《-相似三角形》单元测试题(含答案)
(完整word版)相似三角形单元测试卷(含答案)

相似三角形单元测试卷(共100分)一、填空题:(每题5分,共35分)1、已知a =4,b =9,c 是a b 、的比例中项,则c = .2、一本书的长与宽之比为黄金比,若它的长为20cm ,则它的宽 是 cm (保留根号).3、如图1,在ΔABC 中,DE ∥BC ,且AD ∶BD =1∶2,则S S ADE ∆=四边形DBCE : .图1 图2 图34、如图2,要使ΔABC ∽ΔACD ,需补充的条件是 .(只要写出一种)5、如图3,点P 是RtΔABC 斜边AB 上的任意一点(A 、B 两点除外)过点作一条直线,使截得的三角形与RtΔABC 相似,这样的直线可以作 条.图4 图5 图66、如图4,四边形BDEF 是RtΔABC 的内接正方形,若AB =6,BC =4,则DE = .7、如图5,ΔABC 与ΔDEF 是位似三角形,且AC =2DF ,则OE ∶OB = . 二、选择题: (每题5分,共35分)8、若k bac a c b c b a =+=+=+,则k 的值为( ) A 、2 B 、-1 C 、2或-1 D 、不存在9、如图6,F 是平行四边形ABCD 对角线BD 上的点,BF ∶FD=1∶3,则BE ∶EC=( )A 、21 B 、31 C 、32 D 、41 图7 图8 图910、如图7,△ABC 中,DE ∥FG ∥BC ,且DE 、FG 将△ABC 的面积三等分,若BC=12cm ,则FG 的长为( )A 、8cmB 、6cmC 、64cmD 、26cm 11、下列说法中不正确的是( )A .有一个角是30°的两个等腰三角形相似;B .有一个角是60°的两个等腰三角形相似;C .有一个角是90°的两个等腰三角形相似;D .有一个角是120°的两个等腰三角形相似.12、如图9, D 、E 是AB 的三等分点, DF∥EG∥BC , 图中三部分的面积分别为S 1,S 2,S 3, 则S 1:S 2:S 3( ) A.1:2:3 B.1:2:4 C.1:3:5 D.2:3:413、两个相似多边形的面积之比为1∶3,则它们周长之比为( )A .1∶3B .1∶9C .1D .2∶314、下列3个图形中是位似图形的有( )A 、0个B 、1个C 、2个D 、3个 三、解答题(15题8分,16题10分,17题12分,共30分) 15、如图,已知AD 、BE 是△ABC 的两条高,试说明AD ·BC=BE ·AC16、如图所示,小华在晚上由路灯A 走向路灯B,当他走到点P 时, 发现他身后影子的顶部刚好接触到路灯A 的底部,当他向前再步行12m 到达点Q 时, 发现他身前影子的顶部刚好接触到路灯B 的底部,已知小华的身高是1.6m,两个路灯的高度都是9.6m,且AP=QB. (1)求两个路灯之间的距离;(2)当小华走到路灯B时,他在路灯A 下的影长是多少?17.如图,在矩形ABCD 中,AB=12cm ,BC=8cm .点E 、F 、G 分别从点A 、B 、C 三点同时出发,沿矩形的边按逆时针方向移动.点E 、G 的速度均为2cm/s ,点F 的速度为4cm/s ,当点F 追上点G (即点F 与点G 重合)时,三个点随之停止移动.设移动开始后第t 秒时,△EFG 的面积为S (cm 2) (1)当t=1秒时,S 的值是多少?(2)写出S 和t 之间的函数解析式,并指出自变量t 的取值范围;(3)若点F 在矩形的边BC 上移动,当t 为何值时,以点E 、B 、F 为顶点的三角形与以点F 、C 、G 为顶点的三角形相似?请说明理由.AB C ED参考答案一、 填空题:(1)、1或4或16;(2)、±6;(3)、-94;(4)、1.6或2.5;(5)、)15(10 ; (6)、1:8;(7)、∠ACD=∠B 或∠ADC=∠ACB 或AD :AC=AC :AB ;(8)、31.5; (9)、0.2;(10)、3;(11)、2.4;(12)、1:2三、作图题: 23、(略) 四、解答题:24、证明:∵AD 、BE 是△ABC 的高 ∴∠ADC=∠BEC ∵∠C=∠C∴△ADC ∽△BEC ∴AD :BE=AC :BC ∴AD ×BC=BE ×AC25、解:由图得,AB=5,AC=25,BC=5,EF=2,ED=22,DF=10, ∴AB :EF=AC :ED=BC :DF=5:2∴△ABC ∽△DEF26、解:过点C 作C E ∥AD 交AB 于点E ,则CD=AE=2m ,△BCE ∽△B /BA / ∴A / B /:B /B=BE :BC 即,1.2:2= BE :4 ∴BE=2.4∴AB=2.4+2=4.4答:这棵树高4.4m 。
相似三角形测试题及答案(全)

1、两个相似三角形对应边之比是1:5,那么它们的周长比是( )。 (A)
;(B)1:25;(C)1:5;(D)
。 2、如果两个相似三角形的相似比为1:4,那么它们的面积比为( )。 (A)1:16;(B)1:8;(C)1:4;(D)1:2。 3、如图,锐角三角形ABC的高CD和高BE相交于O,则与△DOB相似的三角 形个数是( )。 (A)1;(B)2;(C)3;D)5。
3、如图,△ABC中,D是AC中点,AF∥DE, =1:3,则 =( )。 (A)1:2;(B)2:3;(C)3:4;(D)1:1。 4、如图,平行四边形ABCD中,O1、O2、O3为对角线BD上三点,且BO1= O1O2=O2O3=O3D,连结AO1并延长交BC于点E,连结EO3并延长交AD于F, 则AD:FD等于( )。 (A)19:2;(B)9:1;(C)8:1;(D)7:1。 三、(本题8分) 如图,已知矩形ABCD中,AB=10cm,BC=12cm,E为DC中点,AF⊥BE于 点F,求AF长。 四、(本题8分) 如图,D、E分别是△ABC边AB和AC上的点,∠1=∠2,求证:AD·AB= AE·AC。 五、(本题8分) 如图,ABCD是平行四边形,点E在边BA延长线上,连CE交AD于点F, ∠ECA=∠D,求证:AC·BE=CE·AD。
4、如图,∠ACD=∠B,AC=6,AD=4,则AB=________。
5、如图ABCD是平行四边形,F是DA延长线上一点,连CF交BD于G,交AB 于E,则图中相似三角形(包括全等三角形在内)共有________对。 6、如图,△ABC中,BC=15cm,DE、FG均平行于BC且将△ABC面积分成 三等分,则FG=________ cm。 7、如图,AF∥BE∥CD,AF=12,BE=19,CD=28,则FE:ED的值等于 ________。 8、如图,△ABC,DE∥GF∥BC,且AD=DG=GB,则 =________。
人教版九年级数学下册第二十七章《相似——相似三角形》同步测试含答案

人教版九年级数学下册第二十七章《相似——相似三角形》同步测试题一.选择题(共10小题)1.(2013•自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=,则△EFC的周长为()A.11 B.10 C.9D.82.(2013•重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为()A.5cm B.6cm C.7cm D.8cm 3.(2013•孝感)如图,在△ABC中,AB=AC=a,BC=b(a>b).在△ABC内依次作∠CBD=∠A,∠DCE=∠CBD,∠EDF=∠DCE.则EF等于()A.B.C.D.4.(2013•咸宁)如图,正方形ABCD是一块绿化带,其中阴影部分EOFB,GHMN都是正方形的花圃.已知自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟在花圃上的概率为()A.B.C.D.5.(2013•绥化)如图,点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=4,CD=6,则AE的长为()A.4B.5C.6D.76.(2013•内江)如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF:S△ABF=4:25,则DE:EC=()A.2:5 B.2:3 C.3:5 D.3:27.(2013•黑龙江)如图,在直角梯形ABCD中,AD∥BC,∠BCD=90°,∠ABC=45°,AD=CD,CE平分∠ACB交AB于点E,在BC上截取BF=AE,连接AF交CE于点G,连接DG交AC于点H,过点A作AN⊥BC,垂足为N,AN交CE于点M.则下列结论;①CM=AF;②CE⊥AF;③△ABF∽△DAH;④GD平分∠AGC,其中正确的个数是()A.1B.2C.3D.48.(2013•恩施州)如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则DF:FC=()A.1:4 B.1:3 C.2:3 D.1:2 9.(2013•德阳)如图,在⊙O上有定点C和动点P,位于直径AB的异侧,过点C作CP 的垂线,与PB的延长线交于点Q,已知:⊙O半径为,tan∠ABC=,则CQ的最大值是()A.5B.C.D.10.(2012•岳阳)如图,AB为半圆O的直径,AD、BC分别切⊙O于A、B两点,CD切⊙O于点E,AD与CD相交于D,BC与CD相交于C,连接OD、OC,对于下列结论:①OD2=DE•CD;②AD+BC=CD;③OD=OC;④S梯形ABCD=CD•OA;⑤∠DOC=90°,其中正确的是()A.①②⑤B.②③④C.③④⑤D.①④⑤二.填空题(共10小题)11.(2013•昭通)如图,AB是⊙O的直径,弦BC=4cm,F是弦BC的中点,∠ABC=60°.若动点E以1cm/s的速度从A点出发在AB上沿着A→B→A运动,设运动时间为t(s)(0≤t <16),连接EF,当△BEF是直角三角形时,t(s)的值为_________.(填出一个正确的即可)12.(2013•南通)如图,在▱ABCD中,AB=6cm,AD=9cm,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=4cm,则EF+CF的长为_________ cm.13.(2013•菏泽)如图所示,在△ABC中,BC=6,E、F分别是AB、AC的中点,动点P 在射线EF上,BP交CE于D,∠CBP的平分线交CE于Q,当CQ=CE时,EP+BP=_________.14.(2013•巴中)如图,小明在打网球时,使球恰好能打过网,而且落在离网4米的位置上,则球拍击球的高度h为_________.15.(2012•自贡)正方形ABCD的边长为1cm,M、N分别是BC、CD上两个动点,且始终保持AM⊥MN,当BM=_________cm时,四边形ABCN的面积最大,最大面积为_________cm2.16.(2012•宜宾)如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是的中点,弦CE⊥AB于点F,过点D的切线交EC的延长线于点G,连接AD,分别交CF、BC于点P、Q,连接AC.给出下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心;④AP•AD=CQ•CB.其中正确的是_________(写出所有正确结论的序号).17.(2012•泉州)在△ABC中,P是AB上的动点(P异于A、B),过点P的直线截△ABC,使截得的三角形与△ABC相似,我们不妨称这种直线为过点P的△ABC的相似线,简记为P(l x)(x为自然数).(1)如图①,∠A=90°,∠B=∠C,当BP=2PA时,P(l1)、P(l2)都是过点P的△ABC 的相似线(其中l1⊥BC,l2∥AC),此外,还有_________条;(2)如图②,∠C=90°,∠B=30°,当=_________时,P(l x)截得的三角形面积为△ABC面积的.18.(2012•嘉兴)如图,在Rt△ABC中,∠ABC=90°,BA=BC.点D是AB的中点,连接CD,过点B作BG丄CD,分别交CD、CA于点E、F,与过点A且垂直于AB的直线相交于点G,连接DF.给出以下四个结论:①;②点F是GE的中点;③AF=AB;④S△ABC=5S△BDF,其中正确的结论序号是_________.19.(2012•泸州)如图,n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…M n分别为边B1B2,B2B3,B3B4,…,B n B n+1的中点,△B1C1M1的面积为S1,△B2C2M2的面积为S2,…△B n C n M n的面积为S n,则S n=_________.(用含n的式子表示)20.(2013•荆州)如图,△ABC是斜边AB的长为3的等腰直角三角形,在△ABC内作第1个内接正方形A1B1D1E1(D1、E1在AB上,A1、B1分别在AC、BC上),再在△A1B1C 内接同样的方法作第2个内接正方形A2B2D2E2,…如此下去,操作n次,则第n个小正方形A n B n D n E n的边长是_________.三.解答题(共8小题)21.(2013•珠海)如图,在Rt△ABC中,∠C=90°,点P为AC边上的一点,将线段AP绕点A顺时针方向旋转(点P对应点P′),当AP旋转至AP′⊥AB时,点B、P、P′恰好在同一直线上,此时作P′E⊥AC于点E.(1)求证:∠CBP=∠ABP;(2)求证:AE=CP;(3)当,BP′=5时,求线段AB的长.22.(2013•湛江)如图,已知AB是⊙O的直径,P为⊙O外一点,且OP∥BC,∠P=∠BAC.(1)求证:PA为⊙O的切线;(2)若OB=5,OP=,求AC的长.23.(2013•宜宾)如图,AB是⊙O的直径,∠B=∠CAD.(1)求证:AC是⊙O的切线;(2)若点E是的中点,连接AE交BC于点F,当BD=5,CD=4时,求AF的值.24.(2013•襄阳)如图,△ABC内接于⊙O,且AB为⊙O的直径.∠ACB的平分线交⊙O 于点D,过点D作⊙O的切线PD交CA的延长线于点P,过点A作AE⊥CD于点E,过点B作BF⊥CD于点F.(1)求证:DP∥AB;(2)若AC=6,BC=8,求线段PD的长.25.(2013•绍兴)在△ABC中,∠CAB=90°,AD⊥BC于点D,点E为AB的中点,EC与AD交于点G,点F在BC上.(1)如图1,AC:AB=1:2,EF⊥CB,求证:EF=CD.(2)如图2,AC:AB=1:,EF⊥CE,求EF:EG的值.26.(2013•汕头)如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE⊥DC交DC的延长线于点E.(1)求证:∠BCA=∠BAD;(2)求DE的长;(3)求证:BE是⊙O的切线.27.(2013•朝阳)如图,直线AB与⊙O相切于点A,直径DC的延长线交AB于点B,AB=8,OB=10(1)求⊙O的半径.(2)点E在⊙O上,连接AE,AC,EC,并且AE=AC,判断直线EC与AB有怎样的位置关系?并证明你的结论.(3)求弦EC的长.28.(2013•成都)如图,点B在线段AC上,点D,E在AC同侧,∠A=∠C=90°,BD⊥BE,AD=BC.(1)求证:AC=AD+CE;(2)若AD=3,CE=5,点P为线段AB上的动点,连接DP,作PQ⊥DP,交直线BE于点Q;(i)当点P与A,B两点不重合时,求的值;(ii)当点P从A点运动到AC的中点时,求线段DQ的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)参考答案与解析一.选择题(共10小题)1.(2013•自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=,则△EFC的周长为()A.11 B.10 C.9D.8考点:相似三角形的判定与性质;勾股定理;平行四边形的性质.分析:判断出△ADF是等腰三角形,△ABE是等腰三角形,DF的长度,继而得到EC的长度,在Rt△BGE中求出GE,继而得到AE,求出△ABE的周长,根据相似三角形的周长之比等于相似比,可得出△EFC的周长.解答:解:∵在▱ABCD中,AB=CD=6,AD=BC=9,∠BAD的平分线交BC于点E,∴∠BAF=∠DAF,∵AB∥DF,AD∥BC,∴∠BAF=∠F=∠DAF,∠BAE=∠AEB,∴AB=BE=6,AD=DF=9,∴△ADF是等腰三角形,△ABE是等腰三角形,∵AD∥BC,∴△EFC是等腰三角形,且FC=CE,∴EC=FC=9﹣6=3,在△ABG中,BG⊥AE,AB=6,BG=4,∴AG==2,∴AE=2AG=4,∴△ABE的周长等于16,又∵△CEF∽△BEA,相似比为1:2,∴△CEF的周长为8.故选D.点评:本题主要考查了勾股定理、相似三角形、等腰三角形的性质,注意掌握相似三角形的周长之比等于相似比,此题难度较大.2.