BD=BA,∠ABC的平分线BE交AD于点E,点F是AC的中点,连结EF.若四边形DCFE和△BDE的面积都为3,则△ABC 的面积为10.【分析】依据BD=AB,BE是∠ABC的平分线,即可得到AE=DE,进而得出△BDE的面积与△ABE的面积均为3,再根据EF是△ACD的中位线,即可得出△ACD的面积为4,即可得到△ABC的面积为3+3+4=10.【解答】解:∵BD=AB,BE是∠ABC的平分线,∴AE=DE,∴△BDE的面积与△ABE的面积均为3,又∵点F是AC的中点,∴EF是△ACD的中位线,∴2EF=CD,EF∥DC,∴△AEF∽△ADC,∴S△ACD=4S△AEF,∵四边形CDEF的面积为3,∴△ACD的面积为4,∴△ABC的面积为3+3+4=10.故答案为:10.【点睛】本题主要考查了三角形中位线定理以及相似三角形的判定与性质,相似三角形的面积的比等于相似比的平方.18.(3分)(2019春?和平区校级月考)如图,点A在线段BD上,在BD的同侧做等腰Rt△ABC和等腰Rt△ADE,CD与BE、AE分别交于点P,M.对于下列结论:①△BAE∽△CAD;②MP?MD=MA?ME;③2CB2=CP?CM.其中正确的是①②③【分析】根据等腰直角三角形的性质得到=,∠BAC=45°,根据相似三角形的判定定理判断①;根据相似三角形的性质得到∠BEA=∠CDA,证明△PME∽△AMD,根据相似三角形的性质列出比例式,判断②,根据等腰直角三角形的性质、相似三角形的性质定理判断③.【解答】解:∵△ABC是等腰直角三角形,∴=,∠BAC=45°,同理,=,∠EAD=45°,∴=,∠BAE=∠CAD,∴△BAE∽△CAD,①正确;∵△BAE∽△CAD,∴∠BEA=∠CDA,又∠PME=∠AMD,∴△PME∽△AMD,∴=,∴MP?MD=MA?ME,②正确;∵∠BEA=∠CDA,∴P、E、D、A四点共圆,∴∠APM=∠AED=90°,∵∠BAC=∠EAD=45°,∴∠CAM=90°,∴△CAP∽△CMA,∴=,∴AC2=CP?CM,∵AC2=2CB2,∴2CB2=CP?CM,③正确,故答案为:①②③.【点睛】本题考查的是相似三角形的判定和性质、等腰直角三角形的性质,掌握相似三角形的判定定理和性质定理是解题的关键.三.解答题(共5小题,满分46分)19.(6分)(2018秋?长清区校级月考)已知,(1)求的值;(2)若x﹣2y+4z=24,求x+y+z的值.【分析】设=k,于是得到x=2k,y=3k,z=4k,代入代数式即可得到结论.【解答】解:∵,∴设=k,∴x=2k,y=3k,z=4k,∴(1)==;(2)∵x﹣2y+4z=24,∴2k﹣6k+16k=24,∴k=2,∴x+y+z=2k+3k+4k=9k=18.【点睛】本题考查了比例的性质,熟练掌握比例的性质是解题的关键.20.(8分)(2019?庐阳区二模)如图,在平面直角坐标系中,△ABC的三个顶点分别为A(﹣1,﹣2),B (﹣2,﹣4),C(﹣4,﹣1).(1)把△ABC向上平移3个单位后得到△A1B1C1,请画出△A1B1C1并写出点B1的坐标;(2)已知点P(﹣1,0),在方格纸内部做△A2B2C2,使得△A1B1C1与△A2B2C2关于点P位似,且位似比为1:2.【分析】(1)直击雷雨平移的性质得出对应点位置进而得出答案;(2)直接利用位似图形的性质得出对应点位置进而得出答案.【解答】(1)如图:△A1B1C1,即为所求,B1(﹣2,﹣1);(2)如图:△A2B2C2,即为所求.【点睛】此题主要考查了位似变换以及平移变换,正确得出对应点位置是解题关键.21.(10分)(2018秋?宜宾县期中)已知如图所示,AF⊥BC,CE⊥AB,垂足分别是F、E,试证明:(1)△BAF∽△BCE.(2)△BEF∽△BCA.【分析】(1)根据两角对应相等的两个三角形相似即可判断;(2)根据两边成比例夹角相等的两个三角形相似即可证明;【解答】解:(1)∵AF⊥BC,CE⊥AB,∴∠AFB=∠CEB=90°,∵∠B=∠B,∴△BAF∽△BCE.(2)∵△BAF∽△BCE,∴=,∴=,∵∠B=∠B,∴△BEF∽△BCA.【点睛】本题考查相似三角形的判定和性质,解题的关键是熟练掌握相似三角形的判定和性质,属于中考常考题型.22.(10分)(2019?荆门)如图,为了测量一栋楼的高度OE,小明同学先在操场上A处放一面镜子,向后退到B处,恰好在镜子中看到楼的顶部E;再将镜子放到C处,然后后退到D处,恰好再次在镜子中看到楼的顶部E(O,A,B,C,D在同一条直线上),测得AC=2m,BD=2.1m,如果小明眼睛距地面髙度BF,DG为1.6m,试确定楼的高度OE.【分析】设E关于O的对称点为M,由光的反射定律知,延长GC、FA相交于点M,连接GF并延长交OE于点H,根据GF∥AC得到△MAC∽△MFG,利用相似三角形的对应边的比相等列式计算即可.【解答】解:设E关于O的对称点为M,由光的反射定律知,延长GC、FA相交于点M,连接GF并延长交OE于点H,∵GF∥AC,∴△MAC∽△MFG,∴,即:,∴,∴OE=32,答:楼的高度OE为32米.【点睛】本题考查了相似三角形的应用.应用镜面反射的基本性质,得出三角形相似,再运用相似三角形对应边成比例即可解答.23.(12分)(2019?新泰市二模)如图,在△ABC中,AD平分∠BAC交BC于点D,F为AD上一点,且BF=BD.BF的延长线交AC于点E.(1)求证:AB?AD=AF?AC;(2)若∠BAC=60°.AB=4,AC=6,求DF的长;(3)若∠BAC=60°,∠ACB=45°,直接写出的值.【分析】(1)证△AFB∽△ADC即可(2)作BH⊥AD于H,作CN⊥AD于N,则BH=AB=2,CN=AC=3,再证△BHD∽△CND即可(3)易证△ABD,△AEF,△BFD均为顶角为30°的等腰三角形,即可根据△ABD∽△AEF和(1)中△AFB∽△ADC得==,即可求.