概率论与数理统计练习题(1)参考答案
概率论与数理统计练习册答案

概率论与数理统计练习册答案第一章概率论的基本概念一、选择题4. 答案:(C )注:C 成立的条件:A 与B 互不相容.5. 答案:(C )注:C 成立的条件:A 与B 互不相容,即AB φ=.6. 答案:(D )注:由C 得出A+B=Ω. 8. 答案:(D )注:选项B 由于11111()1()1()1()1(1())nn n n n i i i i i i i i i i P A P A P A P A P A ======-=-==-=--∑∑∏∏9.答案:(C )注:古典概型中事件A 发生的概率为()()()N A P A N =Ω. 10.答案:(A )解:用A 来表示事件“此r 个人中至少有某两个人生日相同”,考虑A的对立事件A “此r 个人的生日各不相同”利用上一题的结论可知365365!()365365r r r rC r P P A ?==,故365()1365rrP P A =-.12.答案:(B )解:“事件A 与B 同时发生时,事件C 也随之发生”,说明AB C ?,故()()P AB P C ≤;而()()()()1,P A B P A P B P AB ?=+-≤ 故()()1()()P A P B P AB P C +-≤≤.13.答案:(D )解:由(|)()1P A B P A B +=可知2()()()1()()()1()()()(1())()(1()()())1()(1())()(1())()(1()()())()(1())()()()()()()(())()()()P AB P AB P AB P A B P B P B P B P B P AB P B P B P A P B P AB P B P B P AB P B P B P A P B P AB P B P B P AB P AB P B P B P A P B P B P B P AB P B -?+=+--+--+==-?-+--+=-?-+--+=2(())()()()P B P AB P A P B -?=故A 与B 独立. .16.答案:(B )解:所求的概率为()1()1()()()()()()()11111100444161638P ABC P A B C P A P B P C P AB P BC P AC P ABC =-??=---+++-=---+++-= 注:0()()0()0ABC AB P ABC P AB P ABC ??≤≤=?=. 17.答案:(A )解:用A 表示事件“取到白球”,用i B 表示事件“取到第i 箱”1.2.3i =,则由全概率公式知112233()()(|)()(|)()(|)11131553353638120P A P B P A B P B P A B P B P A B =++=++=.18.答案:(C )解:用A 表示事件“取到白球”,用i B 表示事件“取到第i 类箱子” 1.2.3i =,则由全概率公式知112233()()(|)()(|)()(|)213212765636515P A P B P A B P B P A B P B P A B =++=++=.19.答案:(C )解:即求条件概率2(|)P B A .由Bayes 公式知3263222711223315()(|)5(|)()(|)()(|)()(|)7P B P A B P B A P B P A B P B P A B P B P A B ===++. 二、填空题2.;ABC ABC ABC ABC ABC 或AB BC AC3.0.3,0.5 解:若A 与B 互斥,则P (A+B )=P (A )+P (B ),于是 P (B )=P (A+B )-P (A )=0.7-0.4=0.3;若A 与B 独立,则P (AB )=P (A )P (B ),于是由P (A+B )=P (A )+P (B )-P (AB )=P (A )+P (B )-P (A )P (B ),得()()0.70.4()0.51()10.4P A B P A P B P A +--===--.4.0.7 解:由题设P (AB )=P (A )P (B|A )=0.4,于是P (AUB )=P (A )+P (B )-P (AB )=0.5+0.6-0.4=0.7.解:因为P (AUB )=P (A )+P (B )-P (AB ),又()()()P AB P AB P A +=,所以()()()0.60.30.3P AB P A B P B =-=-= .6.0.6 解:由题设P (A )=0.7,P (AB )=0.3,利用公式AB AB A +=知()()()P AB P A P AB =-=0.7-0.3=0.4,故()1()10.40.6P AB P AB =-=-=. 7.7/12 解:因为P (AB )=0,所以P (ABC )=0,于是()()1()1[()()()()()()()]13/42/67/12P ABC P A B C P A B C P A P B P C P AB P BC P AC P ABC ==-=-++---+=-+= . 10.11260解:这是一个古典概型问题,将七个字母任一种可能排列作为基本事件,则全部事件数为7!,而有利的基本事件数为12121114=,故所求的概率为417!1260=. 11.3/7 解:设事件A={抽取的产品为工厂A 生产的},B={抽取的产品为工厂B 生产的},C={抽取的是次品},则P (A )=0.6,P (B )=0.4,P (C|A )=0.01,P (C|B )=0.02,故有贝叶斯公式知()()(|)0.60.013(|)()()(|)()(|)0.60.010.40.027P AC P A P C A P A C P C P A P C A P B P C B ?====+?+?. 12.6/11解:设A={甲射击},B={乙射击},C={目标被击中},则P (A )=P (B )=1/2,P (C|A )=0.6,P (C|B )=0.5,故()()(|)0.50.66 (|)()()(|)()(|)0.50.60.50.511P AC P A P C A P A C P C P A P C A P B P C B ?====+?+?. 四、 )(,21)|(,31)|(,41)(B A P B A P A B P A P ?===求。
《概率论及数理统计》习题一课后答案

C83
36 65
1.29设一批产品中一、二、三等品各占60%、30%、10%, 从中随意取出一件,结果不是三等品,求取到的是一 等品的概率.