(2013•重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为()A.5cm B.6cm C.7cm D.8cm考点:相似三角形的判定与性质;平行四边形的性质.分析:由边形ABCD是平行四边形,可得AB∥CD,即可证得△AFE∽△DEC,然后由相似三角形的对应边成比例,求得答案.解答:解:∵四边形ABCD是平行四边形,∴AB∥CD,∴△AFE∽△DEC,∴AE:DE=AF:CD,∵AE=2ED,CD=3cm,∴AF=2CD=6cm.故选B.点评:此题考查了相似三角形的判定与性质以及平行四边形的性质.此题难度不大,注意掌握数形结合思想的应用.3.(2013•孝感)如图,在△ABC中,AB=AC=a,BC=b(a>b).在△ABC内依次作∠CBD=∠A,∠DCE=∠CBD,∠EDF=∠DCE.则EF等于()A.B.C.D.考点:相似三角形的判定与性质;等腰三角形的判定与性质.专题:压轴题.分析:依次判定△ABC∽△BDC∽△CDE∽△DFE,根据相似三角形的对应边成比例的知识,可得出EF的长度.解答:解:∵AB=AC,∴∠ABC=∠ACB,又∵∠CBD=∠A,∴△ABC∽△BDC,同理可得:△ABC∽△BDC∽△CDE∽△DFE,∴=,=,=,=,∵AB=AC,∴CD=CE,解得:CD=CE=,DE=,EF=.故选C.点评:本题考查了相似三角形的判定与性质,本题中相似三角形比较容易找到,难点在于根据对应边成比例求解线段的长度,注意仔细对应,不要出错.4.(2013•咸宁)如图,正方形ABCD是一块绿化带,其中阴影部分EOFB,GHMN都是正方形的花圃.已知自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟在花圃上的概率为()A.B.C.D.考点:相似三角形的应用;正方形的性质;几何概率.专题:压轴题.分析:求得阴影部分的面积与正方形ABCD的面积的比即可求得小鸟在花圃上的概率;解答:解:设正方形的ABCD的边长为a,则BF=BC=,AN=NM=MC=a,∴阴影部分的面积为()2+(a)2=a2,∴小鸟在花圃上的概率为=故选C.点评:本题考查了正方形的性质及几何概率,关键是表示出大正方形的边长,从而表示出两个阴影正方形的边长,最后表示出面积.5.(2013•绥化)如图,点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=4,CD=6,则AE的长为()A.4B.5C.6D.7考点:圆周角定理;圆心角、弧、弦的关系;相似三角形的判定与性质.分析:根据圆周角定理∠CAD=∠CDB,继而证明△ACD∽△DCE,设AE=x,则AC=x+4,利用对应边成比例,可求出x的值.解答:解:设AE=x,则AC=x+4,∵AC平分∠BAD,∴∠BAC=∠CAD,∵∠CDB=∠BAC(圆周角定理),∴∠CAD=∠CDB,∴△ACD∽△DCE,∴=,即=,解得:x=5.故选B.点评:本题考查了圆周角定理、相似三角形的判定与性质,解答本题的关键是得出∠CAD=∠CDB,证明△ACD∽△DCE.6.(2013•内江)如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF:S△ABF=4:25,则DE:EC=()A.2:5 B.2:3 C.3:5 D.3:2考点:相似三角形的判定与性质;平行四边形的性质.分析:先根据平行四边形的性质及相似三角形的判定定理得出△DEF∽△BAF,再根据S△DEF:S△ABF=4:25即可得出其相似比,由相似三角形的性质即可求出DE:AB 的值,由AB=CD即可得出结论.解答:解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠EAB=∠DEF,∠AFB=∠DFE,∴△DEF∽△BAF,∵S△DEF:S△ABF=4:25,∴DE:AB=2:5,∵AB=CD,∴DE:EC=2:3.故选B.点评:本题考查的是相似三角形的判定与性质及平行四边形的性质,熟知相似三角形边长的比等于相似比,面积的比等于相似比的平方是解答此题的关键.7.(2013•黑龙江)如图,在直角梯形ABCD中,AD∥BC,∠BCD=90°,∠ABC=45°,AD=CD,CE平分∠ACB交AB于点E,在BC上截取BF=AE,连接AF交CE于点G,连接DG交AC于点H,过点A作AN⊥BC,垂足为N,AN交CE于点M.则下列结论;①CM=AF;②CE⊥AF;③△AB F∽△DAH;④GD平分∠AGC,其中正确的个数是()A.1B.2C.3D.4考点:相似三角形的判定与性质;全等三角形的判定与性质;直角梯形.专题:压轴题.分析:如解答图所示:结论①正确:证明△ACM≌△ABF即可;结论②正确:由△ACM≌△ABF得∠2=∠4,进而得∠4+∠6=90°,即CE⊥AF;结论③正确:证法一:利用四点共圆;证法二:利用三角形全等;结论④正确:证法一:利用四点共圆;证法二:利用三角形全等.解答:解:(1)结论①正确.理由如下:∵∠1=∠2,∠1+∠CMN=90°,∠2+∠6=90°,∴∠6=∠CMN,又∵∠5=∠CMN,∴∠5=∠6,∴AM=AE=BF.易知ADCN为正方形,△ABC为等腰直角三角形,∴AB=AC.在△ACM与△ABF中,,∴△ACM≌△ABF(SAS),∴CM=AF;(2)结论②正确.理由如下:∵△ACM≌△ABF,∴∠2=∠4,∵∠2+∠6=90°,∴∠4+∠6=90°,∴CE⊥AF;(3)结论③正确.理由如下:证法一:∵CE⊥AF,∴∠ADC+∠AGC=180°,∴A、D、C、G四点共圆,∴∠7=∠2,∵∠2=∠4,∴∠7=∠4,又∵∠DAH=∠B=45°,∴△ABF∽△DAH;证法二:∵CE⊥AF,∠1=∠2,∴△ACF为等腰三角形,AC=CF,点G为AF中点.在Rt△ANF中,点G为斜边AF中点,∴NG=AG,∴∠MNG=∠3,∴∠DAG=∠CNG.在△ADG与△NCG中,,∴△ADG≌△NCG(SAS),∴∠7=∠1,又∵∠1=∠2=∠4,∴∠7=∠4,又∵∠DAH=∠B=45°,∴△ABF∽△DAH;(4)结论④正确.理由如下:证法一:∵A、D、C、G四点共圆,∴∠DGC=∠DAC=45°,∠DGA=∠DCA=45°,∴∠DGC=∠DGA,即GD平分∠AGC.证法二:∵AM=AE,CE⊥AF,∴∠3=∠4,又∠2=∠4,∴∠3=∠2则∠CGN=180°﹣∠1﹣90°﹣∠MNG=180°﹣∠1﹣90°﹣∠3=90°﹣∠1﹣∠2=45°.∵△ADG≌△NCG,∴∠DGA=∠CGN=45°=∠AGC,∴GD平分∠AGC.综上所述,正确的结论是:①②③④,共4个.故选D.点评:本题是几何综合题,考查了相似三角形的判定、全等三角形的判定与性质、正方形、等腰直角三角形、直角梯形、等腰三角形等知识点,有一定的难度.解答中四点共圆的证法,仅供同学们参考.8.(2013•恩施州)如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD 的中点,连接AE并延长交DC于点F,则DF:FC=()A.1:4 B.1:3 C.2:3 D.1:2考点:相似三角形的判定与性质;平行四边形的性质.分析:首先证明△DFE∽△BAE,然后利用对应变成比例,E为OD的中点,求出DF:AB 的值,又知AB=DC,即可得出DF:FC的值.解答:解:在平行四边形ABCD中,AB∥DC,则△DFE∽△BAE,∴=,∵O为对角线的交点,∴DO=BO,又∵E为OD的中点,∴DE=DB,则DE:EB=1:3,∴DF:AB=1:3,∵DC=AB,∴DF:DC=1:3,∴DF:FC=1:2.故选D.点评:本题考查了相似三角形的判定与性质以及平行四边形的性质,难度适中,解答本题的关键是根据平行证明△DFE∽△BAE,然后根据对应边成比例求值.9.(2013•德阳)如图,在⊙O上有定点C和动点P,位于直径AB的异侧,过点C作CP 的垂线,与PB的延长线交于点Q,已知:⊙O半径为,tan∠ABC=,则CQ的最大值是()A.5B.C.D.考点:圆周角定理;圆内接四边形的性质;相似三角形的判定与性质.专题:计算题;压轴题.分析:根据圆周角定理的推论由AB为⊙O的直径得到∠ACB=90°,再根据正切的定义得到tan∠ABC==,然后根据圆周角定理得到∠A=∠P,则可证得△ACB∽△PCQ,利用相似比得CQ=•PC=PC,PC为直径时,PC最长,此时CQ最长,然后把PC=5代入计算即可.解答:解:∵AB为⊙O的直径,∴AB=5,∠ACB=90°,∵tan∠ABC=,∴=,∵CP⊥CQ,∴∠PCQ=90°,而∠A=∠P,∴△ACB∽△PCQ,∴=,∴CQ=•PC=PC,当PC最大时,CQ最大,即PC为⊙O的直径时,CQ最大,此时CQ=×5=.故选D.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了三角形相似的判定与性质.10.(2012•岳阳)如图,AB为半圆O的直径,AD、BC分别切⊙O于A、B两点,CD切⊙O于点E,AD与CD相交于D,BC与CD相交于C,连接OD、OC,对于下列结论:①OD2=DE•CD;②AD+BC=CD;③OD=OC;④S梯形ABCD=CD•OA;⑤∠DOC=90°,其中正确的是()A.①②⑤B.②③④C.③④⑤D.①④⑤考点:切线的性质;切线长定理;相似三角形的判定与性质.专题:计算题;压轴题.分析:连接OE,由AD,DC,BC都为圆的切线,根据切线的性质得到三个角为直角,且利用切线长定理得到DE=DA,CE=CB,由CD=DE+EC,等量代换可得出CD=AD+BC,选项②正确;由AD=ED,OD为公共边,利用HL可得出直角三角形ADO与直角三角形EDO全等,可得出∠AOD=∠EOD,同理得到∠EOC=∠BOC,而这四个角之和为平角,可得出∠DOC为直角,选项⑤正确;由∠DOC与∠DEO都为直角,再由一对公共角相等,利用两对对应角相等的两三角形相似,可得出三角形DEO与三角形DOC相似,由相似得比例可得出OD2=DE•CD,选项①正确;又ABCD为直角梯形,利用梯形的面积计算后得到梯形ABCD的面积为AB(AD+BC),将AD+BC化为CD,可得出梯形面积为AB•CD,选项④错误,而OD不一定等于OC,选项③错误,即可得到正确的选项.解答:解:连接OE,如图所示:∵AD与圆O相切,DC与圆O相切,BC与圆O相切,∴∠DAO=∠DEO=∠OBC=90°,∴DA=DE,CE=CB,AD∥BC,∴CD=DE+EC=AD+BC,选项②正确;在Rt△ADO和Rt△EDO中,,∴Rt△ADO≌Rt△EDO(HL),∴∠AOD=∠EOD,同理Rt△CEO≌Rt△CBO,∴∠EOC=∠BOC,又∠AOD+∠DOE+∠EOC+∠COB=180°,∴2(∠DOE+∠EOC)=180°,即∠DOC=90°,选项⑤正确;∴∠DOC=∠DEO=90°,又∠EDO=∠ODC,∴△EDO∽△ODC,∴=,即OD2=DC•DE,选项①正确;而S梯形ABCD=AB•(AD+BC)=AB•CD,选项④错误;由OD不一定等于OC,选项③错误,则正确的选项有①②⑤.故选A点评:此题考查了切线的性质,切线长定理,相似三角形的判定与性质,全等三角形的判定与性质,以及梯形面积的求法,利用了转化的数学思想,熟练掌握定理及性质是解本题的关键.二.填空题(共10小题)11.(2013•昭通)如图,AB是⊙O的直径,弦BC=4cm,F是弦BC的中点,∠ABC=60°.若动点E以1cm/s的速度从A点出发在AB上沿着A→B→A运动,设运动时间为t(s)(0≤t <16),连接EF,当△BEF是直角三角形时,t(s)的值为4s.(填出一个正确的即可)考点:圆周角定理;垂径定理;相似三角形的判定与性质.专题:压轴题;开放型.分析:根据圆周角定理得到∠C=90°,由于∠ABC=60°,BC=4cm,根据含30度的直角三角形三边的关系得到AB=2BC=8cm,而F是弦BC的中点,所以当EF∥AC时,△BEF 是直角三角形,此时E为AB的中点,易得t=4s;当从A点出发运动到B点名,再运动到O点时,此时t=12s;也可以过F点作AB的垂线,点E点运动到垂足时,△BEF 是直角三角形.解答:解:∵AB是⊙O的直径,∴∠C=90°,而∠ABC=60°,BC=4cm,∴AB=2BC=8cm,∵F是弦BC的中点,∴当EF∥AC时,△BEF是直角三角形,此时E为AB的中点,即AE=AO=4cm,∴t==4(s).故答案为4s.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了圆周角定理的推论以及含30度的直角三角形三边的关系.12.(2013•南通)如图,在▱ABCD中,AB=6cm,AD=9cm,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=4cm,则EF+CF的长为5cm.考点:相似三角形的判定与性质;等腰三角形的判定与性质;勾股定理;平行四边形的性质.专题:压轴题.分析:首先,由于AE平分∠BAD,那么∠BAE=∠DAE,由AD∥BC,可得内错角∠DAE=∠BEA,等量代换后可证得AB=BE,即△ABE是等腰三角形,根据等腰三角形“三线合一”的性质得出AE=2AG,而在Rt△ABG中,由勾股定理可求得AG的值,即可求得AE的长;然后,利用平行线分线段成比例的性质分别得出EF,FC的长,即可得出答案.解答:解:∵AE平分∠BAD,∴∠DAE=∠BAE;又∵AD∥BC,∴∠BEA=∠DAE=∠BAE,∴AB=BE=6cm,∴EC=9﹣6=3(cm),∵BG⊥AE,垂足为G,∴AE=2AG.在Rt△ABG中,∵∠AGB=90°,AB=6cm,BG=4cm,∴AG==2(cm),∴AE=2AG=4cm;∵EC∥AD,∴====,∴=,=,解得:EF=2(cm),FC=3(cm),∴EF+CF的长为5cm.故答案为:5.点评:本题考查了平行四边形的性质,相似三角形的判定与性质,勾股定理等知识的掌握程度和灵活运用能力,同时也体现了对数学中的数形结合思想的考查,难度适中.13.(2013•菏泽)如图所示,在△ABC中,BC=6,E、F分别是AB、AC的中点,动点P 在射线EF上,BP交CE于D,∠CBP的平分线交CE于Q,当CQ=CE时,EP+BP=12.考点:相似三角形的判定与性质;等腰三角形的判定与性质;三角形中位线定理.专题:压轴题.分析:延长BQ交射线EF于M,根据三角形的中位线平行于第三边可得EF∥BC,根据两直线平行,内错角相等可得∠M=∠CBM,再根据角平分线的定义可得∠PBM=∠CBM,从而得到∠M=∠PBM,根据等角对等边可得BP=PM,求出EP+BP=EM,再根据CQ=CE求出EQ=2CQ,然后根据△MEQ和△BCQ相似,利用相似三角形对应边成比例列式求解即可.解答:解:如图,延长BQ交射线EF于M,∵E、F分别是AB、AC的中点,∴EF∥BC,∴∠M=∠CBM,∵BQ是∠CBP的平分线,∴∠PBM=∠CBM,∴∠M=∠PBM,∴BP=PM,∴EP+BP=EP+PM=EM,∵CQ=CE,∴EQ=2CQ,由EF∥BC得,△MEQ∽△BCQ,∴==2,∴EM=2BC=2×6=12,即EP+BP=12.故答案为:12.点评:本题考查了相似三角形的判定与性质,角平分线的定义,平行线的性质,延长BQ构造出相似三角形,求出EP+BP=EM并得到相似三角形是解题的关键,也是本题的难点.14.(2013•巴中)如图,小明在打网球时,使球恰好能打过网,而且落在离网4米的位置上,则球拍击球的高度h为 1.5米.考点:相似三角形的应用.分析:根据球网和击球时球拍的垂直线段平行即DE∥BC可知,△ADE∽△ACB,根据其相似比即可求解.解答:解:∵DE∥BC,∴△ADE∽△ACB,即=,则=,∴h=1.5m.故答案为:1.5米.点评:本题考查了相似三角形在测量高度时的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.15.(2012•自贡)正方形ABCD的边长为1cm,M、N分别是BC、CD上两个动点,且始终保持AM⊥MN,当BM=cm时,四边形ABCN的面积最大,最大面积为cm2.考点:相似三角形的判定与性质;二次函数的最值;正方形的性质.专题:压轴题.分析:设BM=xcm,则MC=1﹣xcm,当AM⊥MN时,利用互余关系可证△ABM∽△MCN,利用相似比求CN,根据梯形的面积公式表示四边形ABCN的面积,用二次函数的性质求面积的最大值.解答:解:设BM=xcm,则MC=1﹣xcm,∵∠AMN=90°,∴∠AMB+∠NMC=90°,∠NMC+∠MNC=90°,∴∠AMB=∠MNC,又∵∠B=∠C∴△ABM∽△MCN,则,即,解得CN==x(1﹣x),∴S四边形ABCN=×1×[1+x(1﹣x)]=﹣x2+x+,∵﹣<0,∴当x=﹣=cm时,S四边形ABCN最大,最大值是﹣×()2+×+=cm2.故答案是:,.