【解答】解:(1)∵AD平分∠BAC∴∠BAF=∠DAC又∵BF=BD∴∠BFD=∠FDB∴∠AFB=∠ADC∴△AFB∽△ADC∴.∴AB?AD=AF?AC(2)作BH⊥AD于H,作CN⊥AD于N,则BH=AB=2,CN=AC=3∴AH=BH=2,AN=CN=3∴HN=∵∠BHD=∠CDN∴△BHD∽△CND∴∴HD=又∵BF=BD,BH⊥DF∴DF=2HD=(3)由(1)得①,易证△ABD,△AEF,△BFD均为顶角为30°的等腰三角形∴AH=AD,AE=AF,BF=BD易证△ABD∽△AEF∴②∴①×②得==,过F作FG⊥AB于G,设FG=x,则AF=2x,BF=x,AG=x,BG=x∴AB=(+1)x,∴==4﹣2【点睛】此题主要考查相似三角形的性质,含30°角的直角三角形.灵活运用相似三角形的边的比例关系是解题的关键.。
《相似》单元测试题及参考答案(精编)

《相似》单元测试题及参考答案(精编)一、选择题1.如图,点P 是AB 的黄金分割点,即P 点满足BP AP =AP AB ,若AB=2,则AP 的长为( )A.√5-1B.√5+1C.√5+2D.0.618 2.若3a=4b(ab ≠0),则下列比例式正确的是( )A.a 3=b 4B.4a =3bC.a b =34D.a 3=4b3.如图,已知AB//CD//EF,BD:DF =1:2,那么下列结论中,正确的是( )A.AC:AE=1:3B.CE:EA=1:3C.CD:EF=1:2D.AB:EF=1:2 第3题 第4题 第5题 第6题4.如图,在△ABC 中,如果DE 与BC 不平行,那么下列条件中,不能判断△ADE ∽△ACB 的是 ( )A.∠ADE=∠CB.∠AED=∠BC.AD AB =DE BCD.AD AC =AEAB5.如图,在Rt △ABC 中,∠BAC=90°,AD ⊥BC 于点D.若AC=3,AB=4,则BD 的长为( )A.125B.165C.203D.154 6.如图,在梯形ABCD 中,AD//BC,对角线AC,BD 相交于点O.若AD=1,BC=3,则AOCO 的值为( )A.12B.13C.14D.19 第7题 第8题 第9题 第10题7.如图,⊙O 是△ABC 的外接圆,AD 平分∠BAC 交⊙O 于点D,交边BC 于点E,连接BD.若AD=5,BD=2,则DE 的长为( )A.35B.425C.225D.45 8.如图,已知在△ABC 中,点D,E,F 分别是边AB,AC,BC 上的点,DE//BC, EF//AB,且AD:DB=3:5,那么CF:CB 等于( )A.5:8B.3:8C.3:5D.2:59.如图,△ABC ∽△ADE,且BC=2DE,则S 四边形BEDC :S △ABC 的值为( )A.1:4B.3:4C.2:3D.1: 210.如图,D,E 分别是△ABC 的边AB,BC 上的点,DE//AC,AE,CD 相交于点O,若S △DOE :S △COA =1:25,则S △BDE 与S △CDE 的比是( )A.1.3B.1:4C.1.5D.1:2511.已知△ABC ∽△DEF,其对应中线的比为1:3,若△ABC 的周长为3,则△DEF 的周长为( )A.1B.3C.9D.2712.如图,在平行四边形ABCD 中,F 为BC 的中点,延长AD 至点E,使DE:AD=1:3,连接 EF 交DC 于点G,则S △DEG :S △CFG 等于( )A. 2:3B.3:2C.9:4D.4:9第12题 第13题 第14题 第15题13.如图,在△ABC 中,DE//BC,过点A 作AM ⊥BC 于点M,交DE 于点N.若S △ADE :S △ABC =4:9,则AN 与NM 的长度比是( )A.4:9B.3:2C.9:4D.2:114.如图,在△ABC 中,点D,E 分别在AB 和AC 上,DE//BC,M 为BC 边上一点,连接AM 交DE 于点N,若DN NE =13,DN BM =23,则下列选项不成立的是( )A.S △AD NS △AD E =14 B.BM MC =13 C.S △ANE <S 四边形DBMN D.S 四边形DBMN S 四边形NMCE =1315.如图,点E,F,M 在矩形ABCD 的边上,四边形EFMN 是正方形,B,M,N 三点共线.若AB=3,AD=7,则BN MN 的值为()A.2B.178C.√5+12 D.158二、填空题16.若nm =23,则m−nm=____.17.线段a,b,c,d是成比例线段a=9cm,b=6cm,c=3cm,则d的长为____cm.18.如图,利用标杆BE测量建筑物的高度.若标杆BE的高为1.2m,测AB=1.6m,BC=12.4m,则楼高CD为____m.第 18题第19题第20题第21题19.小孔成像的示意图如图所示,光线经过小孔O,物体AB在幕布上形成倒立的实像CD(点A,B的对应点分别是C,D).若物体AB的高度为6cm,实像CD的高度为3cm,则小孔O到BC的距离OE为______cm.20.如图,学生用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上,已知纸板的两条直角边DE=60cm,EF=30cm,测得边DF离地面的高度AC=1.5m,CD=10m,则树高AB___m.21.如图,△ABC是一块锐角三角形的材料,边BC=60mm,高AD=40mm,要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是_____mm.22.如图,已知△ABC和△DEF为位似图形,点O是位似中心,且△ABC和△DEF的周长之比是4:3,则下列结论:①AB//ED②BOOD =43③△AOC∽△DOF④S△A BC S△DEF =2√33.