解 Ai={取到的是i等品}i=1,2,3.
则所求概率为
P( A1 A3)
0.6
P( A1A3) P( A3)
2
P( A1) 1 P( A3)
即为求在2红2黑四个球中,取到1红1黑的概率.
(用条件概率的本来含义)
P( X
1Y
0)
C21 C21 C42
2 3
1.31已知P(A)=0.5,P(B)=0.6,P(B|A)=0.8,求P(A∪B).
解 P(AU B) P(A) P(B) P(AB) P(A) P(B) P(A) P(B A) 0.5 0.6 0.50.8 0.7
P(AB) 0 即P(AB) 0
∴A与B相容
1.11 试问下列命题是否成立?若正确给出其证明.
(3)若P(A)=1,P(B)=1,则 P(A∪B)=1
(√)
解 Q A AUB
P(A) P(AU B)
1 P(A) P(A UB) 1
P(AUB) 1
1.11 试问下列命题是否成立?若正确给出其证明.
1.8 设A与B互不相容,且P(A)=0.2,P(A+B)=0.6,求 P(B)
解 ∵A与B互不相容
∴P(AB)=0 又P(A+B)=P(A)+P(B)P(AB) ∴P(B)=P(A+B)-P(A)
=0.6-0.2
=0.4
1.9设P(A) 0.7, P(A B) 0.2,求P(A B)
概率论与数理统计(练习参考答案)

一、填空题 (每小题2分,共10分)1、一射手对同一个目标独立地进行4次射击,若至少命中一次的概率为8180,则该射手的命中率为 .2、 设随机变量X 在区间[2,5]上服从均匀分布,则=)(2X E ____13_____ .3、 设X 服从参数为10=θ的指数分布,Y )2,3(~2N ,且X 与Y 相互独立,Y X Z 23-=,则=)(Z D ___916_____.4、已知5.0,9)(,4)(===XY Y D X D ρ,则=+)(Y X D 19_ .5、设总体),(~2σμN X ,n X X X ,,,21Λ为来自X 的简单随机样本,则~11∑==ni iX n X ),(2n N σμ. 二、单项选择题 (每小题2分,共10分)(1)对于任意两事件A 和B ,=-)(B A P C .(A ))()(B P A P - (B ))()()(AB P B P A P +- (C ) )()(AB P A P - (D ))()()(B A P A P A P -+ 2、.对于任意两个随机变量,若)()()(Y E X E XY E =则____B _____.(A))()()(Y D X D XY D = (B))()()(Y D X D Y X D +=+ (C) X 与Y 相互独立 (D)X 与Y 相互不独立 3、设Y X ,相互独立,X 和Y 的分布律分别为,则必有 D .(A )Y X = (B ){}0==Y X P(C ){}1==Y X P (D ){}58.0==Y X P4、 在假设检验中,原假设0H ,备择假设1H ,则称_____D _____ 为犯第二类错误 (A)10H H 为真,接受 (B) 00H H 不真,拒绝 (C) 10H H 为真,拒绝 (D) 00H H 不真,接受5、 已知341.1)15(90.0-=t 。
设随机变量X 服从自由度为15的t 分布,若90.0)(=<a X P ,则=a _____B _____.(A) -1.341 (B) 1.341 (C) 15 (D) -15三、计算题 (共52分)1、 有四位同学报考硕士研究生,他们被录取的概率分别为0.2、0.3、0.45、0.6,试求至少有一位同学被录取的概率. (5分) 解: 设}{个同学被录取第i A i =),4,3,2,1(=i ;}{至少有一位同学被录取=B则有 4321A A A A B +++= ;∑=-=-=41)(1)(1)(i iA PB P B P8768.04.055.07.08.01=⨯⨯⨯-=2、 某年级有甲,乙,丙三个班级,其中各班的人数分别占年级总人数的1/ 4, 1/3, 5/12,已知甲,乙,丙三个班级中是独生子女的人数分别占各班人数的1/ 2, 1/ 4, 1/5, 求:: (1) 从该年级中随机的选一人,该人是独生子女的概率为多少?