点评:本题考查了二次函数的性质的运用.关键是根据已知条件判断相似三角形,利用相似比求函数关系式.16.(2012•宜宾)如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是的中点,弦CE⊥AB于点F,过点D的切线交EC的延长线于点G,连接AD,分别交CF、BC于点P、Q,连接AC.给出下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心;④AP•AD=CQ•CB.其中正确的是②③④(写出所有正确结论的序号).考点:切线的性质;圆周角定理;三角形的外接圆与外心;相似三角形的判定与性质.专题:计算题;压轴题.分析:连接BD,由GD为圆O的切线,根据弦切角等于夹弧所对的圆周角得到∠GDP=∠ABD,再由AB为圆的直径,根据直径所对的圆周角为直角得到∠ACB为直角,由CE垂直于AB,得到∠AFP为直角,再由一对公共角,得到三角形APF与三角形ABD相似,根据相似三角形的对应角相等可得出∠APF等于∠ABD,根据等量代换及对顶角相等可得出∠GPD=∠GDP,利用等角对等边可得出GP=GD,选项②正确;由直径AB垂直于弦CE,利用垂径定理得到A为的中点,得到两条弧相等,再由C为的中点,得到两条弧相等,等量代换得到三条弧相等,根据等弧所对的圆周角相等可得出∠CAP=∠ACP,利用等角对等边可得出AP=CP,又AB为直径得到∠ACQ为直角,利用等角的余角相等可得出∠PCQ=∠PQC,得出CP=PQ,即P为直角三角形ACQ斜边上的中点,即为直角三角形ACQ的外心,选项③正确;利用等弧所对的圆周角相等得到一对角相等,再由一对公共角相等,得到三角形ACQ 与三角形ABC相似,根据相似得比例得到AC2=CQ•CB,连接CD,同理可得出三角形ACP与三角形ACD相似,根据相似三角形对应边成比例可得出AC2=AP•AD,等量代换可得出AP•AD=CQ•CB,选项④正确.解答:解:∠BAD与∠ABC不一定相等,选项①错误;连接BD,如图所示:∵GD为圆O的切线,∴∠GDP=∠ABD,又AB为圆O的直径,∴∠ADB=90°,∵CE⊥AB,∴∠AFP=90°,∴∠ADB=∠AFP,又∠PAF=∠BAD,∴△APF∽△ABD,∴∠ABD=∠APF,又∠APF=∠GPD,∴∠GDP=∠GPD,∴GP=GD,选项②正确;∵直径AB⊥CE,∴A为的中点,即=,又C为的中点,∴=,∴=,∴∠CAP=∠ACP,∴AP=CP,又AB为圆O的直径,∴∠ACQ=90°,∴∠PCQ=∠PQC,∴PC=PQ,∴AP=PQ,即P为Rt△ACQ斜边AQ的中点,∴P为Rt△ACQ的外心,选项③正确;连接CD,如图所示:∵=,∴∠B=∠CAD,又∠ACQ=∠BCA,∴△ACQ∽△BCA,∴=,即AC2=CQ•CB,∵=,∴∠ACP=∠ADC,又∠CAP=∠DAC,∴△ACP∽△ADC,∴=,即AC2=AP•AD,∴AP•AD=CQ•CB,选项④正确,则正确的选项序号有②③④.故答案为:②③④点评:此题考查了切线的性质,圆周角定理,相似三角形的判定与性质,以及三角形的外接圆与圆心,熟练掌握性质及定理是解本题的关键.17.(2012•泉州)在△ABC中,P是AB上的动点(P异于A、B),过点P的直线截△ABC,使截得的三角形与△ABC相似,我们不妨称这种直线为过点P的△ABC的相似线,简记为P(l x)(x为自然数).(1)如图①,∠A=90°,∠B=∠C,当BP=2PA时,P(l1)、P(l2)都是过点P的△ABC 的相似线(其中l1⊥BC,l2∥AC),此外,还有1条;(2)如图②,∠C=90°,∠B=30°,当=或或时,P(l x)截得的三角形面积为△ABC面积的.考点:相似三角形的判定与性质.专题:压轴题.分析:(1)过点P作l3∥BC交AC于Q,则△APQ∽△ABC,l3是第3条相似线;(2)按照相似线的定义,找出所有符合条件的相似线.总共有4条,注意不要遗漏.解答:解:(1)存在另外 1 条相似线.如图1所示,过点P作l3∥BC交AC于Q,则△APQ∽△ABC;故答案为:1;(2)设P(l x)截得的三角形面积为S,S=S△ABC,则相似比为1:2.如图2所示,共有4条相似线:①第1条l1,此时P为斜边AB中点,l1∥AC,∴=;②第2条l2,此时P为斜边AB中点,l2∥BC,∴=;③第3条l3,此时BP与BC为对应边,且=,∴==;④第4条l4,此时AP与AC为对应边,且=,∴==,∴=.故答案为:或或.点评:本题引入“相似线”的新定义,考查相似三角形的判定与性质和解直角三角形的运算;难点在于找出所有的相似线,不要遗漏.18.(2012•嘉兴)如图,在Rt△ABC中,∠ABC=90°,BA=BC.点D是AB的中点,连接CD,过点B作BG丄CD,分别交CD、CA于点E、F,与过点A且垂直于AB的直线相交于点G,连接DF.给出以下四个结论:①;②点F是GE的中点;③AF=AB;④S△ABC=5S△BDF,其中正确的结论序号是①③.考点:相似三角形的判定与性质;勾股定理;等腰直角三角形.专题:压轴题.分析:首先根据题意易证得△AFG∽△CFB,根据相似三角形的对应边成比例与BA=BC,继而证得正确;由点D是AB的中点,易证得BC=2BD,由等角的余角相等,可得∠DBE=∠BCD,即可得AG=AB,继而可得FG=BF;即可得AF=AC,又由等腰直角三角形的性质,可得AC=AB,即可求得AF=AB;则可得S△ABC=6S△BDF.解答:解:∵在Rt△ABC中,∠ABC=90°,∴AB⊥BC,AG⊥AB,∴AG∥BC,∴△AFG∽△CFB,∴,∵BA=BC,∴,故①正确;∵∠ABC=90°,BG⊥CD,∴∠DBE+∠BDE=∠BDE+∠BCD=90°,∴∠DBE=∠BCD,∵AB=CB,点D是AB的中点,∴BD=AB=CB,∵tan∠BCD==,∴在Rt△ABG中,tan∠DBE==,∵=,∴FG=FB,∵GE≠BF,∴点F不是GE的中点.故②错误;∵△AFG∽△CFB,∴AF:CF=AG:BC=1:2,∴AF=AC,∵AC=AB,∴AF=AB,故③正确;∵BD=AB,AF=AC,∴S△ABC=6S△BDF,故④错误.故答案为:①③.点评:此题考查了相似三角形的判定与性质、直角三角形的性质以及三角函数等知识.此题难度适中,解题的关键是证得△AFG∽△CFB,注意掌握数形结合思想与转化思想的应用.19.(2012•泸州)如图,n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…M n分别为边B1B2,B2B3,B3B4,…,B n B n+1的中点,△B1C1M1的面积为S1,△B2C2M2的面积为S2,…△B n C n M n的面积为S n,则S n=.(用含n的式子表示)考点:相似三角形的判定与性质.专题:压轴题;规律型.分析:由n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…M n分别为边B1B2,B2B3,B3B4,…,B n B n+1的中点,即可求得△B1C1M n的面积,又由B n C n∥B1C1,即可得△B n C n M n∽△B1C1M n,然后利用相似三角形的面积比等于相似比的平方,求得答案.解答:解:∵n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…M n分别为边B1B2,B2B3,B3B4,…,B n B n+1的中点,∴S1=×B1C1×B1M1=×1×=,S△B1C1M2=×B1C1×B1M2=×1×=,S△B1C1M3=×B1C1×B1M3=×1×=,S△B1C1M4=×B1C1×B1M4=×1×=,S△B1C1Mn=×B1C1×B1M n=×1×=,∵B n C n∥B1C1,∴△B n C n M n∽△B1C1M n,∴S△BnCnMn:S△B1C1Mn=()2=()2,即S n:=,∴S n=.故答案为:.点评:此题考查了相似三角形的判定与性质、正方形的性质以及直角三角形面积的公式.此题难度较大,注意掌握相似三角形面积的比等于相似比的平方定理的应用是解此题的关键.20.(2013•荆州)如图,△ABC是斜边AB的长为3的等腰直角三角形,在△ABC内作第1个内接正方形A1B1D1E1(D1、E1在AB上,A1、B1分别在AC、BC上),再在△A1B1C 内接同样的方法作第2个内接正方形A2B2D2E2,…如此下去,操作n次,则第n个小正方形A n B n D n E n的边长是.考点:相似三角形的判定与性质;等腰直角三角形.专题:规律型.分析:求出第一个、第二个、第三个内接正方形的边长,总结规律可得出第n个小正方形A nB n D n E n的边长.解答:解:∵∠A=∠B=45°,∴AE1=A1E=A1B1=B1D1=D1B,∴第一个内接正方形的边长=AB=1;同理可得:第二个内接正方形的边长=A1B1=AB=;第三个内接正方形的边长=A2B2=AB=;故可推出第n个小正方形A n B n D n E n的边长=AB=.故答案为:.点评:本题考查了相似三角形的判定与性质、等腰直角三角形的性质,解答本题的关键是求出前几个内接正方形的边长,得出一般规律.三.解答题(共8小题)21.(2013•珠海)如图,在Rt△ABC中,∠C=90°,点P为AC边上的一点,将线段AP绕点A顺时针方向旋转(点P对应点P′),当AP旋转至AP′⊥AB时,点B、P、P′恰好在同一直线上,此时作P′E⊥AC于点E.(1)求证:∠CBP=∠ABP;(2)求证:AE=CP;(3)当,BP′=5时,求线段AB的长.考点:全等三角形的判定与性质;角平分线的性质;勾股定理;相似三角形的判定与性质.专题:几何综合题;压轴题.分析:(1)根据旋转的性质可得AP=AP′,根据等边对等角的性质可得∠APP′=∠AP′P,再根据等角的余角相等证明即可;(2)过点P作PD⊥AB于D,根据角平分线上的点到角的两边的距离相等可得CP=DP,然后求出∠PAD=∠AP′E,利用“角角边”证明△APD和△P′AE全等,根据全等三角形对应边相等可得AE=DP,从而得证;(3)设CP=3k,PE=2k,表示出AE=CP=3k,AP′=AP=5k,然后利用勾股定理列式求出P′E=4k,再求出△ABP′和△EPP′相似,根据相似三角形对应边成比例列式求出P′A=AB,然后在Rt△ABP′中,利用勾股定理列式求解即可.解答:(1)证明:∵AP′是AP旋转得到,∴AP=AP′,∴∠APP′=∠AP′P,∵∠C=90°,AP′⊥AB,∴∠CBP+∠BPC=90°,∠ABP+∠AP′P=90°,又∵∠BPC=∠APP′(对顶角相等),∴∠CBP=∠ABP;(2)证明:如图,过点P作PD⊥AB于D,∵∠CBP=∠ABP,∠C=90°,∴CP=DP,∵P′E⊥AC,。
浙教版数学九年级上册 第四章 相似三角形 单元练习(含答案)

浙教版数学九年级上册第四章相似三角形一、选择题1.如果2a =5b ,那么下列比例式中正确的是( )A .a b =25B .a 5=2b C .a 2=b 5D .a 5=b 22.如图,直线l 1∥l 2∥l 3,AC =6,DE =3,EF =2,则AB 的长为( )A .3B .125C .165D .1853.如图,点P 是线段AB 的黄金分割点,且PA >PB ,若AB =2,则PA 的长度是( )A .5−1B .3−5C .25−4D .14.如图, 在▱ABCD 中, E 是边AB 上一点, 连结AC ,DE 相交于点F . 若AE EB =23,则 AF CF 等于( )A .13B .23C .25D .355.如图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC 相似的是( )A .B .C.D.6.△ABC和△DEF是两个等边三角形,AB=2,DE=4,则△ABC与△DEF的面积比是( ) A.1:2B.1:4C.1:8D.1:27.如图,在△ABC中,BC=6,AC=8,∠C=90°,以B为圆心,BC长为半径画弧,与AB交于点D,再分别以点A,D为圆心,大于12AD的长为半径画弧,两弧交于点M,N,作直线MN,分别交AC,AB于点E,F,则AE的长度为( )A.52B.103C.3D.228.如图,△ABC和△A1B1C1是以点O为位似中心的位似图形,点A在线段O A1上,若OA:A A1=1:2,则△ABC和△A1B1C1的周长之比为( )A.1:2B.2:1C.1:3D.3:19.如图,在△ABC中,D为线段AC上一点,点E在AC的延长线上,过点D作DF∥AB交BC于点F,连结BE,EF,若A C2+D E2=A E2,则△BEF与△DCF的面积比为( )A.1:2B.1:3C.2:3D.2:510.如图,矩形ABCD中,AB=4,AD=2,E为边AD上一个动点,连接BE,取BE的中点G,点G绕点E逆时针旋转90°得到点F,连接CF,则△CEF面积的最小值是( )A .4B .154C .3D .114二、填空题11.如图,AC 、BD 交于点O ,连接AB 、CD ,若要使△AOB ∽△COD ,可以添加条件 .(只需写出一个条件即可)12.已知△ABC ∽△DEF ,且AB:DE =1:3,△ABC 与△DEF 的周长比是 .13.如图,在这架小提琴中,点C 是线段AB 的黄金分割点(BC >AC ).若AB =60cm ,则BC = cm .14.如图,在Rt △ABC 中,∠ABC =90°,AB =4,AC =5,AE 平分∠BAC ,点D 是AC 的中点,AE 与BD交于点O ,则的值AOOE .15.如图,矩形ABCD 中,AB =3 6 ,BC =12,E 为AD 中点,F 为AB 上一点,将△AEF 沿EF 折叠后,点A 恰好落到CF 上的点G 处,则折痕EF 的长是 .16.如图,正方形ABCD 中,BF =FG =CG ,BE =2AE ,CE 交DF 、DG 于M 、N 两点,有下列结论:①DF ⊥EC ;②S △MFC =59S 四边形MFBE ;③DM :MF =2:1;④MN NC =913.其中,正确的有 .三、解答题17.(1)已知线段a =2,b =6,求线段a ,b 的比例中项线段c 的长.(2)已知x :y =3:2,求2x−yx的值.18.如图,已知D 、E 分别是△ABC 的边AB 、AC 上的点,DE ∥BC ,AD BD =32,求DE BC 的值.19.如图,AD 、BC 相交于点P ,连接AC 、BD ,且∠1=∠2,AC =6,CP =4,DP =2,求BD 的长.20. 如图,在平行四边形ABCD 中,E 为DC 边上一点,∠EAB =∠EBC .(1)求证:△ABE∽△BEC ;(2)若AB=4,DE=3,求BE的长.21.如图,在四边形ABCD中,OA=OC,OB=OD,AB=BC,AC=12,BD=16.(1)求证:四边形ABCD时菱形;(2)延长BC至点M,连接OM交CD于点N,若∠M=12∠BAC,求MNOM.22.如图,AB∥CD,且AB=2CD,E是AB的中点,F是边BC上的动点(F不与B,C重合),EF与BD相交于点M.(1)求证:△FDM∽△FBM;(2)若F是BC的中点,BD=18,求BM的长;(3)若AD=BC,BD平分∠ABC,点P是线段BD上的动点,是否存在点P使DP⋅BP=BF⋅CD,若存在,求出∠CPF的度数;若不存在,请说明理由.23.如图,在平面直角坐标系中,已知抛物线y=12x2+bx+c与x轴交于A、B两点,与y轴交于C点,且OB=OC=4.(1)求抛物线的解析式;(2)在抛物线上是否存在点M,使∠ABC=∠BCM,如果存在,求M点的坐标,如果不存在,说明理由;(3)若D是抛物线第二象限上一动点,过点D作DF⊥x轴于点F,过点A、B、D的圆与DF交于E点,求△ABE的面积.答案解析部分1.【答案】D2.【答案】D3.【答案】A4.【答案】C5.【答案】B6.【答案】B7.【答案】A8.【答案】C9.【答案】A10.【答案】B11.【答案】∠A=∠C(答案不唯一)12.【答案】1:313.【答案】(305−30)14.【答案】9415.【答案】21516.【答案】①④17.【答案】(1)解:∵线段a=2,b=6,线段c是线段a、b的比例中项,∴c2=ab=12,∴c=23(负值舍去);(2)解:∵x:y=3:2,∴可设x=3k,y=2k(k≠0),∴2x−yx=6k−2k3k=43.18.【答案】3519.【答案】BD=320.【答案】(1)证明:∵平行四边形ABCD,∴AB//CD,∴∠EBA=∠BEC,又∵∠EAB=∠EBC,∴△ABE∽△BEC.(2)解:∵四边形ABCD 平行四边形,∴AB =DC =4,∵DE =3,∴CE =1,∵△ABE∽△BEC ,∴AB EB =EBEC,∴AB ⋅CE =B E 2=4×1=4,∴BE =2.21.【答案】(1)证明:∵ 在四边形ABCD 中,OA=OC ,OB=OD∴ 四边形ABCD 是平行四边形 ∵ AB=BC∴ 平行四边形ABCD 是菱形。