其中错误的是_____(填序号).三、解答题23.如图,O是△ABC外的一点,分别在射线OA,OB,OC上取点A',B',C’,使O A′OA =O B′OB=O C’OC=3,连接A'B’,B'C’,C'A',判断△A'B'C’与△ABC是否相似,并说明理由.24.如图,在△ABC中,AD平分∠BAC,E是AB边上一点,CE交AD于点F,且CF=CD.(1)求证:△ACE∽△ABC;(2)若EF=2,BD=4,求AB的值.AC25.如图,⊙O是△ABC的外接圆,点O在BC上,∠BAC的平分线交⊙O于点D,连接BD,CD,过点D作BC的平行线与AC的延长线相交于点P.(1)求证:PD是⊙O的切线;(2)求证:△ABD∽△DCP;(3)若AB=6,AC=8,求点O到AD的距离.26(1)问题:如图①,在四边形ABCD中,点P为AB上一点,∠DPC=∠A=∠B=90°,求证:AD·BC=AP·BP; (2)探究:如图②,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=θ时,上述结是否依然成立?请说明理由;(3)应用:请利用(1)(2)获得的经验解决问题:如图③,在△ABD中,AB=6,AD=BD=5.点P以每秒1个单位长度的速度,由点A出发,沿边AB向点B运动,且满足∠DPC=∠A.设点P的运动时间为t(秒),当以点D为圆心,以DC长为半径的圆与AB相切时,求t的值.参考答案一、选择题1-5 ABACB 6-10 BDABB 11-15 CDDCA二、填空题16.1317. 218. 10.519. 220. 6.521. 2422.②④三、解答题23.略24(1)略(2)√225(1)略(2)略(3)√2226(1)略(2)略(3)1s或5s。
第23章 图形的相似单元测试卷(基础卷)(解析版)

1第23章图形的相似单元测试卷(基础卷)学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列四条线段中,不能成比例的是( )A .a=3)b=6)c=2)d=4B .a=1)b= 263C .a=4)b=6)c=5)d=10D .a=2)b= 5153【答案】C【解析】试题解析:∵3264=,故选项A 中的线段成比例; 22=6223=B 中的线段成比例;∵46510=,故选项C 中的线段不成比例; 2555=2325515=,故选项D 中的线段成比例;故选C)2.下列说法正确的是( )A .矩形都是相似图形;B .菱形都是相似图形C .各边对应成比例的多边形是相似多边形;D .等边三角形都是相似三角形【答案】D【解析】试题分析:根据相似多边形的判定法则可以得出所有的等边三角形都是相似三角形.2考点:相似多边形的判定3.点P 是线段AB 的黄金分割点,且AP PB >,下列命题:()()()()2221AB AP PB 2AP PB AB 3BP AP AB 4AP:AB PB:AP =⋅=⋅=⋅=,中正确的有( ) A .1个B .2个C .3个D .4个 【答案】B【解析】【分析】把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值512叫做黄金比. 【详解】∵点P 是线段AB 的黄金分割点,且AP)PB)∴根据线段黄金分割的定义得:AP 2)PB•AB)AP)AB)PB)AP)∴只有②④正确.故选B)【点睛】本题主要考查了理解黄金分割的概念,找出黄金分割中成比例的对应线段是解决问题的关键.本题同时考查了乘积形式和比例形式的转化,难度适中.4.如图,下列条件使△ACD ∽△ABC 成立的是) )3A .AC AB CD BC = B .CD BC AD AC = C .AC 2)AD·AB D .CD 2)AD·BD【答案】C【解析】试题分析:本题主要考查的就是三角形相似的判定,本题根据有一个角相等,且对应角的两边对应成比例,则两个三角形相似可以得出答案.根据题意可得∠A 为公共角,则要使三角形相似则必须满足AC AB =AD AC. 点晴:本题主要考查的就是三角形相似的判定定理,在有一个角相等的情况下,必须是角的两边对应成比例,如果不是角的两边对应成比例,则这两个三角形不相似;相似还可以利用有两个角对应相等的两个三角形全等.5.如图,在平面直角坐标系中,已知点A (―3,6)、B (―9,一3),以原点O 为位似中心,相似比为,把∠ABO 缩小,则点A 的对应点A′的坐标是( )A .(―1,2)B .(―9,18)C .(―9,18)或(9,―18)4D .(―1,2)或(1,―2)【答案】D【解析】【分析】【详解】试题分析:方法一:))ABO 和)A′B′O 关于原点位似,)) ABO))A′B′O 且OA'OA =13 .)A E AD=0E 0D =13.)A′E =13AD =2,OE =13OD =1.)A′(-1,2).同理可得A′′(1,―2). 方法二:)点A (―3,6)且相似比为13,)点A 的对应点A′的坐标是(―3×13,6×13),)A′(-1,2). )点A′′和点A′(-1,2)关于原点O 对称,)A′′(1,―2).故答案选D.考点:位似变换.6.如图,在△ABC 中,AB =6,AC =10,点D ,E ,F 分别是AB ,BC ,AC 的中点,则四边形ADEF 的周长为().5A .16B .12C .10D .8【答案】A【解析】【分析】 根据三角形的中位线定理,判断出四边形ADEF 平行四边形,根据平行四边形的性质求出ADEF 的周长即可.【详解】解:∵点D ,E ,F 分别是AB ,BC ,AC 的中点,∴DE ∥AC ,EF ∥AB ,DE=12AC=5,EF=12AB=3, ∴四边形ADEF 是平行四边形,∴AD=EF ,DE=AF ,∴四边形ADEF 的周长为2(DE+EF )=16,故选A .