(2) 从该年级中随机的选一人,发现其为独生子女,则此人是甲班的概率为多少? (8分) 解: 设}{为独生子女从该年级中随机选一人=B }{1选到的是甲班的人=A}{2选到的是乙班的人=A ;}{3选到的是丙班的人=A ;则321,,A A A 为一个分割,41)(1=A P ,1)(2=A P ,125)(3=A P ;21)(1=A B P ,41)(2=A B P ,51)(3=A B P . (1) ∑==31)()()(i i i A P A B P B P =32=⨯+⨯+⨯511254*********7; (2) )(1B A P =)()()(11B P A P A B P =73.3、设有5件产品,其中有两件次品,今从中连取二次,每次任取一件不放回,以X 表示所取得的次品数,试求: : (1)X 的分布律和分布函数)(x F ; (2)122+=X Y 的分布律. (9分) 解: (1)(2)4、 某商品的日销量X (公斤)~)300,10000(2N , 求:日销量在9700到10300公斤之间的概率. (8413.0)1(=Φ 97725.0)2(=Φ备用) (8分)解: 300,10000==σμ)9700()10300(}103009700{F F X P -=≤≤=)3001000010300(-Φ-)300100009700(-Φ=)1()1(--ΦΦ=1)1(2-Φ=6826.018413.02=-⨯5、设随机变量X 的密度函数为⎩⎨⎧≥=-其它0)(2x Ce x f x,求: (1) 常数C ; (2) 概率}2/11{<<-X P ; (3) )(X E ;(4)设X Y 2=,则Y 的密度函数)(y f Y 。
概率论与数理统计:概率论练习题1及答案

5 / 8概率论练习题1(本大题共 6 小题,每小题 3 分,共 18 分)1、若当事件A ,B 同时发生时,事件C 必发生,则下列选项正确的是( ) A .()()P C P AB =; B .()()P C P AB ≤; C .()()P C P AB ≥; D .以上答案都不对.2、设随机变量()~X E λ,则下列选项正确的是( )A .X 的密度函数为(),00,0x e x f x x λ-⎧>=⎨≤⎩;B .X 的密度函数为(),00,0x e x f x x λλ-⎧>=⎨≤⎩;C .X 的分布函数为(),00,0x e x F x x λλ-⎧>=⎨≤⎩;D .X 的分布函数为()1,00,0x e x F x x λλ-⎧->=⎨≤⎩.3、设相互独立的连续型随机变量1X ,2X 的概率密度函数分别()1f x ,()2f x ,分布函数分别为()1F x ,()2F x ,则下列选项正确的是( ) A .()()12f x f x +必为某一随机变量的概率密度函数; B .()()12f x f x ⋅必为某一随机变量的概率密度函数; C .()()12F x F x +必为某一随机变量的分布函数; D .()()12F x F x ⋅必为某一随机变量的分布函数.4、设()~,X B n p ,()2~,Y N μσ,则下列选项一定正确的是( ) A .()E X Y np μ+=+; B .()E XY np μ=⋅; C .()()21D X Y np p σ+=-+; D .()()21D XY np p σ=-⋅.5、设随机变量X 与Y 相互独立,且都服从()1,0.2B ,则下列选项正确的是( )6 / 8A .()1P X Y ==;B .()1P X Y ≤=;C .()1P X Y ≥=;D .以上答案都不对. 