第27章 相似三角形发单元测试卷2022-2023学年人教版九年级数学下册

人教新版九年级下册《第27章相似三角形》2022年单元测试卷一、单选题(本大题共10小题,共44分)1.(5分)选项图形与如图所示图形相似的是()A. B.C. D.2.(5分)若ΔABC∽ΔDEF,相似比为1:2,则ΔABC与ΔDEF的周长比为()A. 2:1B. 1:2C. 4:1D. 1:43.(5分)如图,点P是△ABC的边AB上的一点,若添加一个条件,使△ABC与△CBP相似,则下列所添加的条件错误的是()A. ∠BPC=∠ACBB. ∠A=∠BCPC. AB:BC=BC:PBD. AC:CP=AB:BC4.(5分)将一个直角三角形的三边扩大3倍,得到的三角形是()A. 直角三角形B. 锐角三角形C. 钝角三角形D. 不能确定5.(4分)如图,比例规是伽利略发明的一种画图工具,使用它可以把线段按一定比例伸长或缩短,它是由长度相等的两脚AD和BC交叉构成的.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OD,OB=3OC),然后张开两脚,使A、B两个尖端分别在线段l的两个端点上,若CD=3cm,则AB的长是()A. 9cmB. 12cmC. 15cmD. 18cm6.(4分)如图,在平面直角坐标系中的第一象限内,△ABC的顶点坐标分别是A(1,2),B(1,1),C(3,1),以原点O为位似中心,作出△ABC的位似图形△DEF.若△DEF与△ABC的相似比为2:1.则点F的坐标为()A. (2,4)B. (2,2)C. (6,2)D. (7,2)7.(4分)如图,在正方形ABCD中,E是边AD中点,F是边AB上一动点,G是EF延长线上一点,且GF=EF.若AD=4,则线段CG长度的最小值和最大值分别为()A. 4,4√2B. 2√5,4√2C. 2√5,2√13D. 6,2√138.(4分)如图,在RtΔABC中,∠ACB=90°,AC=6,BC=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是()A. 125B. 4 C. 245D. 59.(4分)如图,PA、PB切⊙O于点A、B,点C是⊙O上一点,且∠ACB=65°,则∠P 等于()A. 65°B. 130°C. 50°D. 45°10.(4分)如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②SΔFAB:S四边形CBFG=1:2;③∠ABC=∠ABF;①A D2=FQ⋅AC,其中正确的结论的个数是()A. 1B. 2C. 3D. 4二、填空题(本大题共7小题,共28分)11.(4分)如图,已知ADDB =AEEC,AD=6.4cm,DB=4.8cm,EC=4.2cm,则AC=______ cm.12.(4分)如图,表示ΔAOB为O为位似中心,扩大到ΔCOD,各点坐标分别为:A(1,2),B(3,0),D(4,0),则点C坐标为 ______ .13.(4分)如图,已知CB平分∠ACD,CB⊥AB垂足为点B,CD⊥BD垂足为点D,AC=5cm,BC=4cm,则BD=______.14.(4分)如图,正方形ABCD中,BE=EF=FC,CG=2GD,BG分别交AE、AF于M、N,下列结论:①AF⊥BG;②BN=43NF;③S四边形CGNF=S△ABN;④BMMG=38.其中正确结论的序号有 ______.15.(4分)如图,平行四边形ABCD中,E为AD的中点,已知ΔDEF的面积为1,则四边形ABFE的面积为______.16.(4分)如图,小明用长为3m的竹竿CD做测量工具,测量学校旗杆AB的高度,移动竹竿,使竹竿与旗杆的距离DB=12m,则旗杆AB的高为______m.17.(4分)如图,点P1,P2,P3,P4均在坐标轴上,且P1P2⊥P2P3,P2P3⊥P3P4.若点P1,P2的坐标分别为(0,−1),(−2,0),则点P4的坐标为________.三、解答题(本大题共7小题,共28分)18.(4分)如图,一个木框,内外是两个矩形ABCD和EFGH,问按图中所示尺寸,满足什么条件这两个矩形相似?19.(4分)如图所示,在△ABC中,∠ACB=90°,AM是BC边的中线,CN⊥AM于N 点,连接BN.求证:(1)△MCN∽△MAC;(2)∠NBM=∠BAM.20.(4分)如图所示,在△ABC中,DE//BC,EF//CD,AF=4,AB=6.求AD的长.21.(4分)如图,在四边形ABCD中,点E是对角线AC上一点,且ABAC =AEAD=BECD.(1)若∠DAE=22°,求∠BAD的度数;(2)判断△ADE与△ACB是否相似,并说明理由.22.(4分)如图,△ABC内接于⊙O,AB是⊙O的直径,BD与⊙O相切于点B,BD交AC的延长线于点D,E为BD的中点,连接CE.(1)求证:CE是⊙O的切线.(2)连接OE,已知BD=3√5,CD=5,求OE的长.23.(4分)将一个直角三角形纸片AOB,放置在平面直角坐标系中,点A(−√3,0),点B(0,1),点O(0,0).过边OA上的动点M(点M不与点O,A重合)作MN⊥AB于点N,沿着MN折叠该纸片,得顶点A的对应点A′.设AM=m,折叠后的△A′NM与四边形OBNM重叠部分的面积为S.(Ⅰ)如图①,当点A′与顶点B重合时,求点M的坐标;(Ⅰ)如图②,当点A′落在第一象限时,A′M与OB相交于点C,试用含m的式子表示S,并直接写出m的取值范围;(Ⅰ)当1⩽m<√3时,求S的取值范围(直接写出结果即可).24.(4分)如图,在△ABC中,AB=BC,AD⊥BC于点D,BE⊥AC于点E.AD交BE 于点F,点G为BC边的中点,作BH⊥AB交直线FG于点H.(1)如图1,当∠ABC=60°,AF=3时,CF=______,BH=______.(2)如图2,当∠ABC=45°时,试探索AF与BH的数量关系,并证明.(3)如图3,当∠ABC=α(0°<α<60°)时,(2)中AF与BH的数量关系 ______成立(填“仍然”或“不再”),请说明理由.答案和解析1.【答案】D;【解析】解:因为相似图形的形状相同,所以A、B、C中形状不同,故选:D.根据相似图形的性质,根据形状相同排除A、B、C,可得出答案.此题主要考查相似图形的性质,掌握相似图形的对应角相等、对应边成比例是解答该题的关键.2.【答案】B;【解析】解:∵ΔABC∽ΔDEF,ΔABC与ΔDEF的相似比为1:2,∴ΔABC与ΔDEF的周长比为1:2.故选:B.根据相似三角形的周长的比等于相似比得出.这道题主要考查了相似三角形的性质:相似三角形(多边形)的周长的比等于相似比.3.【答案】D;【解析】解:A、已知∠B=∠B,若∠BPC=∠ACB,则△ABC与△CBP相似,故A不符合题意;B、已知∠B=∠B,若∠A=∠BCP,则△ABC与△CBP相似,故B不符合题意;C、已知∠B=∠B,若AB:BC=BC:PB,则△ABC与△CBP相似,故C不符合题意;D、若AC:CP=AB:BC,但夹角不是公共等角∠B,则不能证明△ABC与△CBP相似,故D符合题意,故选:D.根据相似三角形的判定逐一进行判断即可.此题主要考查了相似三角形的性质,熟练掌握相似三角形的判定是解答该题的关键.4.【答案】A;【解析】解:将直角三角形的三条边长同时扩大同一倍数,得到的三角形与原三角形相似,因而得到的三角形是直角三角形故选A.根据三组对应边的比相等的三角形相似,依据相似三角形的性质就可以求解.这道题主要考查相似三角形的判定以及性质,得出两三角形相似是解答该题的关键,是基础题,难度不大.5.【答案】A;【解析】解:∵OA=3OD,OB=3CO,∴OA:OD=BO:CO=3:1,∠AOB=∠DOC,∴ΔAOB∽ΔDOC,∴AOOD =ABCD=31,∴AB=3CD,∵CD=3cm,∴AB=9cm,故选:A.首先根据题意利用两组对边的比相等且夹角相等的三角形是相似三角形判定相似,然后利用相似三角形的性质求解.此题主要考查相似三角形的应用,解答该题的关键是熟练掌握相似三角形的判定方法,学会利用相似三角形的性质解决问题.6.【答案】C;【解析】解:∵△ABC与△DEF位似.△DEF与△ABC的相似比为2:1,∴△ABC与△DEF位似比为1:2,∵点C的坐标为(3,1),∴点F的坐标为(3×2,1×2),即(6,2),故选:C.根据位似变换的性质解答即可.此题主要考查的是位似变换的性质、相似三角形的性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或−k.7.【答案】D;【解析】解:如图,过点G作GH⊥AB于点H,作GK⊥BC交CB的延长线于点K,则∠GHF=∠GHB=∠K=90°,∵四边形ABCD是正方形,∴∠A=∠ABC=90°,AD=AB=BC=4,∵E是边AD中点,∴AE=2,在△AFE和△HFG中,{∠A=∠GHF∠AFE=∠GFHEF=GF,∴△AFE≌△HFG(AAS),∴AF=FH,GH=AE=2,设AF=FH=x,且0⩽x⩽4,则BH=|4−2x|,∵∠HBK=180°−90°=90°=∠K=∠GHB,∴四边形BHGK是矩形,∴GK=BH=|4−2x|,BK=GH=2,∴CK=CB+BK=4+2=6,∴CG2=CK2+GK2=62+(4−2x)2=4(x−2)2+36,∵4>0,∴当x=2时,CG2有最小值36,即CG的最小值为6,∵0⩽x⩽4,∴当x=0或4时,CG2有最大值52,即CG的最大值为√52=2√13,故选:D.如图,过点G作GH⊥AB于点H,作GK⊥BC交CB的延长线于点K,结合正方形的性质可证△AFE≌△HFG(AAS),得出:AF=FH,GH=AE=2,设AF=FH=x,且0⩽x⩽4,则BH=|4−2x|,由勾股定理可得CG2=CK2+GK2=62+(4−2x)2=4(x−2)2+36,再运用二次函数的性质即可求得答案.本题是几何综合题,考查了正方形的性质,矩形的判定和性质,全等三角形的判定和性质,勾股定理,二次函数的性质等,解答该题的关键是学会添加常用辅助线,构造全等三角形解决问题.8.【答案】C;【解析】解:如图,过点C作CM⊥AB交AB于点M,交AD于点P,过点P作PQ⊥AC于点Q,∵AD是∠BAC的平分线.∴PQ=PM,这时PC+PQ有最小值,即CM的长度,∵AC=6,BC=8,∠ACB=90°,∴AB=√AC2+BC2=√62+82=10.∵SΔABC=12AB⋅CM=12AC⋅BC,∴CM=AC.BCAB =6×810=245,即PC+PQ的最小值为245.故选:C.过点C作CM⊥AB交AB于点M,交AD于点P,过点P作PQ⊥AC于点Q,由AD是∠BAC 的平分线.得出PQ=PM,这时PC+PQ有最小值,即CM的长度,运用勾股定理求出AB,再运用SΔABC=12AB⋅CM=12AC⋅BC,得出CM的值,即PC+PQ的最小值.这道题主要考查了轴对称问题,解答该题的关键是找出满足PC+PQ有最小值时点P和Q的位置.9.【答案】C;【解析】解:连接OA,OB.PA、PB切⊙O于点A、B,则∠PAO=∠PBO=90°,由圆周角定理知,∠AOB=2∠C=130°,∵∠P+∠PAO+∠PBO+∠AOB=360°,∴∠P=180°−∠AOB=50°.故选:C.连接OA,OB.根据圆周角定理和四边形内角和定理求解即可.本题利用了切线的概念,圆周角定理,四边形的内角和为360度求解,是中考常见题型.10.【答案】D;【解析】该题考查了相似三角形的判定与性质、全等三角形的判定与性质、正方形的性质、三角形的面积,矩形的判定与性质、等腰直角三角形的性质;熟练掌握正方形的性质,证明三角形全等和三角形相似是解决问题的关键.由正方形的性质得出∠FAD=90°,AD=AF=EF,证出∠CAD=∠AFG,由AAS证明ΔFGA≌ΔACD,得出AC=FG,①正确;证明四边形CBFG是矩形,得出SΔFAB=1 2FB.FG=12S四边形CBFG,②正确;由等腰直角三角形的性质和矩形的性质得出∠ABC=∠ABF=45°,③正确;证出ΔACD∽ΔFEQ,得出对应边成比例,得出AD.FE=AD2=FQ.AC,④正确.解:∵四边形ADEF为正方形,∴∠FAD=90°,AD=AF=EF,∴∠CAD+∠FAG=90°,∵FG⊥CA,∴∠GAF+∠AFG=90°,∴∠CAD=∠AFG,在ΔFGA和ΔACD中,{∠G=∠C∠AFG=∠CADAF=AD∴ΔFGA≌ΔACD(AAS),∴FG=AC,①正确;∵BC=AC,∴FG=BC,∵∠ACB=90°,FG⊥CA,∴FG//BC,∵FG=BC,FG//BC,∴四边形CBFG是平行四边形,又∵FG⊥CA,∴四边形CBFG是矩形,∴∠CBF=90°,SΔFAB=12FB.FG=12S四边形CBFG,②正确;∵CA=CB,∠C=∠CBF=90°,∴∠ABC=∠ABF=45°,③正确;易证∠DQB=∠ADC,∴∠FQE=∠DQB=∠ADC,∠E=∠C=90°,∴ΔACD∽ΔFEQ,∴ACEF =ADFQ,∴AD.FE=AD2=FQ.AC,④正确;故选D.11.【答案】9.8;【解析】解:∵ADDB =AEEC,∴6.44.8=AE4.2,解得:AE=5.6(cm),则AC=AE+EC=5.6+4.2=9.8(cm),故答案为:9.8.根据ADDB =AEEC,可以先求出AE的长,即可得到AC的长.此题主要考查了比例的基本性质,在比例式中,已知三个就可求得第四个的量.12.【答案】(43,83); 【解析】解:∵ΔAOB 与ΔCOD 是位似图形,OB =3,OD =4,所以其位似比为3:4.∵点A 的坐标为A(1,2),所以点C 的坐标为(43,83).故答案为:(43,83).由图中数据可得两个三角形的位似比,进而由点A 的坐标,结合位似比即可得出点C 的坐标.此题主要考查了位似变换以及坐标与图形结合的问题,能够利用位似比求解一些简单的计算问题.13.【答案】125; 【解析】解:∵CB ⊥AB 垂足为点B ,∴∠ABC =90°,∵AC =5cm ,BC =4cm ,∴AB =√AC 2−BC 2=3(cm ),∵CD ⊥BD 垂足为点D ,∴∠ABC =∠D =90°,∵CB 平分∠ACD ,∴∠ACB =∠BCD ,∴ΔACB ∽ΔBCD ,∴AC BC=AB BD , ∴54=3BD ,∴BD =125,故答案为:125.根据勾股定理得到AB =√AC 2−BC 2=3(cm ),根据角平分线的定义得到∠ACB =∠BCD ,根据相似三角形的性质即可得到结论.此题主要考查了相似三角形的判定和性质,角平分线的定义,垂直的定义,勾股定理,熟练掌握相似三角形的判定和性质定理是解答该题的关键.14.【答案】①③④;【解析】解:过点G 作GH ⊥AB ,垂足为H ,交AE 于点O ,∵四边形ABCD是正方形,∴AD=AB=BC=CD,∠ABC=∠C=∠DAB=∠D=90°,AD//BC,∵BE=EF=FC,CG=2GD,∴BF=23BC,CG=23CD,∴BF=CG,∴△ABF≌△BCG(SAS),∴∠AFB=∠CGB,∵∠CGB+∠CBG=90°,∴∠AFB+∠CBG=90°,∴∠BNF=180°−(∠AFB+∠CBG)=90°,∴AF⊥BG,故①正确;在Rt△ABF中,tan∠AFB=ABBF =AB23BC=32,∴在Rt△BNF中,tan∠AFB=BNNF =32,∴BN=32NF,故②不正确;∵△ABF≌△BCG,∴S△ABF=S△BCG,∴S△ABF−S△BNF=S△BCG−S△BNF,∴S四边形CGNF=S△ABN,故③正确;∵∠DAB=∠D=∠AHG=90°,∴四边形ADGH是矩形,∴AD=GH,DG=AH,AD//GH,∴GH//BC,设DG=AH=a,∴CD=3DG=3a,∴AB=AD=BC=3a,∴BE=13BC=a,∵∠AHO=∠ABE=90°,∠HAO=∠BAE,∴△AHO∽△ABE,∴AHAB =OHBE,∴a3a =OHa,∴OH=13a,∴GO=GH−OH=3a−13a=83a,∵GH//BC,∴∠OGM=∠GBE,∠GOM=∠OEB,∴△GOM∽△BEM,∴GOBE =GMBM=83aa=83,∴BMMG =38,故④正确,所以,正确结论的序号有:①③④,故答案为:①③④.过点G作GH⊥AB,垂足为H,交AE于点O,根据正方形的性质可得AD=AB=BC= CD,∠ABC=∠C=∠DAB=∠D=90°,AD//BC,再根据BE=EF=FC,CG=2GD,从而可得BF=CG,进而可证△ABF≌△BCG,然后利用全等三角形的性质可得∠AFB=∠CGB,从而可得∠AFB+∠CBG=90°,即可判断①;在Rt△ABF中,利用锐角三角函数的定义求出tan∠AFB=32,然后在Rt△BNF中,利用锐角三角函数的定义可得BNNF =32,即可判断②,由①可得△ABF≌△BCG,从而可得S△ABF=S△BCG,即可判断③,根据题意易证四边形ADGH是矩形,从而可得AD=GH,DG=AH,AD//GH,进而可得GH//BC,然后设DG=AH=a,再证明A字模型相似三角形△AHO∽△ABE,从而利用相似三角形的性质求出OH的长,进而求出GO的长,最后再证明8字模型相似三角形△GOM∽△BEM,利用相似三角形的性质即可判断④.