【点睛】本题考查了三角形中位线定理,利用中位线定理判断出四边形ADEF 为平行四边形是解题的关键. 7.课间操时,小华、小军和小刚的位置如图所示,如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,那么小刚的位置可以表示为( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)【答案】D【解析】【分析】根据已知两点的坐标确定平面直角坐标系,然后确定其它各点的坐标即可解答.【详解】如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,如图所示就是以小华为原点的平面直角坐标系的第一象限,所以小刚的位置为(4,3).故选D.67【点睛】本题利用平面直角坐标系表示点的位置,关键是由已知条件正确确定坐标轴的位置.8.如图,锐角△ABC 的高CD 和BE 相交于点O ,图中与△ODB 相似的三角形有( )A .1个B .2个C .3个D .4个【答案】C【解析】试题解析:∵∠BDO =∠BEA =90°)∠DBO =∠EBA )∴△BDO ∽△BEA )∵∠BOD =∠COE )∠BDO =∠CEO =90°)∴△BDO ∽△CEO )∵∠CEO =∠CDA =90°)∠ECO =∠DCA )∴△CEO ∽△CDA )∴△BDO ∽△BEA ∽△CEO ∽△CDA )故选C)89.如图,已知DAB CAE ∠=∠,那么添加下列一个条件后,仍然无法判定....A ABC DE ∽△△的是( )A .AB BC AD DE = B .AB AC AD AE = C .B D ∠∠= D .C AED ∠=∠【答案】A【解析】【分析】先根据∠DAB =∠CAE 得出∠DAE =∠BAC ,再由相似三角形的判定定理对各选项进行逐一判定即可.【详解】∵∠DAB =∠CAE ,∴∠DAE =∠BAC .A .∵AB BC AD DE=,∠B 与∠D 的大小无法判定,∴无法判定△ABC ∽△ADE ,故本选项正确; B .∵AB AC AD AE =,∴△ABC ∽△ADE ,故本选项错误; C .∵∠B =∠D ,∴△ABC ∽△ADE ,故本选项错误;D .∵∠C =∠AED ,∴△ABC ∽△ADE ,故本选项错误.故选A .【点睛】本题考查了相似三角形的判定,熟知相似三角形的判定定理是解答此题的关键.10.如图,在)ABC 中,点D 是AB 边上的一点,若)ACD=)B)AD=1)AC=2))ACD 的面积为1,则)ABC9 的面积为( )A .1B .2C .3D .4【答案】D【解析】【分析】由∠ACD=∠B 结合公共角∠A=∠A ,即可证出△ACD ∽△ABC ,根据相似三角形的性质可得出214ACD ABC S AD S AC ⎛⎫== ⎪⎝⎭, 结合△ADC的面积为1,即可求出△ABC 的面积.【详解】 ∵∠ACD=∠B)∠A=∠A)∴△ACD ∽△ABC)214ACD ABC S AD S AC ⎛⎫∴== ⎪⎝⎭,∴S △ABC =4)故选D)【点睛】考查相似三角形的判定与性质,掌握相似三角形的判定方法是解题的关键.11.如图,若D 、E 分别为△ABC 中AB 、AC边上的点,且∠AED=∠B,AD=3,AC=6,DB=5,则AE 的长度为()10A.94 B .52 C .185 D .4【答案】D【解析】【分析】根据相似三角形的判定首先证出△ADE ))ACB ,然后根据相似三角形的性质得出AE AB =AD AC ,从而求出AE 的长度.【详解】解:∵∠A =)A ))AED =)B )))ADE ))ACB ))AE AB =AD AC) 又∵AD =3)AC =6)DB =5))AB =AD +DB =8))AE =8×3÷6=4)故选D)【点睛】本题主要考查了相似三角形的判定及性质.有两角对应相等的两个三角形相似.相似三角形的三边对应成比例.12.如图,在▱ABCD 中,AC )BD 相交于点O ,点E 是OA 的中点,连接BE 并延长交AD 于点F ,已知S △AEF =4,11则下列结论:①12AFFD =)②S △BCE =36)③S △ABE =12)④△AEF )△ACD ,其中一定正确的是( )A .①②③④B .①④C .②③④D .①②③【答案】D【解析】【详解】∵在▱ABCD 中,AO =12AC )∵点E 是OA 的中点,∴AE =13CE )∵AD ∥BC ) ∴△AFE ∽△CBE ) ∴AFAE BC CE ==13)∵AD =BC )∴AF =13AD )∴12AFFD =;故①正确;∵S △AEF =4) AEF BCE SS =)AF BC)2=19)12 ∴S △BCE =36;故②正确;∵EF AEBE CE = =13) ∴AEF ABE S S =13)∴S △ABE =12,故③正确;∵BF 不平行于CD )∴△AEF 与△ADC 只有一个角相等,∴△AEF 与△ACD 不一定相似,故④错误,故选D)二、填空题13.若34y x =,则x yx +=______【答案】74【解析】【分析】可设x=4k ,根据已知条件得到y=3k ,再代入计算即可得到正确结论.【详解】解:∵ 34yx =, ∴y=3k ,x=4k ; 代入x yx +=4k 3k 7=4k 4+故答案为7413【点睛】本题考查了比例的性质的应用,主要考查学生的计算能力,题目比较好,难度不大.14.已知△ABC ∽△DEF ,若△ABC 与△DEF 的相似比为2)3,则△ABC 与△DEF 对应边上的中线的比为________)【答案】2)3【解析】试题分析:根据相似三角形对应边上的中线之比等于相似比可得:∠ABC 与∠DEF 对应边上的中线的比为2:3. 