此题主要考查了正方形的性质,解直角三角形,全等三角形的判定与性质,相似三角形的判定与性质,熟练掌握全等三角形的判定与性质,相似三角形的判定与性质,以及正方形的十字架模型是解答该题的关键.15.【答案】5;【解析】解:∵四边形ABCD是平行四边形,∴AD//BC,∴DE:BC=EF:FC=DF:FB=1:2,ΔBFC∽ΔDFE,∴SΔBFC=4⋅SΔDEF=4,SΔDFC=2⋅SΔDEF=2,SΔBDC=SΔABD=6,∴S四边形ABFE=SΔABD−SΔDEF=6−1=5,故答案为5.由于四边形ABCD是平行四边形,那么AD//BC,AD=BC,根据平行线分线段成比例定理的推论可得ΔDEF∽ΔBCF,再根据E是AD中点,易求出相似比,从而可求ΔBCF的面积,再利用ΔBCF与ΔDEF是同高的三角形,则两个三角形面积比等于它们的底之比,从而易求ΔDCF的面积,由此即可解决问题;该题考查了平行四边形的性质、平行线分线段成比例定理的推论、相似三角形的判定和性质.解答该题的关键是知道相似三角形的面积比等于相似比的平方、同高两个三角形面积比等于底之比,先求出ΔBCF的面积.16.【答案】9;【解析】解:由题意得,CD//AB,∴ΔOCD∽ΔOAB,∴CDAB =ODOB,即3AB =66+12,解得AB=9.故答案为:9.根据ΔOCD和ΔOAB相似,利用相似三角形对应边成比例列式求解即可.该题考查了相似三角形的应用,是基础题,熟记相似三角形对应边成比例是解答该题的关键.17.【答案】(8,0);【解析】该题考查的是相似三角形的判定和性质以及坐标与图形的性质,掌握相似三角形的判定定理和性质定理是解答该题的关键.根据相似三角形的性质求出P3D的坐标,再根据相似三角形的性质计算求出OP4的长,得到答案.解:∵点P1,P2的坐标分别为(0,−1),(−2,0),∴OP1=1,OP2=2.∵RtΔP1OP2∽RtΔP2OP3,∴OP1OP2=OP2OP3,即12=2OP3,解得OP3=4.∵RtΔP2OP3∽RtΔP3OP4,∴OP2OP3=OP3OP4,即24=4OP4,解得OP4=8,则点P4的坐标为(8,0).故答案为(8,0).18.【答案】解:当两个矩形ABCD和EFGH相似时,ADEH =CDGH,即:mm−2b =nn−2a,整理得:ab =nm,故当ab =nm时两个矩形相似.;【解析】利用相似多边形的对应边的比相等列出比例式即可求得尺寸满足的条件.此题主要考查了相似多边形的性质,解答该题的关键是根据题意列出比例式,难度不大.19.【答案】证明:(1)∵∠ACB=90°,CN⊥AM,∴∠ACB=∠MNC,∵∠NMC=∠CMA,∴△MCN∽△MAC;(2)由(1)得:△MCN∽△MAC,∴MCMA =MNMC,∴MC2=MN•MA,∵AM是BC边的中线,∴MB=MC,∴MB2=MN•MA,∵∠BMN=∠AMB,∴△MNB∽△MBA,∴∠NBM=∠BAM.;【解析】(1)根据两个角相等的两个三角形相似可直接证明;(2)由(1)得:△MCN∽△MAC,则MCMA =MNMC,再根据BM=CM,以及∠BMN=∠AMB,可证△MNB∽△MBA,从而解决问题.此题主要考查了相似三角形的判定与性质,利用两边成比例且夹角相等证明△MNB∽△MBA是解答该题的关键.20.【答案】解:∵DE∥BC,∴△ADE∽△ABC.∴ADAB =AEAC①.∵EF∥CD,∴△AEF∽△ACD.∴AFAD =AEAC②.由①与②,得AFAD =AD AB,∴AD2=AF•AB=4×6=24.∴AD=2√6.;【解析】由DE//BC,EF//CD,得△AEF∽△ACD,可得△ADE∽△ABC分别得AFAD =AEAC,ADAB=AE AC ,进而可证得AFAD=ADAB,便可求得答案.此题主要考查了相似三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.21.【答案】解:(1)∵ABAC =AEAD=BECD.∴△ABE∽△ACD,∴∠DAE=∠BAE=22°,∴∠BAD=44°;(2)△ADE∽△ACB,理由如下:∵ABAC =AEAD,∴ABAE =ACAD,又∵∠DAC=∠BAE,∴△ADE∽△ACB.;【解析】(1)通过证明△ABE∽△ACD,可得∠DAE=∠BAE=22°,即可求解;(2)由两组对应边的比相等且夹角对应相等的两个三角形相似,可证明△ADE∽△ACB.此题主要考查了相似三角形的判定,掌握相似三角形的判定方法是解答该题的关键.22.【答案】(1)证明:如图,连接OC,∵OB=OC,∴∠OBC=∠OCB,∵AB是直径,∴∠ACB=90°,∵E为BD的中点,∴BE=CE=DE,∴∠ECB=∠EBC,∵BD与⊙O相切于点B,∴∠ABD=90°,∴∠OBC+∠EBC=90°,∴∠OCB+∠ECB=90°,∴∠OCE=90°∴OC ⊥CE ,又∵OC 为半径,∴CE 是⊙O 的切线;(2)解:连接OE ,∵∠D=∠D ,∠BCD=∠ABD ,∴△BCD ∽△ABD ,∴BD AD =CD BD ,∴BD 2=AD•CD ,∴(3√5)2=5AD ,∴AD=9,∵E 为BD 的中点,AO=BO ,∴OE=12AD=92.; 【解析】(1)由等腰三角形的性质可得∠OBC =∠OCB ,由圆周角定理可得∠ACB =90°,由直角三角形的性质可得BE =CE =DE ,可得∠ECB =∠EBC ,由切线的性质可得∠ABD =90°,可证OC ⊥CE ,可得结论;(2)通过证明△BCD ∽△ABD ,可得BD AD =CD BD ,可求AD 的长,由三角形中位线定理可求解.此题主要考查了相似三角形的判定和性质,圆的有关知识,等腰三角形的性质,直角三角形的性质,利用相似三角形的性质求出AD 的长是本题的关键.23.【答案】解:(Ⅰ)由题意得BM=AM=m ,∵A (-√3,0),B (0,1),∴OB=1,OA=√3,∴OM=√3-m ,由勾股定理得:BM 2=OB 2+OM 2,∴m 2=12+(√3-m )2,即m2=1+3-2√3m+m2,m=2√33,∴OM=√3−2√33=√33,∴M(-√33,0);(Ⅱ)S=5√38m2+3m−√3,2√33<m≤√3,由(1)知,使A'落在第一象限,则m>2√33,∵OA=√3,∴2√33<m≤√3,∵△MNA'是由△AMN翻折得到,∴S=S△AOB-S△AMN-S△MOC∵OA=√3,OB=1,∴S△AOB=12×√3×1=√32,AB=√OA2+OB2=2,∵AM=m,∴M(-√3+m,0),∵MN⊥AB,∴Sin∠BAO=BOAB =MNAM,∴12=MNm,∴MN=m2,∴AN=√MA2−MN2=√32m,∴S△AMN=12×√32m×m2=√38m2,∵sin∠BAO=12,∴∠BAO=30°,∴∠AMN=∠A′MN=60°,∴∠CMO=180°-∠AMN-∠A′MN=60°,tan60°=√3=COMO,∵MO=√3-m,∴CO=√3(√3−m),∴S△CMO=12×CO×OM=12×√3(√3−m)(√3−m)=√32(√3−m)2∴S=√32−√38m2−√32(√3−m)2=√3 2−√38m2−√32(3−2√3m+m2)=√32−√38m 2−3√32+3m −√32m 2 =-5√38m 2+3m-√3,(Ⅲ)√38<S ≤√35, 由(2)得:S=-5√38m 2+3m-√3, 当m=-2×(−5√38)=4√35时S 取最大值,4√35<m <√3单调递减, ∵4√35>1, ∴顶点为抛物线的最高点,顶点的纵坐标为S 的最大值,S max =4ac−b 24a =4×(−5√38)×√3−94×(−5√38)=√35,S (m=1)=-5√38+3−√3=3−13√38,S (m=√3)=-5√38×(√3)2+3×√3−√3=√38, ∵S (m=√3)<S (m=1),∴√38<S ≤√35.; 【解析】(Ⅰ)由坐标得OA 、OB 的长,再根据勾股定理得m 的值,从而求出OM 的长,得到M 坐标; (Ⅰ)因为使A ′落在第一象限,OA =√3,所以可以确定m 的取值范围;由图可得S =S △AOB −S △AMN −S △MOC ,所以分别求出三个三角形面积(用含m 的式子表示),其中用到三角函数、勾股定理等;(Ⅰ)根据(2)得到的关于S 的二次函数解析式可知,抛物线开口向下,顶点在1⩽m <√3部分,所以顶点的纵坐标是S 的最大值;再分别计算m =1和m =√3时函数值,比较大小,从而求解.本题属于几何代数综合题,考查勾股定理、三角函数、待定系数法求二次函数解析式及最值,解题关键是结合图形,分析题意综合运用以上知识点,计算比较繁琐.24.【答案】3 3 仍然;【解析】解:(1)∵AB =AC ,∠ABC =60°,∴△ABC 是等边三角形,BE ⊥AC ,∴BE 垂直平分AC ,∠CBE =30°,∴AF =CF =3,∵BH ⊥AB ,∴∠HBC =30°,∵AD ⊥BC ,∴∠H =∠BFH =60°,BF =CF ,∴BF=BH=CF=3,故答案为:3,3;(2)AF=BH,理由如下:连接CF,∵∠ABD=45°,AD⊥BC,∴AD=BD,∵BE⊥AC,∴∠AEF=∠BDF=90°,∵∠AFE=∠BFD,∴∠EAF=∠DBF,∴△ADC≌△BDF(ASA),∴DF=DC,∴∠DCF=45°,∵BH⊥AB,∴∠HBG=45°,∴∠HBG=∠FCD,∵BG=CG,∠BGH=∠CGF,∴△CGF≌△BGH(ASA),∴BH=CF,∵BA=BC,BE⊥AC,∴BE是AC的垂直平分线,∴AF=CF,∴AF=BH;(3)仍然成立,理由如下:连接CF,由(2)同理可得,△ADC∽△BDF,∴ADBD =DCDF,∴∠ABD=∠CFD,∵BH⊥AB,∴∠BHG+∠ABD=90°,∴∠HBG=∠FCG,由(2)同理可得,△CGF≌△BGH(ASA),∴BH=CF,∵BA=BC,BE⊥AC,∴BE是AC的垂直平分线,∴AF=CF,∴AF=BH,故答案为:仍然.(1)根据等边三角形的性质可得AF=CF=BF=3,再说明BF=BH,可得答案;(2)连接CF,首先利用ASA证明△ADC≌△BDF,得DF=DC,则∠DCF=45°,再证明△CGF≌△BGH,得BH=CF,从而证明结论;(3)连接CF,首先证明△ADC∽△BDF,得ADBD =DCDF,则有∠ABD=∠CFD,由(2)同理可得,△CGF≌△BGH(ASA),从而解决问题.本题是三角形综合题,主要考查了等腰三角形的性质,等边三角形的性质,全等三角形的判定与性质,相似三角形的判定与性质,证明△CGF≌△BGH是解答该题的关键.。
最新人教版九年级数学下册第二十七章-相似单元测试试题(含解析)

人教版九年级数学下册第二十七章-相似单元测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如果两个相似多边形的周长比是2:3,那么它们的面积比为()A.2:3 B.4:9 C D.16:812、如图,已知直线a∥b∥c,分别交直线m、n于点A、C、E、B、D、F,AC=4,CE=6,BD=3,则DF 的长是()A.92B.4 C.6 D.23、一种数学课本的宽与长之比为黄金比,已知它的长是26cm,那么它的宽是()cmA.B.26 C.D.134、某校开展“展青春风采,树强国信念”科普阅读活动.小明看到黄金分割比是一种数学上的比例关系,它具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值,应用时一般取0.618.特别奇妙的是在正五边形中,如图所示,连接顶点AB ,AC ,ACB ∠的平分线交边AB 于点D ,则点D 就是线段AB 的一个黄金分割点,即0.618AD AB≈,已知10cm AC =,那么该正五边形的周长为( )A .19.1cmB .25cmC .30.9cmD .40cm5、如图,已知AB 、CD 、EF 都与BD 垂直,垂足分别是B 、D 、F ,且AB =4,CD =12,那么EF 的长是( )A .2B .2.5C .2.8D .36、在ABC 中,D ,E 分别是边AB ,AC 上的两个点,并且DE ∥BC ,AD :BD =3:2,则ADE 与四边形BCED 的面积之比为( )A .3:5B .4:25C .9:16D .9:257、在△ABC 中,AB =AC ,∠A =36°,BD 平分∠ABC ,交AC 于点D .BC =8,则AC =( )A . 4B . 4C .16D .128、如图, 点 E 是线段 BC 的中点, B C AED ∠∠∠==, 下列结论中, 说法错误的是( )A .ABE △ 与 ECD 相似B .ABE △ 与 AED 相似C .AB AE AE AD = D .BAE ADE ∠=∠9、如图,线段AB 两个端点的坐标分别为(6,6)A ,(8,2)B ,以原点O 为位似中心,在第一象限内将线段AB 缩小为原来的12后得到线段CD ,则端点C 的坐标为( )A .(3,3)B .(4,3)C .(3,1)D .(4,1) 10、如图,H 是平行四边形ABCD 的边AD 上一点,且12AH DH =,BH 与AC 相交于点K ,那么AK :KC 等于()A.1:1 B.1:2 C.1:3 D.1:4第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知O是坐标原点,点A、B分别在x轴,y轴上,OA=1,OB=2,若点D在x轴下方,且使得△AOB和△OAD相似(不包括全等),则点D的坐标为__________.2、如图,在△ABC中,∠ABC=45°,过点C作CD⊥AB于点D,过点B作BM⊥AC于点M,连接MD,过点D作DN⊥MD,交BM于点N.CD与BM相交于点E,若点E是CD的中点;下列结论:①∠AMD=45°;②NE﹣EM=MC;③EM:MC:NE=1:2:3;④S△ACD=2S△DNE.其中正确的结论有 _____.(填写序号即可)3、如图,在ABC中,D为AB边上的一点,要使BAC EAD△∽△成立,还需要添加一个条件,你添加的条件是__________4、如图,ABC ∆中,AB AC =,点D 为AB 上一点,4BD AD =,连接CD ,45BCD ︒∠=,132AC =,则BC 的长为________.5、若3x =7y ,则x y=_____.三、解答题(5小题,每小题10分,共计50分)1、小豪为了测量某塔高度,把镜子放在离塔(AB )50m 的点E 处,然后沿着直线BE 后退到点D ,这时恰好在镜子里看到塔尖A ,再测得DE =2.4m ,小豪目高CD =1.68m ,求塔的高度AB .2、阅读:两千多年前,古希腊数学家欧多克索斯发现了黄金分割,即:点P 是线段AB 上一点(AP >BP ),若满足BP AP AP AB=,则称点P 是AB 的黄金分割点.黄金分割在我们的数学学习中也处处可见,比如我们把有一个内角为36°的等腰三角形称为“黄金三角形”.(1)理解:如图(1),请将内角分别36°,36°,108°的等腰三角形分割成三个“黄金三角形”,并标出每个“黄金三角形”内角的度数;(2)运用:如图(2),已知等腰三角形ABC 为“黄金三角形”,AB=AC ,∠A=36°,BD 为∠ABC 的平分线.求证:点D 是AC 的黄金分割点.3、如图,在等腰直角ABC 中,90ACB ∠=︒,AC BC =,过点C 作射线CP AB ∥,D 为射线CP 上一点,E 在边BC 上(不与,B C 重合)且45DAE ∠=︒,AC 与DE 交于点O .(1)求证:ADC AEB △△;(2)求证:ADE ACB ;(3)如果CD CE =,求证:2CD CO CA =.4、如图,在ABCD 中,BE AB ⊥于点E ,交AC 于点F ,且:1:2AE EB =.(1)求证:AEF CDF∽△△;(2)求AEF与AFD的面积比.5、如图,在Rt△ABC中,∠ACB=90°,BC mAC n,CD⊥AB于点D,点E是直线AC上一动点,连接DE,过点D作FD⊥ED,交直线BC于点F.(1)探究发现:如图1,若m=n,点E在线段AC上,则DEDF=;(2)数学思考:①如图2,若点E在线段AC上,则DEDF=(用含m,n的代数式表示);②当点E在直线AC上运动时,①中的结论是否仍然成立?请仅就图3的情形给出证明;(3)拓展应用:若AC BC=DF=CE的长.---------参考答案-----------一、单选题1、B【解析】【分析】根据相似多边形的周长比求出相似比,再根据相似多边形的面积比等于相似比的平方计算,得到答案.【详解】解:∵两个相似多边形的周长比是2:3,∴这两个相似多边形的相似比是2:3,∴它们的面积比是4:9,故选B.【点睛】本题考查相似多边形的性质,掌握相似多边形的周长比等于相似比,面积比等于相似比的平方是解题的关键.2、A【解析】【分析】由直线////a b c,根据平行线分线段成比例定理,即可得AC BDCE DF=,又由4AC=,6CE=,3BD=,即可求得DF的长即可.【详解】解:////a b c,∴AC BDCE DF=,4AC=,6CE=,3BD=,∴436DF=, 解得:92DF =,故选择A .【点睛】此题考查了平行线分线段成比例定理.题目比较简单,解题的关键是注意数形结合思想的应用.3、D【解析】【分析】根据一种数学课本的宽与长之比为黄金比,即可得到宽:长:1=⎝⎭,由此求解即可. 【详解】解:∵一种数学课本的宽与长之比为黄金比,∴宽:长:1=⎝⎭, ∵长是26cm ,∴宽2613==,故选D .【点睛】本题主要考查了黄金比,解题的关键在于能够熟练掌握黄金分割比例.4、C【解析】【分析】根据正五边形各边相等,各内角相等,得到ADC AEC ≅△△ ,得到AE AD = ,再根据0.618AD AB≈求出AD 即可求解 .【详解】解:∵正五边形每个内角=540=1085︒︒ ,每条边相等,AB AC = , ∴108AEC ECB ∠=∠=︒ ,∵AE EC = , ∴180108362EAC ECA ︒-︒∠=∠==︒ , ∴1083672ACB ECB ECA ∠=∠-∠=︒-︒=︒ ,∵DC 为∠ACB 的平分线,∴1362ACD ACB ∠=∠=︒ , ∵AB AC = ,∴72ABC ACB ∠=∠=︒ , ∴36BAC ∠=︒ , ∵AC AC = ,∴()ADC AEC ASA ≅ , ∴AE AD = , ∵0.618ADAB≈,10cm AB AC ==, ∴100.618 6.18cm AE AD ==⨯= , ∴该五边形周长=6.185=30.9cm ⨯ , 故选:C . 【点睛】本题考查正多边形的性质,三角形全等的判定与性质,黄金比例,通过全等求出正五边形边长是解题关键. 5、D 【解析】 【分析】根据相似三角形的判定得出△DEF ∽△DAB ,△BFE ∽△BDC ,根据相似得出比例式,求出1EF EFAB DC+=,代入求出即可. 【详解】解:∵AB 、CD 、EF 都与BD 垂直,∴AB ∥EF ∥CD ,∴△DEF ∽△DAB ,△BFE ∽△BDC , ∴EF DF AB BD =,EF BFDC BD =, ∴1EF EFAB DC+=, ∵AB =4,CD =12, ∴EF =3, 故选:D . 【点睛】本题考查了相似三角形的性质和判定,能根据相似三角形的性质得出比例式是解此题的关键. 6、C 【解析】 【分析】根据题意先判断△ADE ∽△ABC ,再根据相似三角形的面积之比等于相似比的平方进行分析计算即可得到结论. 【详解】 解:∵DE ∥BC , ∴△ADE ∽△ABC , ∵AD :BD =3:2, ∴:3:5AD AB =, ∴22:3:59:25ADE ABCSS==,∴ADE 与四边形BCED 的面积之比为9:16.【点睛】本题考查相似三角形的判定和性质,注意掌握相似三角形的面积之比等于相似比的平方.7、A【解析】【分析】根据两角对应相等,判定两个三角形相似.再用相似三角形对应边的比相等进行计算求出AC的长.【详解】解:∵AB=AC,∠A=36°,∴∠ABC=∠C=180362︒-︒=72°,∵BD平分∠ABC,∴∠ABD=∠DBC=36°,∴∠BDC=∠ABD+∠A=72°,∴∠BDC=∠C=72°,∴AD=BD=BC=8.∵∠A=∠DBC=36°,∠C公共角,∴△ABC∽△BDC,∴BC ACCD BC=,即888ACAC=-,整理得:AC2-8AC-64=0,解方程得:AC AC舍去),故选:A.本题考查的是相似三角形的判定与性质,先用两角对应相等判定两个三角形相似,再用相似三角形的性质对应边的比相等进行计算求出AC 的长. 8、D 【解析】 【分析】根据外角的性质可得BAE DEC ∠=∠,结合已知条件即可证明ABE ECD ∽△△,从而判断A ,进而可得AB AEEC ED=,根据E 是中点,代换BE CE =,进而根据两边成比例夹角相等可证ABE △∽AED ,进而判断B ,C ,对于D 选项,利用反证法证明即可. 【详解】解:AEC BAE B AED DEC ∠=∠+∠=∠+∠,AED B ∠=∠BAE DEC ∴∠=∠又B C ∠=∠ABE ECD ∴∽故A 选项正确ABE ECD ∽△△AB AEEC ED∴= E 为BE 的中点∴BE CE =AB AEBE ED∴= 又B AED ∠=∠∴ABE △∽AED故B 、C 选项正确ABE △∽AEDDAE BAE ∴∠=∠若BAE ADE ∠=∠ 则DAE ADE ∠=∠AE DE ∴=根据现有条件无法判断AE DE =,故BAE ADE ∠∠≠ 故D 选项不正确 故选:D . 【点睛】本题考查了相似三角形的性质与判定,掌握相似三角形的性质与判定是解题的关键. 9、A 【解析】 【分析】利用位似图形的性质结合两图形的位似比进而得出C 点坐标. 【详解】解:∵线段AB 的两个端点坐标分别为A (6,6),B (8,2),以原点O 为位似中心,在第一象限内将线段AB 缩小为原来的12后得到线段CD ,∴端点C 的横坐标和纵坐标都变为A 点的一半, ∴端点C 的坐标为:(3,3). 故选:A . 【点睛】此题主要考查了位似图形的性质,利用两图形的位似比得出对应点横纵坐标关系是解题关键.10、C【解析】【分析】根据AH=12DH求出AH:AD即AH:BC的值是1:3,再根据相似三角形对应边成比例求出AK:KC的值.【详解】解:∵AH=12DH,∴AH:AD=13,∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴AH:BC=1 3∴△AHK∽△CBK,∴13 AK AHKC BC==故选:C.【点睛】本题考查了相似三角形的判定和性质,平行四边形的性质,比例式的变形是解题的关键.二、填空题1、(0,-12)或(1,-12)或(15,25-)或(45,25-).【解析】【分析】点D 在y 轴上,根据△AOB ∽△DOA ,可得BO OA AO OD=,即211OD =;当点D 在过点A 平行y 轴的直线上,根据△AOB ∽△D 1AO ,1BO OA OA D A =,即1211D A =;当点D 2在AD 上,作D 2E ⊥x 轴于E ,OD 2⊥AD 于D 2,在Rt △AOB 中,ABOD 2A ∽△AOB ,2BO ABAD OA =,即22AD △D 2EA ∽△DOA ,22AD D E AE AD AO OD ==2112D E AE ==,求出AE =45,D 2E =25,当点D 3在0D 1上,作D 3F ⊥x 轴于F ,AD 3⊥OD 1于D 3,根据△OD 3A ∽△BOA ,3BO ABOD AO =,即32OD,3OD =△D 3FO ∽△D 1AO ,3311OD D F OF OD OA AD ==3112D F OF ==,求出OE =45,D 3F =25即可. 【详解】解:点D 在y 轴上,△AOB ∽△DOA , ∴BO OA AO OD=,即211OD =,解得OD =12, 点D (0,-12);当点D 在过点A 平行y 轴的直线上,△AOB ∽△D 1AO ,∴1BO OA OA D A =,即1211D A =, 解得D 1A =12, 点D 1(1,-12);当点D 2在AD 上,作D 2E ⊥x 轴于E ,OD 2⊥AD 于D 2,在Rt △AOB 中,AB= ∵△OD 2A ∽△AOB ,∴2BO AB AD OA =,即22AD =∴2AD =在Rt △OAD 中,AD= ∵D 2E ⊥x 轴于E ,,OD ⊥x 轴, ∴D 2E∥OD ,∴∠AD 2E =∠ADO ,∠D 2EA =∠DOA =90°, ∴△D 2EA ∽△DOA ,∴22AD D EAE AD AO OD ==2112D E AE ==, ∴AE =45,D 2E =25,∴OE =OA -AE =1-45=15,∴D 2(15,25-)当点D 3在OD 1上,作D 3F ⊥x 轴于F ,AD 3⊥OD 1于D 3, ∵△OD 3A ∽△BOA ,∴3BO AB OD AO =,即32OD ,∴3OD =在Rt △OAD 1中,0D 1=, ∵D 3F ⊥x 轴于F ,OD ⊥x 轴, ∴D 3F∥OD ,∴∠OD 3F =∠QD 1A ,∠D 3FO =∠D 1AO =90°, ∴△D 3FO ∽△D 1AO ,∴3311OD D F OF OD OA AD ==3112D FOF ==, ∴OE =45,D 3F =25,∴D 3(45,25-);△AOB 和△OAD 相似(不包括全等),则点D 的坐标为(0,-12)或(1,-12)或(15,25-)或(45,25-). 故答案为(0,-12)或(1,-12)或(15,25-)或(45,25-).【点睛】本题考查三角形相似的判定与性质,勾股定理,掌握三角形相似判定与性质是解题关键.2、①②③【解析】【分析】①利用ASA证明△BDN≌△CDM,再证明△DMN是等腰直角三角形,即可判断结论①正确;②过点D作DF⊥MN于点F,则∠DFE=90°=∠CME,可利用AAS证明△DEF≌△CEM,即可判断结论②正确;③先证明△BDE∽△CME,可得出CMEM=BDDE=2,进而可得CM=2EM,NE=3EM,即可判断结论③正确;④先证明△BED≌△CAD(ASA),可得S△BED=S△CAD,再证明BN<NE,可得S△BDN<S△DEN,进而得出S△BED<2S△DNE,即可判断结论④不正确.【详解】解:①∵CD⊥AB,∴∠BDC=∠ADC=90°,∵∠ABC=45°,∴BD=CD,∵BM⊥AC,∴∠AMB=∠ADC=90°,∴∠A+∠DBN=90°,∠A+∠DCM=90°,∴∠DBN=∠DCM,∵DN⊥MD,∴∠CDM+∠CDN=90°,∵∠CDN+∠BDN=90°,∴∠CDM=∠BDN,∴△BDN≌△CDM(ASA),∴DN =DM ,∵∠MDN =90°,∴△DMN 是等腰直角三角形,∴∠DMN =45°,∴∠AMD =90°-45°=45°,故①正确;②如图1,由(1)知,DN =DM ,过点D 作DF ⊥MN 于点F ,则∠DFE =90°=∠CME ,∵DN ⊥MD ,∴DF =FN ,∵点E 是CD 的中点,∴DE =CE ,在△DEF 和△CEM 中,DEF CEM DFE CME DE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△DEF ≌△CEM (AAS ),∴ME =EF ,CM =DF ,∴FN =CM ,∵NE-EF=FN,∴NE-EM=MC,故②正确;③由①知,∠DBN=∠DCM,又∵∠BED=∠CEM,∴△BDE∽△CME,∴CMEM=BDDE=2,∴CM=2EM,NE=3EM,∴EM:MC:NE=1:2:3,故③正确;④如图2,∵CD⊥AB,∴∠BDE=∠CDA=90°,由①知:∠DBN=∠DCM,BD=CD,∴△BED≌△CAD(ASA),∴S△BED=S△CAD,由①知,△BDN≌△CDM,∴BN=CM,∴BN=FN,∴BN<NE,∴S△BDN<S△DEN,∴S△BED<2S△DNE.∴S△ACD<2S△DNE.故④不正确,故答案为:①②③.【点睛】本题考查全等三角形的判定和性质、等腰直角三角形的性质、相似三角形的判定和性质、三角形面积等知识,解题的关键是熟练掌握全等三角形的判定和性质.3、AED ABC∠=∠∠=∠或ADE ACB【解析】【分析】根据图形可以看出两个三角形有一个公共角A∠,相似证明中,有两个角对应相等即可证明两三角形相似,即添加对应角相等即可.【详解】解:由图可知,在BAC EAD∠=∠△与△中,BAC EAD∴添加的条件为:AED ABC∠=∠∠=∠或ADE ACB故答案为:AED ABC∠=∠∠=∠或ADE ACB【点睛】本题主要考查三角形相似的判定,掌握判定相似的条件是解题的关键.4、【分析】过A点作AH⊥BC,过D点作DE⊥BC,得到BH=CH,△ABH∽△DBE,设BC=10a,求出BE=4a、DE=6a,根据Rt△BDE中,BD2=DE2+BE2,求出a,故可求解.【详解】过A点作AH⊥BC,过D点作DE⊥BC∵AB AC=∴BH=CH,设BC=10a∴BH=CH=5a∵132AC==AB,4BD AD=∴BD=426 55 AB=∵AH⊥BC,DE⊥BC ∴DE∥AH∴△ABH∽△DBE∴AB HBDB EB=∵4BD AD=∴5=4 AB HB DB EB=∴BE=4a∴CE=10a-4a=6a∵45BCD︒∠=,DE⊥BC∴∠CDE=180°-45°-90°=45°∴△ADE是等腰直角三角形∴DE=CE=6a在Rt△BDE中,BD2=DE2+BE2即(265)2=(6a)2+(4a)2解得a∴BC=10a=故答案为:【点睛】此题主要考查三角形内线段求解,解题的关键是熟知相似三角形的判定与性质、等腰三角形的性质及勾股定理的运用.5、7 3【解析】【分析】依据比例的基本性质,即两内项之积等于两外项之积,即可进行解答.【详解】解:若3x=7y,则73 xy故答案为:7 3【点睛】此题主要考查比例的基本性质,掌握比例的性质是解题的关键.三、解答题1、35m【解析】【分析】根据题意得:∠ABE=∠CDE=90°,BB=50m BE=50m,由光的反射定律得:∠AEB=∠CED,从而得到△ABE∽△CDE,再由相似三角形的性质,即可求解.【详解】解:根据题意得:∠ABE=∠CDE=90°,BE=50m,由光的反射定律得:∠AEB=∠CED,∴△ABE∽△CDE,∴BBBB=BBBB,∴BB1.68=502.4,解得:BB=35m,即塔的高度为35m.【点睛】本题主要考查了相似三角形的实际应用,明确题意,准确得到相似三角形是解题的关键.2、(1)见解析;(2)见解析【解析】【分析】(1)根据“黄金三角形”的定义进行分割即可;(2)证明△CBD∽△CAB,结合图形、根据黄金分割的定义判断即可.【详解】解:(1)如图,(2)∴∠ABC=∠C=72°又∵BD平分∠ABC∴∠ABD=∠CBD=12∠ABC=36°∴∠BDC=180°-∠C-∠CBD=72°∴AD=BD,BC=BD即AD=BC=BD·又∵∠C=∠C,∠CBD=∠A∴△CBD∽△CAB∴BBBB=BBBB∴BBBB=BBBB·即D点是AC的黄金分割点【点睛】本题考查的是黄金分割的概念和性质,掌握把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB 和BC的比例中项,叫做把线段AB黄金分割是解题的关键.3、(1)见解析;(2)见解析;(3)见解析【解析】【分析】(1)根据题意先由等腰直角△ABC得到∠BAC=∠B=45°,从而结合∠DAE=45°得到∠DAC=∠EAB,再由平行线的性质得到∠ACP=∠BAC=∠B=45°,从而得到△ADC∽△AEB;(2)根据题意由相似三角形的性质得到AD:AE=AC:AB,转化为AD:AC=AE:AB,结合∠DAE=∠CAB=45°得证结果;(3)根据题意结合∠ACD=45°和∠ACB=90°,由CD=CE得到∠CDE=∠CED=22.5°,从而得到∠DAC=22.5°,然后得到△OCD∽△DCA,最后即可求证.【详解】解:(1)证明:∵ABC是等腰直角三角形,∴∠BBB=∠B=45°,∵∠BBB=45°,BB∥BB,∴∠BBB=∠BBB,∠BBB=∠BBB=∠B=45°,∴ΔBBB∼ΔBBB;(2)证明:∵ΔBBB∼ΔBBB∴BBBB=BBBB,即BBBB=BBBB,∵∠BBB=∠BBB=45°,∴ΔBBB∼ΔBBB;(3)∵∠BBB=45°,∠BBB=90°,∴∠BBB+∠BBB=180°−90°−45°=45°,∵CD CE=,∴∠BBB=∠BBB=22.5°,∵ΔBBB∼ΔBBB,∴∠BBB=∠BBB=90°,∴∠BBB=180°−∠BBB−∠BBB−∠BBB=180°−90°−22.5°−45°=22.5°∴∠BBB=∠BBB,又∵∠BBB=∠BBB,∴ΔBBB∼ΔBBB,∴BBBB=BBBB,∴2CD CO CA=【点睛】本题考查相似三角形的判定与性质以及等腰直角三角形的性质,解题的关键是通过线段的比例关系得到三角形相似.4、(1)见解析;(2)1:3【解析】【分析】(1)由ABCD得出BB∥BB,由平行线的性质得∠BBB=∠BBB,∠BBB=∠BBB,即可证明△BBB∼△BBB;(2)由:1:2AE EB=得出BB:BB=1:3,由相似三角形的性质得BBBB =BBBB=13由BE AB⊥得∠BBB=90°,由三角形的面积公式得B△BBB=12×BB×BB,B△BBB=12×BB×BB,即可求出B△BBB:B△BBB.