考点:相似三角形的应用.15.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O )20米的A 处,则小明的影子AM 长为 米.【答案】5. 【解析】根据题意,易得∠MBA∠∠MCO ,根据相似三角形的性质可知AB AM OC OA AM =+,即1.6AM 820AM=+,解得AM=5. ∠小明的影长为5米.16.如图,正∠ABC 的边长为2,以BC 边上的高1AB 为边作正11AB C ∆,∠ABC 与11AB C ∆公共部分的面积记为1S ;再以正11AB C ∆边11B C 上的高2AB 为边作22AB C ∆,11AB C ∆与22AB C ∆公共部分的面积记为14 2S ;......,以此类推,则n S = .(用含n 的式子表示). 33)4n【解析】【分析】【详解】因为)ABC 是边长为2的等边三角形,1AB 是高,所以1AB 31112111333(3)22A B C S S ∆=== 同理:2332AB ==,22222113393()224232A B C S S ∆==⨯=......32()n n AB =⨯,11121133332()()224n n n n n n A B C S S ---∆⎡⎤==⨯⨯⨯=⎢⎥⎣⎦.三、解答题1517.如图,在平面直角坐标系中,△ABC 的顶点坐标分别为A (-2,4),B (4,4),C(6,0).(1)△ABC 的面积是 .(2)请以原点O 为位似中心,画出△A'B'C',使它与△ABC 的相似比为1:2,变换后点A 、B 的对应点分别为点A'、B',点B'在第一象限;(3)若P (a,b)为线段BC 上的任一点,则变换后点P 的对应点P' 的坐标为 .【答案】(1)12;(2)作图见详解;(3)11(,)22a b . 【解析】【分析】 (1)先以AB 为底,计算三角形的高,利用面积公式即可求出△ABC 的面积;(2)根据题意利用位似中心相关方法,画出△A'B'C',使它与△ABC 的相似比为1:2即可;(3)根据(2)的作图,利用相似比为1:2,直接观察即可得到答案.【详解】解:(1)由△ABC 的顶点坐标分别为A (-2,4),B (4,4),C(6,0),可知底AB=6,高为4,所以△ABC 的面积为12;16(2);(3)根据相似比为1:2,可知P 11(,)22a b . 【点睛】 本题主要考查作图-位似变换,解题的关键是掌握位似变换的定义和性质,并据此得出变换后的对应点. 18.如图,在△ABC 中,AB=AC ,点P)D 分别是BC)AC 边上的点,且∠APD=∠B,)1)求证:AC•CD=CP•BP))2)若AB=10)BC=12,当PD ∥AB 时,求BP 的长.【答案】(1)证明见解析;(2)253. 【解析】)2)易证∠APD=∠B=∠C ,从而可证到△ABP ∽△PCD ,即可得到BP AB CD CP,即AB•CD=CP•BP ,由AB=AC 即可得到AC•CD=CP•BP) )2)由PD ∥AB 可得∠APD=∠BAP ,即可得到∠BAP=∠C ,从而可证到△BAP ∽△BCA ,然后运用相似三角形的性质即可求出BP 的长.解:(1)∵AB=AC)∴∠B=∠C)∵∠APD=∠B)∴∠APD=∠B=∠C)17∵∠APC=∠BAP+∠B)∠APC=∠APD+∠DPC)∴∠BAP=∠DPC) ∴△ABP ∽△PCD)∴BP AB CD CP=) ∴AB•CD=CP•BP)∵AB=AC)∴AC•CD=CP•BP))2)∵PD ∥AB)∴∠APD=∠BAP)∵∠APD=∠C)∴∠BAP=∠C)∵∠B=∠B) ∴△BAP ∽△BCA)∴BA BP BC BA =) ∵AB=10)BC=12)∴101210BP =) ∴BP=253) “点睛”本题主要考查了相似三角形的判定与性质、等腰三角形的性质、平行线的性质、三角形外角的性质等知识,把证明AC•CD=CP•BP 转化为证明AB•CD=CP•BP 是解决第(1)小题的关键,证到∠BAP=∠C 进而得到△BAP ∽△BCA 是解决第(2)小题的关键.19.如图,△ABC 中,AB =8厘米,AC =16厘米,点P 从A 出发,以每秒2厘米的速度向B 运动,点Q 从C18同时出发,以每秒3厘米的速度向A 运动,其中一个动点到端点时,另一个动点也相应停止运动,设运动的时间为t )⑴用含t 的代数式表示:AP = )AQ = )⑵当以A )P )Q 为顶点的三角形与△ABC 相似时,求运动时间是多少?【答案】)1)AP=2t)AQ=16)3t))2)运动时间为167秒或4秒. 【解析】【分析】)1)根据路程=速度⨯时间,即可表示出AP)AQ 的长度.)2)此题应分两种情况讨论.(1)当△APQ ∽△ABC 时;(2)当△APQ ∽△ACB 时.利用相似三角形的性质求解即可.【详解】)1)AP=2t)AQ=16)3t) )2)∵∠PAQ=∠BAC)∴当AP AQ AB AC =时,△APQ ∽△ABC ,即2163816t t -=,解得167t =; 当AP AQ AC AB =时,△APQ ∽△ACB ,即2163168t t -=,解得t=4)∴运动时间为167秒或4秒.19【点睛】考查相似三角形的判定与性质,掌握相似三角形的判定定理与性质定理是解题的关键.注意不要漏解. 20.如图,O 为正方形ABCD 对角线的交点,E 为AB 边上一点,F 为BC 边上一点,△EBF 的周长等于BC 的长.)1)若AB=12)BE=3,求EF 的长;)2)求∠EOF 的度数;)3)若5OF ,求AE CF的值.