【详解】(1)∵四边形ABCD 是平行四边形,∴BB ∥BB ,∴∠BBB =∠BBB ,∠BBB =∠BBB ,∴△BBB ∼△BBB ;(2)∵BB :BB =1:2,∴BB :BB =BB :BB =1:3,∵△BBB ∼△BBB ,∴BB BB =BB BB =13,∵BB ⊥BB ,∴∠BBB =90°,∵B △BBB =12×BB ×BB ,B △BBB =12×BB ×BB ,∴B △BBB :B △BBB =BB :BB =1:3.【点睛】本题考查相似三角形的判定与性质、三角形的面积公式,掌握相似三角形的判定定理以及性质是解题的关键.5、(1)1;n m ;(2)①n m ;②n m ;(3)CE =CE =【解析】【分析】(1)先用等量代换判断出ADE CDF ∠=∠,A DCB ∠=∠,得到ADE ∽CDF ,再判断出ADC ∽CDB △即可;(2)方法和()1一样,先用等量代换判断出ADE CDF ∠=∠,A DCB ∠=∠,得到ADE ∽CDF ,再判断出ADC ∽CDB △即可;(3)由()2的结论得出ADE ∽CDF ,判断出2CF AE =,求出DE ,再利用勾股定理,计算出即可.【详解】解:()1当m n =时,即:BC AC =,90ACB ∠=,90A ABC ∴∠+∠=,CD AB ⊥,90DCB ABC ∴∠+∠=,A DCB ∴∠=∠,90FDE ADC ∠=∠=,FDE CDE ADC CDE ∴∠-∠=∠-∠,即ADE CDF ∠=∠,ADE ∴∽CDF ,DE AD DF DC∴=, A DCB ∠=∠,90ADC BDC ∠=∠=,ADC ∴∽CDB △,1AD AC DC BC ∴==,1DE DF∴= ()290ACB ∠=①,90A ABC ∴∠+∠=,CD AB ⊥,90DCB ABC ∴∠+∠=,A DCB ∴∠=∠,90FDE ADC ∠=∠=,FDE CDE ADC CDE ∴∠-∠=∠-∠,即ADE CDF ∠=∠,ADE ∴∽CDF ,DE AD DF DC∴=, A DCB ∠=∠,90ADC BDC ∠=∠=,ADC ∴∽CDB △,AD AC n DC BC m ∴==,DE n DF m∴= ②成立.如图3,90ACB ∠=,90A ABC ∴∠+∠=,又CD AB ⊥,90DCB ABC ∴∠+∠=,A DCB ∴∠=∠,90FDE ADC ∠=∠=,FDE CDE ADC CDE ∴∠+∠=∠+∠,即ADE CDF ∠=∠,ADE ∴∽CDF ,DE AD DF DC∴=, A DCB ∠=∠,90ADC BDC ∠=∠=,ADC ∴∽CDB △,AD AC n DC BC m∴==, DE n DF m∴=. ()3由()2有,ADE ∽CDF , 12DE AC DF BC ==, 12AD AE DE CD CF DF ∴===, 2CF AE ∴=,如图4图5图6,连接EF .在Rt DEF △中,DE =DF =EF ∴= ①如图4,当E 在线段AC 上时,在Rt CEF 中,())222CF AE AC CE CE ==-=,EF =根据勾股定理得,222CE CF EF +=,)22[2]40CE CE ∴+=CE ∴=CE =舍) ②如图5,当E 在AC 延长线上时,在Rt CEF 中,())222CF AE AC CE CE ==+=,EF = 根据勾股定理得,222CE CF EF +=,)22[2]40CE CE ∴+=,CE ∴CE =-舍),③如图6,当E 在CA 延长线上时,在Rt CEF 中,()(222CF AE CE AC CE ==-=,EF =根据勾股定理得,222CE CF EF +=,(22[2]40CE CE ∴+=,CE ∴=CE =,综上:CE =CE =【点睛】本题是三角形综合题,主要考查了三角形相似的性质和判定,勾股定理,判断相似是解决本题的关键,求CE 是本题的难点.。
浙教版2022年九年级上册第4章《相似三角形》单元检测卷 (含解析)

浙教版2022年九年级上册第4章《相似三角形》单元检测卷一.选择题(共10小题,满分30分,每小题3分)1.已知线段a,b,c,求作线段x,使bx=ac,下列作法中正确的是()A.B.C.D.2.如果x:y=2:3,那么下列各式中成立的是()A.B.2x=3y C.D.3.如图所示的两个五边形相似,则以下a,b,c,d的值错误的是()A.a=3B.b=4.5C.c=4D.d=84.已知△ABC∽△DEF,AG和DH是它们的对应边上的高,若AG=4,DH=6,则△ABC与△DEF的面积比是()A.2:3B.4:9C.3:2D.9:45.如图,在△ABC中,P为AB上一点,在下列四个条件中,不能判定△APC和△ACB相似的条件是()A.∠ACP=∠B B.∠APC=∠ACBC.AC2=AP•AB D.AC•CP=AP•CB6.如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,则下列结论不正确的是()A.B.C.△ADE∽△ABC D.AD•AB=AE•AC7.如图所示,在平面直角坐标系中,A(1,0),B(0,2),C(﹣2,1),以A为位似中心,把△ABC在点A同侧按相似比1:2放大,放大后的图形记作△A'B'C',则C'的坐标为()A.(﹣6,2)B.(﹣5,2)C.(﹣4,2)D.(﹣3,2)8.将两张直角三角形纸片按如图所示的方式摆进⊙O内,点A,B,C,D都在圆上,点E在边AC上,已知∠BAC =∠AED=90°,AB=AE=6,DE=2,则⊙O的直径为()A.B.C.D.109.已知点P是边长为4的正方形ABCD内一点,且PB=3,BF⊥BP,垂足是点B,若在射线BF上找一点M,使以点B,M,C为顶点的三角形与△ABP相似,则BM为()A.3B.C.3 或D.以上都错10.如图,在边长为4的正方形ABCD中,对角线AC,BD交于点O,E在BD上,连接CE,作EF⊥CE交AB于点F,交AC于点G,连接CF交BD于点H,延长CE交AD于点M,连接FM,则下列结论:①点E到AB,BC的距离相等;②∠FCE=45°;③∠DMC=∠FMC;④若DM=2,则.正确的有()个.A.1B.2C.3D.4二.填空题(共6小题,满分18分,每小题3分)11.已知,则的值为.12.如图,l1∥l2∥l3,已知AB=6cm,BC=3cm,A1B1=4cm,则线段B1C1的长为cm.13.在△ABC中,AC=6,BC=9,D是△ABC的边BC上的点,且∠CAD=∠B,则BD=.14.有五本形状为长方体的书放置在方形书架中,如图所示,其中四本竖放,第五本斜放,点G正好在书架边框上.每本书的厚度为5cm,高度为20cm,书架宽为40cm,则FI的长.15.如图,已知平行四边形ABCD中,E,F分别是边AB,AD上的点,EF与对角线AC交于P,若,,则的值为.16.如图,一个由8个正方形组成“C”型模板恰好完全放入一个矩形框内,模板四周的直角顶点M,N,O,P,Q都在矩形ABCD的边上,若8个小正方形的面积均是1,则边AB的长为.三.解答题(共7小题,满分52分)17.(6分)如图,在△ABC中,BD平分∠ABC,交AC于点D,点E是AB上一点,连接DE,BD2=BC•BE.证明:△BCD∽△BDE.18.(6分)某校初三年级在一次研学活动中,数学研学小组为了估计澧水河某段水域的宽度,在河的对岸选定一个目标点A,在近岸分别取点B、D、E、C,使点A、B、D在一条直线上,且AD⊥DE,点A、C、E也在一条直线上,且DE∥BC.经测量BC=25米,BD=12米,DE=35米,求河的宽度AB为多少米?19.(7分)已知线段a,b,c满足a:b:c=2:3:4,且a+b﹣c=3.(1)求线段a,b,c的长.(2)若线段m是线段a,b的比例中项,求线段m的长.20.(8分)已知O是坐标原点,A、B的坐标分别为(3,1)、(2,﹣1).(1)画出△OAB绕点O顺时针旋转90°后得到的△OA1B1;(2)在y轴的左侧以O为位似中心作△OAB的位似图形△OA2B2,使新图与原图相似比为2:1;(3)若点D(a,b)在线段OA上,直接写出变化(2)后点D的对应点D2的坐标为.(4)分别求出△OAB的周长和△OA2B2的面积.21.(8分)如图,正方形ABCD中,点E是边CD的中点,点F在AD边上,且=2,AE与CF相交于点G.(1)若AD=6,EG=3,连接DG,求证:△ADE∽△DGE;(2)求∠AGF的度数.22.(8分)如图,正方形ABCD中,E、F分别是AD、AB上的点,AP⊥BE于点P.(1)如图1,如果点F是AB的中点,求证:BP•BE=2PF•BC;(2)如图2,如果AE=AF,联结CP,求证:CP⊥FP.23.(9分)如图,在矩形ABCD中,AB=6,AD=8,点E是CD边上的一个动点(点E不与点C重合),延长DC 到点F,使EC=2CF,且AF与BE交于点G.(1)当EC=4时,求线段BG的长;(2)设CF=x,△GEF的面积为y,求y与x的关系式,并求出y的最大值;(3)连接DG,求线段DG的最小值.浙教版2022年九年级上册第4章《相似三角形》单元检测卷参考答案一.选择题(共10小题,满分30分,每小题3分)1.【解答】解:由题意,bx=ac,∴=,故选:D.2.【解答】解:∵x:y=2:3,∴设x=2k,y=3k,A、==﹣,故本选项不符合题意;B、∵x:y=2:3,∴3x=2y,故本选项不符合题意;C、∵x:y=2:3,∴=,故本选项,符合题意;D、不能约分,故本选项不符合题意.故选:C.3.【解答】解:∵两个五边形相似,∴====,∴a=3,b=4.5,c=4,d=6.故选:D.4.【解答】解:∵△ABC∽△DEF,AG和DH是它们的对应边上的高,∴=()2=()2=,故选:B.5.【解答】解:当∠ACP=∠B时,∵∠A=∠A,∴△ACP∽∠ABC;当∠APC=∠ACB时,∵∠A=∠A,∴△ACP∽∠ABC;当AC2=AP•AB时,即,∵A=∠A,∴△ACP∽∠ABC;当AB•CP=AP•CB时,即,∵A=∠A,∴不能判定△APC和△ACB相似,故选:D.6.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴==,∴,故选:D.7.【解答】解:∵以A为位似中心,把△ABC按相似比1:2放大,放大后的图形记作△AB'C',∴AC=AC′,∴点C是线段AC′的中点,∵A(1,0),C(﹣2,1),∴C'的坐标为'(﹣5,2).故选:B.8.【解答】解:连接BD,CD,∵圆周角∠BAC=90°,∴BC是⊙O的直径,∴∠BDC=90°,设CE=a,由勾股定理得:AD===2,CD===,BC===,∵∠DEA=∠BDC=90°,∠DBC=∠DAE(在同圆中,同弧所对的圆周角相等),∴△AED∽△BDC,∴=,∴=,解得:a=﹣或a=,∵a表示边的长度,不能为负,∴a=﹣舍去,∴BC==,即⊙O的直径是,故选:A.9.【解答】解:∵四边形ABCD是正方形,∴∠ABC=90°,AB=BC=4,又∵∠PBF=90°,∴∠ABP=∠CBF=90°﹣∠CBP;若以点B,M,C为顶点的三角形与△ABP相似,则:①如图1中,,即=,解得BM=;②如图2中,,即=,解得BM=3.综上所述,满足条件的BM的值为3或.故选:C.10.【解答】解:如图,连接AE,设FM交AC于点I,∵四边形ABCD是正方形,∴AB=AD=CB=CD,∠BAD=∠BCD=∠ABC=90°,∴∠ABD=∠ADB=45°,∠CBD=∠CDB=45°,∴∠ABD=∠CBD,∴点E到AB,BC的距离相等,故①正确;在△ABE和△CBE中,,∴△ABE≌△CBE(SAS),∴AE=CE,∠BAE=∠BCE,∵EF⊥CE,∴∠CEF=∠MEF=90°,∴∠BCE+∠BFE=180°,∵∠EF A+∠BFE=180°,∴∠BCE=∠EF A,∴∠BAE=∠EF A,∴AE=FE,∴CE=FE,∴∠FCE=∠CFE=45°,故②正确;∵AD∥BC,∴∠DME=∠BCE=∠BAE,∵∠MDE=∠ABE,∴△MDE∽△ABE,∴=,∴=,∵∠MEF=∠MDC,∴△MEF∽△MDC,∴∠DMC=∠FMC,故③正确;作FL⊥BD于点L,则∠BLF=90°,设BL=x,∴∠LFB=∠LBF=45°,∴FL=BL=x,∵BF2=BL2+FL2=2BL2,∴BF=x,∵AD=CD=BC=4,DM=2,∴CM==2,BD==4,∵△DEM∽△BEC,∴====,∴FE=CE=CM=,BE=BD=,∵EL===,∴x+=,解得x1=,x2=2(不符合题意,舍去),∴BF=×=≠,故④错误,故选:C.二.填空题(共6小题,满分18分,每小题3分)11.【解答】解:∵=1,∴x=y,∴==0.故答案为:0.12.【解答】解:∵l1∥l2∥l3,∴,∴AB=6cm,BC=3cm,A1B1=4cm,∴,解得B1C1=2.故答案为:2.13.【解答】解:∵∠CAD=∠B,∠C=∠C,∴△DAC∽△ABC,∴=,∵AC=6,BC=9,∴=,∴DC=4,∴BD=BC﹣DC=9﹣4=5,故答案为:5.14.【解答】解:由题知,CI=BI﹣BC=40﹣20=20cm,EF=20cm,FG=5cm,∵∠EFC+∠CEF=90°,∠EFC+∠GFI=90°,∴∠CEF=∠GFI,∵∠ECF=∠FIG=90°,∴△GIF∽△FEC,∴=,即=,∴CE=4FI,在Rt△CEF中,由勾股定理得CE2+CF2=EF2,即(4FI)2+(20﹣FI)2=202,解得FI=或FI=0(舍去),故答案为:cm.15.【解答】解:过E作EH∥AD,交DC于点H,交AC于点G,如图:∵四边形ABCD是平行四边形,∴AD∥BC,∴EH∥BC,∴==,∴设AG=a,GC=2a,∵DC∥AB,∴△CHG∽△AEG,∴==,∴=,∴EG=EH,∵=,∴=,,∴AF=AD=EH,∵AD∥EH,∴AF∥EG,∴△APF∽△GPE,∴===,∴AP=a,PG=,∴PC=a,∴=,故答案为:.16.【解答】解:如图所示,连接EG,则∠OEP=90°,由题意得,小正方形的边长为1,∴OP==,∵四边形ABCD是矩形,∴∠B=∠C=∠A=90°,∠MQP=90°,∴∠BMQ=∠CQP=90°﹣∠MQP,同理∠EPO=∠CQP=90°﹣∠QPC,∴∠BMQ=∠EPO,又∠OEP=∠B=90°,∴△OEP∽△QBM,∴===,∴BM===,QB===,∵∠B=∠A=90°,∠NMQ=90°,∴∠BMQ=∠ANM=90°﹣∠AMN,在△QBM和△MAN中,,∴△QBM≌△MAN(AAS),∴AM=QB=,∴AB=BM+AM=.故答案为:.三.解答题(共7小题,满分52分)17.【解答】证明:∵BD平分∠ABC,∴∠DBE=∠CBD.∵BD2=BC•BE,∴,∴△BCD∽△BDE.18.【解答】解:∵BC∥DE,∴△ABC∽△ADE,∴=,即=,∴AB=30.答:河的宽度AB为30米.19.【解答】解:(1)∵a:b:c=2:3:4,∴a=2k,b=3k,c=4k,∵a+b﹣c=3,∴2k+3k﹣4k=3,解得k=3,∴a=6,b=9,c=12;(2)∵m是a、b的比例中项,∴m2=ab,∴m2=6×9,∴x=3或x=﹣3(舍去),即线段m的长为3.20.【解答】解:(1)如图所示:△OA1B1即为所求;(2)如图所示:△OA2B2即为所求;(3)∵点D(a,b)∴变化(2)后点D的对应点D2的坐标为(﹣2a,﹣2b),故答案为:(﹣2a,﹣2b);(4)△OAB的周长=++=+,△OA2B2的面积=×5×(2+2)=10.21.【解答】(1)证明:∵四边形ABCD是正方形,AD=6,点E是边CD的中点,∴DE=3,∴AE==15,∵EG=3,∴=,,∴,∵∠AED=∠DEG,∴△ADE∽△DGE;(2)连接AC,过F作FH⊥AC,垂足为点H,设AD=3a,则AF=2a,DF=a,DE=a,∵四边形ABCD是正方形,∴∠CAD=45°,AC=3a,AE=,∴△AHF是等腰直角三角形,∴AH=FH=a,CH=2a,∴=2,=2,∴,∵∠CHF=∠ADE=90°,∴△CHF∽△ADE,∴∠HCF=∠DAE,∵∠AGF=∠GAC+∠ACG,∴∠AGF=∠GAC+∠DAE=∠CAD=45°.22.【解答】证明:(1)如图1,∵四边形ABCD是正方形,∴∠BAE=90°,∵AP⊥BE,∴∠BP A=90°,∴∠BP A=∠BAE,∵∠PBA=∠ABE,∴△BP A∽△BAE,∴=,∵点F是AB的中点,∴BA=2PF,∵BA=BC,∴=,∴BP•BE=2PF•BC.(2)∵△BP A∽△BAE,∴=,∴=,∴AE=AF,BA=BC,∴=,∵BC∥AD,∴∠CBP=∠BEA,∵∠BEA=∠F AP,∴∠CBP=∠F AP,∴△CBP∽△F AP,∴∠BPC=∠APF,∴∠FPC=∠BPF+∠BPC=∠BPF+∠APF=∠BP A=90°,∴CP⊥FP.23.【解答】解:(1)当EC=4时,则:CF=2,∴AB=FE=6,∵四边形ABCD为矩形,∴AB∥CD,∴∠F=∠BAG,∠ABG=∠FEG,∴△ABG≌△FEG(ASA),∴BG=EG=BE,在直角三角形BCE中,BC=8,CE=4,∴BE=4,∴BG=2;(2)如图,过点G作MN∥AD分别交AB,CD于点M,N,设CF=x,则:EF=3x,显然△ABG∽△FEG,∴=,设GN=h,则:MG=8﹣h,∴===,∴h=,∴S△GEF=y=×3x×=,∴y与x的关系式为:y=,∵x>0,2x≤6,∴0<x≤3,∵y==,∴y随x的增加而增加,∴当x=3时,y max=;(3)如图,在AB上取一点Q,使得BQ=2AQ,∵AB∥CD,∴△AQG∽△FCG,△BQG∽△DCG,∴==,==,∴点E在CD上运动总会有=,即点G在线段CQ上运动,∴当点E与点D重合时,CG最长,∵=,∴GC=,如图,作DM⊥CQ,GN⊥CD,当点G运动到点M时,此时DG即为最小值,∵DM•CG=CD•GN,∴DM•=×6×(×8),∴DM=,∴DG的最小值为.。