【答案】(1)EF =5))2))EOF=45°))3)54AE CF =) 【解析】【分析】)1)设BF=x ,则FC=12-x ,根据△EBF 的周长等于BC 的长得出EF=9-x)Rt)BEF 中利用勾股定理求出x 的值即可得;)2)在FC 上截取FM=FE ,连接OM .首先证明∠EOM=90°,再证明△OFE))OFM)SSS )即可解决问题;)3)证明∠FOC=)AEO ,结合∠EAO=)OCF=45°可证△AOE))CFO 得5OE AE AO OF CO CF ===,推出55,由AO=CO ,可得5554CF)进20 而求解)【详解】(1)设BF=x ,则FC=BC ﹣BF=12﹣x ,∠BE=3,且BE +BF+EF=BC ,∠EF=9﹣x ,在Rt ∠BEF 中,由BE 2+BF 2=EF 2可得32+x 2=(9﹣x )2, 解得:x=4,则EF=9﹣x=5;(2)如图,在FC 上截取FM=FE ,连接OM ,∠C △EBF 的周长=BE+EF+BF=BC ,则BE +EF+BF=BF+FM+MC , ∠BE=MC ,∠O 为正方形中心,∠OB=OC ,∠OBE=∠OCM=45°,在∠OBE 和∠OCM 中,∠OB OCOBE OCM BE CM=⎧⎪∠=∠⎨⎪=⎩,21 ∠∠OBE∠∠OCM ,∠∠EOB=∠MOC ,OE=OM ,∠∠EOB+∠BOM=∠MOC+∠BOM ,即∠EOM=∠BOC=90°,在∠OFE 与∠OFM 中,∠OE OMOF OF EF MF=⎧⎪=⎨⎪=⎩, ∠∠OFE∠∠OFM (SSS ), ∠∠EOF=∠MOF=12∠EO M=45°.(3)证明:由(2)可知:∠EOF=45°,∠∠AOE+∠FOC=135°,∠∠EAO=45°,∠∠AOE+∠AEO=135°,∠∠FOC=∠AEO ,∠∠EAO=∠OCF=45°,∠∠AOE∠∠CFO .∠52OEAE AO OF CO CF ===,5,5,∠AO=CO ,225554CF , ∠AE CF =54. 【点睛】本题考查了正方形的性质、全等三角形的判定和性质、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形或相似三角形解决问题) 21.(问题情境)如图1)Rt ABC 中,90ACB ∠=)CD AB ⊥,我们可以利用ABC 与ACD 相似证明2AC AD AB =⋅,这个结论我们称之为射影定理,试证明这个定理;(结论运用)如图2,正方形ABCD 的边长为6,点O 是对角线AC )BD 的交点,点E 在CD 上,过点C 作CF BE ⊥,垂足为F ,连接OF ))1)试利用射影定理证明BOF BED ∽))2)若2DE CE =,求OF 的长.【答案】问题情境:证明见解析;结论运用:()1证明见解析;(2)655) 【解析】【分析】问题情境:通过证明Rt △ACD ∽Rt △ABC 得到AC )AB =AD )AC )然后利用比例性质即可得到AC 2=AD•AB ) 结论运用:23(1)根据射影定理得BC 2=BO •BD )BC 2=BF •BE )则BO •BD =BF •BE )即BO BE =BF BD)加上∠OBF =∠EBD )于是可根据相似三角形的判定得到△BOF ∽△BED ) )2)先计算出DE =4)CE =2)BE 10)OB 2)再利用(1)中结论△BOF ∽△BED 得到OF DE =BO BE )即4OF 32210)然后利用比例性质求OF )【详解】解:如图1)∵CD ⊥AB )∴∠ADC =90°)而∠CAD =∠BAC )∴Rt △ACD ∽Rt △ABC )∴AC )AB =AD )AC )∴AC 2=AD •AB ))1)如图2)∵四边形ABCD 为正方形)∴OC ⊥BO )∠BCD =90°)∴BC 2=BO •BD )∵CF ⊥BE )∴BC 2=BF •BE )∴BO •BD =BF •BE )即BOBE =BFBD )而∠OBF =∠EBD )∴△BOF ∽△BED )24)2)∵BC =CD =6)而DE =CE )∴DE =4)CE =2)在Rt △BCE 中)BE 2226+10.在Rt △OBC 中)OB =22BC 2) ∵△BOF ∽△BED )∴OF DE =BO BE )即4OF 32210) ∴OF =55)【点睛】本题考查了射影定理)直角三角形中)斜边上的高是两直角边在斜边上射影的比例中项)每一条直角边是这条直角边在斜边上的射影和斜边的比例中项.也考查了相似三角形的判定与性质和正方形的性质) 22.如图, AM 是 ABC ∆ 的中线, D 是线段 AM 上一点(不与点 A 重合). //DE AB 交 AC 于点 F , //CE AM,连结 AE .25(1)如图1,当点D 与M 重合时,求证:四边形ABDE 是平行四边形(2)如图2,当点D 不与M 重合时,(1)中的结论还成立吗?请说明理由.(3)如图3,延长BD 交AC 于点H ,若BH AC ⊥,且BH AM =.①求CAM ∠的度数;②当3FH =4DM =时,求 DH 的长.【答案】(1)证明见解析(2)成立,理由见解析;(35【解析】试题分析:(1)只要证明AE=BM)AE ∥BM 即可解决问题;)2)成立.如图2中,过点M 作MG ∥DE 交CE 于G .由四边形DMGE 是平行四边形,推出ED=GM ,且ED ∥GM ,由(1)可知AB=GM)AB ∥GM ,可知AB ∥DE)AB=DE ,即可推出四边形ABDE 是平行四边形;)3)①如图3中,取线段HC 的中点I ,连接MI ,只要证明MI=12AM)MI ⊥AC ,即可解决问题; ②设DH=x ,则3,推出AM=4+2x)BH=4+2x ,由四边形ABDE 是平行四边形,推出DF ∥AB ,推出HF HD HA HB =3423x x x=+,解方程即可;试题解析:(1)证明:如图1中,26∵DE ∥AB)∴∠EDC=∠ABM)∵CE ∥AM)∴∠ECD=∠ADB)∵AM 是△ABC 的中线,且D 与M 重合, ∴BD=DC)∴△ABD ≌△EDC)∴AB=ED)∵AB ∥ED)∴四边形ABDE 是平行四边形. )2)结论:成立.