相似三角形试卷及答案

相似三角形单元测试卷一、选择题(每题3分,共24分) 1. 如图,在△ABC 中,DE ∥BC ,若13AD AB =,DE =4,则BC =( ) A .9 B .10 C . 11 D .122.鄂尔多斯市成陵旅游区到响沙湾旅游区之间的距离为105公里,在一张比例尺为1:2000000的交通旅游图上,它们之间的距离大约相当于( ) A .一根火柴的长度B .一支钢笔的长度C .一支铅笔的长度D .一根筷子的长度4. 如图,用放大镜将图形放大,应该属于( )A.相似变换 B.平移变换 C.对称变换 D.旋转变换6. 如图,已知21∠=∠,那么添加下列一个条件后,仍无法..判定ABC △∽ADE △的是( ) A .AE AC AD AB = B .DEBCAD AB =C .D B ∠=∠ D .AED C ∠=∠ 7. 如图,已知ABCD 中,45DBC =∠,DE BC ⊥于E ,BF CD ⊥于F ,DE BF ,相交于H ,BF AD ,的延长线相交于G ,下面结论:①DB =②A BHE =∠∠③AB BH =④BHD BDG △∽△其中正确的结论是( ) A .①②③④B .①②③C .①②④D .②③④8. 如图,在斜坡的顶部有一铁塔AB ,B 是CD 的中点,CD 是水平的,在阳光的照射下,塔影DE 留在坡面上.已知铁塔底座宽CD =12 m ,塔影长DE =18 m ,小明和小华的身高都是1.6m ,同一时刻,小明站在点E 处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2m 和1m ,那么塔高AB 为( ) A .24m B .22m C .20 m D .18 m 二、填空题(每题4分,共40分)11.如图所示,在四边形ABCD 中,AD BC ∥,如果要使ABC DCA △∽△,那么还要补充的一个条件是 (只要求写出一个条件即可).12. 如图,已知DE BC ∥,5AD =,3DB =,9.9BC =,则ADE ABCSS =△△ .14.如图,E 为平行四边形ABCD 的边BC 延长线上一点,连结AE ,交边CD 于点F . 在不添加辅助线的情况下,请写出图中一对相似三角形: . 15. 如图是一盏圆锥形灯罩AOB ,两母线的夹角90AOB ∠=︒,CBA E12DMADB若灯炮O 离地面的高OO 1是2米时,则光束照射到地面的面积是 米2.16. 数学兴趣小组想测量一棵树的高度,在阳光下,一名同学测得一根长为1米的竹竿的影长为0.8米.同时另一名同学测量一棵树的高度时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图),其影长为1.2米,落在地面上的影长为2.4米,则树高为 米.17. 如图,对面积为1的△ABC 逐次进行以下操作:第一次操作,分别延长AB 、BC 、CA 至点A 1、B 1、C 1,使得A 1B =2AB ,B 1C =2BC ,C 1A =2CA ,顺次连接A 1、B 1、C 1,得到△A 1B 1C 1,记其面积为S 1;第二次操作,分别延长A 1B 1、B 1C 1、C 1A 1至点A 2、B 2、C 2,使得A 2B 1=2A 1B 1,B 2C 1=2B 1C 1,C 2A 1=2C 1A 1,顺次连接A 2、B 2、C 2,得到△A 2B 2C 2,记其面积为S 2;…;按此规律继续下去,可得到△A 5B 5C 5,则其面积S 5=_____________ .18. 如图是一个边长为1的正方形组成的网络,ABC △与111A B C △都是格点三角形(顶点在网格交点处),并且111ABC A B C △∽△,则ABC △与111A B C △的相似比是 .三、解答题(共86分)19.图(1)是一个1010⨯格点正方形组成的网格.△ABC 是格点三角形(顶点在网格交点处),请你完成下面的问题:在图(1)中画出与△ABC 相似的格点△111A B C 和△222A B C ,且△111A B C 与△ABC 的相似比是2,△222A B C 与△ABC; 、20.如图,梯形ABCD 中,AD BC ∥,AC 与BD 相交于O 点,过点B 作BE CD ∥交CA 的延长线于点E .求证:2OC OA OE =.(8分)A BO 1OBCA1B1C1AA BC图(1)C D O22. 如图10,点O 是ABC △外的一点,分别在射线OA OB OC ,,上取一点A B C ''',,,使得3OA OB OC OA OB OC'''===,连结A B B C C A '''''',,,所得A B C '''△与ABC △是否相似?证明你的结论.23.如图,在ABC △中,D 为AC 上一点,2A 45CD D BAC ==︒,∠,60BDC =︒∠, CE BD ⊥,E 为垂足,连结AE .(1)写出图中所有相等的线段,并选择其中一对给予证明.(2)图中有无相似三角形?若有,请写出一对;若没有,请说明理由.(12分)24. 如图,在ABC △中,90BAC ∠=,AD 是BC 边上的高,E 是BC 边上的一个动点(不与B C ,重合),EF AB ⊥,EG AC ⊥,垂足分别为F G ,.(1)求证:EG CGAD CD=; (2)FD 与DG 是否垂直?若垂直,请给出证明;若不垂直,请说明理由; (3)当AB AC =时,FDG △为等腰直角三角形吗?并说明理由.(12分)25. 在平面内,先将一个多边形以点O 为位似中心放大或缩小,使所得多边形与原多边形对应线段的比为k ,并且原多边形上的任一点P ,它的对应点P '在线段OP 或其延长线上;接着将所得多边形以点O 为旋转中心,逆时针旋转一个角度θ,这种经过和旋转的图形变换叫做旋转相似变换,记为()O k θ,,其中点O 叫做旋转相似中心,k 叫做相似比,θ叫做旋转角. (1)填空:①如图1,将ABC △以点A 为旋转相似中心,放大为原来的2倍,再逆时针旋转60,得到ADE △,这个旋转相似变换记为A (,);②如图2,ABC △是边长为1cm 的等边三角形,将它作旋转相似变换)A ,得到ADE △,则线段BD ADC B E F A GCED BO A C B A 'C 'B '的长为cm ;(2)如图3,分别以锐角三角形ABC 的三边AB ,BC ,CA 为边向外作正方形ADEB ,BFGC ,CHIA ,点1O ,2O ,3O 分别是这三个正方形的对角线交点,试分别利用12AO O △与ABI △,CIB △与2CAO △之间的关系,运用旋转相似变换的知识说明线段12O O 与2AO 之间的关系.(12分)一、选择题 1. D 2. A 3. D 4. A 5. D 6. B 7. B 8. A二、填空题9.3710. 385811. B DCA ∠=∠或BAC D ∠=∠或AD ACAC BC=12.4913. 9.614. AFD EFC △∽△(或EFC EAB △∽△,或EAB AFD △∽△) 15. 12.6 16. 4.217. 2476099C A B D E图1ABCDE图2EDBFGCHAI3O1O2O图318.或2三、19. CD BE DCO E ∴∠=∠∥,, 又DOC BOE ∠=∠, OCD OEB ∴△∽△, OD OCOB OE∴=. 又AD BC ∥.同理OD OAOB OC=.OC OA OE OC∴=,即2OC OA OE =. 25. (20070911190442656754) 解:(1)①2,60; 2分 ②2;4分(2)12AO O △经过旋转相似变换)A ,得到ABI △,此时,线段12O O 变为线段BI ;6分CIB △经过旋转相似变换452C ⎛⎫⎪ ⎪⎝⎭,得到2CAO △,此时,线段BI 变为线段1AO .8分221⨯=,454590+=, 122O O AO ∴=,122O O AO ⊥.10分八、猜想、探究题 24. A B C ABC '''△∽△2分由已知3OA OC OA OC''==,AOC A OC ''∠=∠ AOC A OC ''∴△∽△, 4分 3A C OA AC OA '''==∴,同理33B C A B BC AB ''''==,6分 A C B C A B AC BC AB''''''==∴7分∴A B C ABC '''△∽△ 8分25. (20070911190402781961) (1)证明:在ADC △和EGC △中, Rt ADC EGC ∠=∠=∠,C C ∠=∠ ADC EGC ∴△∽△EG CGAD CD∴= 3分 (2)FD 与DG 垂直 4分 证明如下:F AGCED B..在四边形AFEG 中,90FAG AFE AGE ∠=∠=∠= ∴四边形AFEG 为矩形 AF EG ∴=由(1)知EG CGAD CD=AF CGAD CD∴=6分ABC △为直角三角形,AD BC ⊥ FAD C ∴∠=∠ AFD CGD ∴△∽△ ADF CDG ∴∠=∠8分又90CDG ADG ∠+∠=90ADF ADG ∴+∠=即90FDG ∠=FD DG ∴⊥10分(3)当AB AC =时,FDG △为等腰直角三角形,理由如下:AB AC =,90BAC ∠= AD DC ∴=由(2)知:AFD CGD △∽△ 1FD AD GD DC ∴== FD DG ∴=又90FDG ∠=FDG ∴△为等腰直角三角形12分九、动态几何26. (20070911190525187471) (1)34PM =, (2)2t =,使PNB PAD △∽△,相似比为3:2 (3)PM AB CB AB AMP ABC ∠=∠⊥,⊥,,AMP ABC △∽△,PM AM BN AB ∴=即()PM a t t a t PM t a a--==,, (1)3t a QM a-∴=-当梯形PMBN 与梯形PQDA 的面积相等,即()()22QP AD DQ MP BN BM++=..()33(1)()22t a t t a a t t ta a -⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭==化简得66a t a=+,3t ≤,636aa∴+≤,则636a a ∴<≤,≤, (4)36a <≤时梯形PMBN 与梯形PQDA 的面积相等∴梯形PQCN 的面积与梯形PMBN 的面积相等即可,则CN PM =()3t a t t a ∴-=-,把66at a=+代入,解之得a =±a =. 所以,存在a,当a =时梯形PMBN 与梯形PQDA 的面积、梯形PQCN 的面积相等.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《相似三角形》单元测试题
一、精心选一选(每小题4分,共32分)
1、下列各组图形有可能不相似得就就是()、
(A)各有一个角就就是50°得两个等腰三角形
(B)各有一个角就就是100°得两个等腰三角形
(C)各有一个角就就是50°得两个直角三角形
(D)两个等腰直角三角形
2、如图,D就就是⊿ABC得边AB上一点,在条件(1)△ACD=∠B,(2)AC2=AD·AB,(3)AB边上与点C距离相等得点D有两个,(4)∠B=△ACB中,一定使⊿ABC∽⊿ACD得个数就就是( )
(A)1(B)2(C)3 (D)4
3、如图,∠ABD=∠ACD,图中相似三角形得对数就就是( )
(A)2(B)3 (C)4 (D)5
4、如图,在矩形ABCD中,点E就就是AD上任意一点,则有( )
(A)△ABE得周长+△CDE得周长=△BCE得周长
(B)△ABE得面积+△CDE得面积=△BCE得面积
(C)△ABE∽△DEC
(D)△ABE∽△EBC
5、如果两个相似多边形得面积比为9:4,那么这两个相似多边形得相似比为()
A、9:4
B、2:3
C、3:2
D、81:16
6、下列两个三角形不一定相似得就就是( )。
A、两个等边三角形
B、两个全等三角形
C、两个直角三角形
D、两个等腰直角三角形
7、若⊿ABC∽⊿,∠A=40°,∠B=110°,则∠=()
A、40°B110°C70°D30°
8、如图,在ΔABC中,AB=30,BC=24,CA=27, A
E=EF=FB,EG∥FD∥BC,FM∥EN∥AC,则图中阴影部分得
三个三角形得周长之与为( )
A、70
B、75
C、81
D、80
二、细心填一填(每小题3分,共24分)
9、如图,在△ABC中,△BAC=90°,D就就是BC中点,AE∥AD交CB延长线于点E,则⊿BAE相似于______、
10、在一张比例尺为1:10000得地图上,我校得周长为18cm,则我校得实际周长
为。
11、如果两个相似三角形对应高得比为4:5,则这两个三角形得相似比就就是,它们得面积得比就就是。
12、已知⊿ABC∽⊿DEF,AB=21cm,DE=28cm,则⊿ABC与⊿DEF得相似比为
13、某同学利用影子长度测量操场上旗杆得高度,在同一时刻,她测得自己影子长为0.8m,旗杆得影子长为7m,已知她得身高为1.6m,则旗杆得高度为
m、
14、在长8cm,宽6cm得矩形中,截去一个矩形,使留下得矩形与原矩形相似,那么留下得矩形面积就就是_______cm2
15、如图,由边长为1得25个小正方形网格上有一个与⊿ABC相似且面积最大得⊿A1B1
C1,使它得三个顶点都落在小正方形得顶点上,则⊿A1B1C1得面积为___________
16、如图,这就就是圆桌正上方得灯泡(瞧作一个点)发出得光线照射桌面后,在地上形成阴影(圆形)得示意图,已知桌面得直径为1.2米,桌面距地面1米,灯泡距地面3米,则地上阴影部分得面积就就是______、
三、小试牛刀(17题10分、18题8分,19、20题7分,共32分)
17、如图,点C、D在线段AB上,⊿PCD就就是等边三角形、
(1)当AC、CD、DB满足怎样得关系时,⊿ACP∽⊿PDB?
(2)当⊿ACP∽⊿PDB时,求⊿APB得度数、
18、如图,BD、CE为⊿ABC得高,求证⊿AED=⊿ACB、
19、已知一矩形稻田可产稻谷100公斤,按此规律计算,若将此稻田长宽分别扩大两倍,则可产稻谷多少公斤?
20、已知:如图,BC为半圆得直径,O为圆心,D就就是弧AD得中点,四边形ABCD得对角线AC、BD交于点E。
求证:⊿ABE∽⊿DBC。
四、创新与应用(12分)
21、(本题7分)如图,四边形DEFG就就是ΔABC得内接矩形,如果ΔABC得高线AH长8cm,底边BC长10cm,设DG=xcm,DE=ycm,求y关于x得函数关系式、
五、科学与探究(20分)
22、在△OAB中,O为坐标原点,横、纵轴得单位长度相同,A、B得坐标分别为(8,6),(16,0),点P沿OA边从点O开始向终点A运动,速度每秒1个单位,点Q沿BO边从B点开始向终点O运动,速度每秒2个单位,如果P、Q同时出发,用t(秒)表示移动时间,当这两点中有一点到达自己得终点时,另一点也停止运动。
求(1)几秒时PQ∥AB
(2)设△OPQ得面积为y,求y与t得函数关系式
(3)△OPQ与△OAB能否相似,若能,求出点P得坐标,
若不能,试说明理由
《相似三角形》单元测试题答案
一、1、A2、B3、C4、B 5、C6、 C 7D8 C
二、9、⊿ACE101800米11、4:5,16:25 12、3:413、1414、2715、 5
16、0、81π米2
三、17、(1)CD2=A C·DB (2)1200
18、先证⊿AB D∽⊿ACE可得AE:AD=AC:AB,加上∠A=∠A可证⊿ADE∽⊿ABC得⊿AED=⊿ACB
19、40020、提示:∠BAE=∠BDC,弧AD=弧DC,∠ABE=∠DBC,可证结论。
四、21、Y=-0、8x+8(0<x<10)
五、22、(1)由已知得,当PQ∥AB时,则:,得:t=40/9
(2)过P作PC⊥OB, 垂足为C, 过A作AD⊥OB,垂足为D
(3)能相似。
PQ∥AB,△OPQ∽△OAB
∵t= ∴OP=,∵其中AD=6,OA=10,OD=8 ∴OC=,PC=,∴P点坐标就就是(, )、。