理由如下:如图2中,过点M 作MG∥DE 交CE 于G)27 ∴四边形DMGE 是平行四边形, ∴ED=GM ,且ED ∥GM)由(1)可知AB=GM)AB ∥GM) ∴AB ∥DE)AB=DE)∴四边形ABDE 是平行四边形. )3)①如图3中,取线段HC 的中点I ,连接MI)∵BM=MC)∴MI 是△BHC 的中位线,∴∥BH)MI=12BH)∵BH ⊥AC ,且BH=AM)∴MI=12AM)MI ⊥AC)∴∠CAM=30°)②设DH=x ,则3∴BH=4+2x)∵四边形ABDE是平行四边形,∴DF∥AB)∴HF HDHA HB=)3423xxx=+)解得515,∴528。
相似的单元测试题及答案

相似的单元测试题及答案一、选择题(每题2分,共20分)1. 下列哪个选项是“相似”的英文表达?A. SimilarB. DifferentC. SameD. Like2. 在数学中,相似图形指的是什么?A. 面积相同的图形B. 形状相同但大小不同的图形C. 周长相等的图形D. 边长相同的图形3. 以下哪个选项不是相似图形的特点?A. 对应角相等B. 对应边成比例C. 面积相等D. 形状相同4. 相似比是相似图形对应边的什么?A. 差B. 积C. 比D. 和5. 相似三角形的判定定理中,以下哪个是错误的?A. 两角对应相等B. 三边对应成比例C. 两边对应成比例,夹角相等D. 一边对应成比例,其余两边不相等二、填空题(每题2分,共20分)6. 相似图形的面积比等于相似比的________次方。
7. 如果两个三角形的相似比为2:3,那么它们的面积比为________。
8. 相似图形的周长比等于它们的________。
9. 在相似三角形中,对应高的长度比等于________。
10. 根据相似三角形的判定定理,如果两个三角形的两组角分别相等,那么这两个三角形是________的。
三、简答题(每题10分,共30分)11. 简述相似三角形的性质。
12. 举例说明如何判断两个图形是否相似。
13. 解释相似比的概念及其在实际问题中的应用。
四、计算题(每题15分,共30分)14. 已知三角形ABC与三角形DEF相似,且AB:DE = 2:3,求三角形ABC与三角形DEF的面积比。
15. 若三角形ABC的周长为24cm,三角形DEF的周长为36cm,且三角形ABC与三角形DEF相似,求三角形ABC的边长。
答案一、选择题1. A2. B3. C4. C5. D二、填空题6. 二7. 4:98. 相似比9. 相似比10. 相似三、简答题11. 相似三角形的性质包括:对应角相等,对应边成比例,对应高的长度比等于相似比,周长比等于相似比,面积比等于相似比的平方。
相似测试题及答案

相似测试题及答案一、选择题1. 下列哪项不是相似图形的特征?A. 形状相同B. 面积相等C. 边长成比例D. 角度相同答案:B2. 如果两个图形相似,那么它们的对应角:A. 相等B. 不相等C. 可能相等也可能不相等D. 无法确定答案:A二、填空题1. 相似图形的对应边的比值叫做________。
答案:相似比2. 两个相似多边形的面积比等于它们的相似比的________。
答案:平方三、判断题1. 两个图形相似,它们的周长比等于它们的相似比。
()答案:√2. 如果两个图形的对应边长比为2:3,那么它们的面积比为4:9。
()答案:√四、简答题1. 请简述相似图形的定义。
答案:相似图形是指两个图形的对应角相等,对应边的比值相等的图形。
2. 相似图形的性质有哪些?答案:相似图形的性质包括:对应角相等,对应边的比值相等,面积比等于相似比的平方,周长比等于相似比。
五、计算题1. 若两个相似三角形的相似比为3:4,求它们的面积比。
答案:面积比为9:16。
2. 已知一个三角形的边长为3, 4, 5,另一个相似三角形的边长为6, 8, 10,求这两个三角形的面积比。
答案:面积比为1:4。
六、论述题1. 论述相似图形在实际生活中的应用。
答案:相似图形在实际生活中有广泛的应用,例如在建筑设计中,设计师会使用相似图形来保持建筑的比例和风格;在地图制作中,相似图形用于表示不同比例尺的地图;在服装设计中,相似图形用于保持服装的款式和比例等。
2. 论述如何判断两个图形是否相似。
答案:判断两个图形是否相似,首先要检查它们的对应角是否相等,然后检查它们的对应边的比值是否相等。
如果这两个条件都满足,那么这两个图形就是相似的。
此外,还可以通过面积比来判断,如果两个图形的面积比等于它们边长比的平方,那么它们也是相似的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C.有两边对应成比例的两个等腰三角形相似;D.两腰对应成比例的两个等腰三角形相似
3.下列四个三角形,与右图中的三角形相似的是( )
A
B
C
D
第3题
4.中午 12 点,身高为150cm 的小冰的影长为 20cm ,同学小雪此时在同一地点的影长为 22cm ,
那么小雪的身高为( )
A. 150cm
B. 155cm
B
C
D
第3题
4.中午 12 点,身高为150cm 的小冰的影长为 20cm ,同学小雪此时在同一地点的影长为 22cm ,
那么小雪的身高为( D )
A. 150cm
B. 155cm
C. 160cm
D.165cm
5.如图, ACD 和 ABC 相似需具备的条件是( C )
A. AC AB CD BC
B
C
第 10 题
SADE : S梯形D梯F形GE : S FBCG
.
11.如图,点 O 是正三角形 PQR 的中心, P、Q、 R 分别是 OP、O、Q OR
的中点,则 PQR 与 PQR 是位似三角形,此时 PQR 与 PQR 的 位似中心是_____,位似比为______.
P P
O
Q
R
Q
R
第 11 题
B. CD BC AD AC
C. AC2 AD AB
D. CD2 AD BD
6.如图,一张矩形报纸 ABCD 的长 AB a ,宽 BC b , E、F 分别是 AB、CD 的中点,将这张报
纸沿着直线 EF 对折后,矩形 AEFD 的长与宽的比等于矩形 ABCD 的长与宽的比,则 a : b 等
A. 3 2
B.
2 3
C.
4 9
D. 9 4
2.下列说法正确的是( A )
A.各有一个角是100 的两个等腰三角形相似;B.各有一个角是 45 的两个等腰三角形相似
C.有两边对应成比例的两个等腰三角形相似;D.两腰对应成比例的两个等腰三角形相似
3.下列四个三角形,与右图中的三角形相似的是( B )
A
km .
8.在针孔成像问题中,根据图中尺寸可知像 AB 的长是物 AB 长的 1 . 3
9.如图,已知 ACP ∽ ABC , AC 4, AP 2 ,则 AB 的长为 8 .
A
DE
F
G
10.如图, ABC 中, DE ∥ FG ∥ BC ,且 AD : DF : FB 2 : 3 : 4 ,则
Q
R
第 11 题
三、解答与证明(共 40 分) 12.(12 分)如图,四边形 ABCD 各顶点的坐标
分别为 A(2, 6), B(4, 2),C(6, 2), D(6, 4) ,在第一 象限内,画出以原点为位似中心,相似比为 1
2 的位似图形 A1B1C1D1 ,并写出各点坐标. 解:如图可知:
第二十七章 相似单元测试卷
班级
姓名
座号
成绩
一、选择题(每题 5 分,共 30 分)
1. ABC 和 DEF 相似,且相似比为 3 ,那么 DEF 和 ABC 的相似比为( 2
A. 3 2
B.
2 3
C.
4 9
) D. 9 4
2.下列说法正确的是( )
A.各有一个角是100 的两个等腰三角形相似;B.各有一个角是 45 的两个等腰三角形相似
(1)求证: ADE ∽ BEF ; 最大值?并求出这个最大值.
(2)设正方形的边长为 4, AE x, BF y .当 x 取何值时, y 有
D
C
1
F
2
A
2 E
3
B
参考答案
一、选择题(每题 5 分,共 30 分)
1. ABC 和 DEF 相似,且相似比为 3 ,那么 DEF 和 ABC 的相似比为( B ) 2
纸沿着直线 EF 对折后,矩形 AEFD 的长与宽的比等于矩形 ABCD 的长与宽的比,则 a : b 等
于( )
A. 2 :1
C
B.1: 2
D
F
C. 3 :1
C P
A
DB A
E
BB
第5题
第6题
A
A
CB
第9题
D.1: 3
18cm
B A 6cm
第8题
1
二、填空题(每题 6 分,共 30 分)
7.在比例尺为 1:1 000 000 的交通地图上,测得某两地的图上距离
SADE : S梯形D梯F形GE : S FBCG
4:21:56 .
B
C
第 10 题
P 11.如图,点 O 是正三角形 PQR 的中心, P、Q、 R 分别是 OP、O、Q OR
P
的中点,则 PQR 与 PQR 是位似三角形,此时 PQR 与 PQR 的
O
Q
R
位似中心是 O ,位似比为 1 . 2
于( A )
A. 2 :1
C
B.1: 2
D
F
C. 3 :1
C P
A
DB A
E
BB
第5题
第6题
A
A
CB
第9题
D.1: 3
18cm
B A 6cm
第8题
3
二、填空题(每题 6 分,共 30 分)
7.在比例尺为 1:1 000 000 的交通地图上,测得某两地的图上距离
为 7.5cm ,则它们的实际距离为 75
三、解答与证明(共 40 分)
y
12.(12 分)如图,四边形 ABCD 各顶点的坐标 分别为 A(2, 6), B(4, 2),C(6, 2), D(6, 4) ,在第一 象限内,画出以原点为位似中心,相似比为 1 2 的位似图形 A1B1C1D1 ,并写出各点坐标.
7
6
A
5
4
D
3
2
B
C
1
O 1234 56 7
x
13.(12 分)如图,□ ABCD 中, AE : EB 2 : 3 , DE 交 AC 于 F . (1)求 AEF 与 CDF 周长之比; (2)如果 CDF 的面积为 20cm2 ,求 AEF 的面积.
D
C
F
A
E
B
14.(16 分)如图所示, E 是正方形 ABCD 的边 AB 上的动点, EF DE 交 BC 于点 F .
为 7.5cm ,则它们的实际距离为
km .
8.在针孔成像问题中,根据图中尺寸可知像 AB 的长是物 AB 长的___.
A
DEΒιβλιοθήκη FG9.如图,已知 ACP ∽ ABC , AC 4, AP 2 ,则 AB 的长为
.
10.如图, ABC 中, DE ∥ FG ∥ BC ,且 AD : DF : FB 2 : 3 : 4 ,则
C. 160cm
D.165cm
5.如图, ACD 和 ABC 相似需具备的条件是( )
A. AC AB CD BC
B. CD BC AD AC
C. AC2 AD AB
D. CD2 AD BD
6.如图,一张矩形报纸 ABCD 的长 AB a ,宽 BC b , E、F 分别是 AB、CD 的中点,将这张报