6、设12,,,,n X X X 为独立的随机变量序列,且都服从参数为()0λλ>的指数分布,当n 充分大时,下列选项正确的是( )A .21nii Xn nλλ=-∑近似服从()0,1N ; Bni X nλ-∑近似服从()0,1N ;C .21ni i X λλ=-∑近似服从()0,1N ; D .1ni i X nnλ=-∑近似服从()0,1N .二、填空题(本大题共 6 小题,每小题 3 分,共 18 分)1、设事件A ,B ,C 相互独立,且()()()P A P B P C ==,()1927P A B C =,则()P A =.2、若()14P A =,()13P B A =,()12P A B =,则()P A B =.3、设()2~10,X N σ,且()10200.3P X <<=,则()010P X <<=.4、设随机变量X 与Y 相互独立,且()~100,0.3X B ,()~4Y P ,则()D X Y -=.5、设平面区域(){},01D x y x y =≤≤≤,二维随机变量(),X Y 在区域D 上服从均匀分布,则(),X Y 的联合分布密度函数为.6、若随机变量X 的分布律为()()2,0,1,2,k P X k ae k -+===,则常数a =.三、解答题(本大题共 6 小题,共 64 分)5 / 81、设盒一装有1支红色笔和2支黑色笔,盒二装有2支红色笔和1支黑色笔,盒三装有3支红色笔和3支黑色笔.现掷一枚匀质骰子,若掷出1点,则从盒一中任取一支笔,若掷出6点,则从盒三中任取一支笔,否则均从盒二中任取一支笔.求取出黑色笔的概率.(10分)2、一盒装有6只灯管,其中有2只次品,4只合格品,随机地抽取一只测试,测试后不放回,直到2只次品都被找出,求所需测试次数X 的概率分布及均值.(10分)3、设连续型随机变量X 的分布密度函数为(),13;0,ax b x f x +<<⎧=⎨⎩其他.,且{}{}23212P X P X <<=-<<,求常数a 和b 的值.(10分)6 / 84、设某工程队完成某项工程所需时间X (天)服从()100,25N .工程队若在100天内完工,可获奖金10万元;若在100~115天内完工,可获奖金3万元;若超过115天完工,则罚款5万元.求该工程队在完成工程时所获奖金的均值(要求用标准正态分布的分布函数值表示).(10分)5、设二维随机变量(),X Y 的概率密度函数为()8,01;,0,xy x y f x y <<<⎧=⎨⎩其他,求关于X 和Y 的边缘分布密度函数()X f x 和()Y f y ,并判别X 与Y 是否相互独立.(10分)5 / 86、设()~,X U a b ,且()0E X =,()13D X =.试确定X 的概率密度函数(6分)7、设随机变量X 服从标准正态分布,求2Y X =的概率密度函数()Y f y .(8分)6 / 8概率论练习题1参考答案一、单项选择题(本大题 6 小题,每小题 3 分,共 18 分) 1、C ; 2、B ; 3、D ; 4、A ; 5、D ; 6、B . 二、填空题(本大题 6 小题,每小题 3 分,共 18 分)1、13; 2、13; 3、0.3; 4、25; 5、()()2,,;,0,x y D f x y ∈⎧⎪=⎨⎪⎩其他.; 6、23e e ---.三、解答题(本大题 6 小题,共 64 分)1、解 设A 表示“取出黑色笔”,iB 表示“从盒i 中取笔”,1,2,3i =.……..2分则()()1316P B P B ==,()246P B =,()123P A B =,()213P A B =,()312P A B =,…………7分故由全概率公式,有()()()31124111563636212iii P A P B P A B ===⋅+⋅+⋅=∑.……………….10分2、解 由题意可知,X 的所有可能取值为2,3,4,5,6,…………….…….2 且{}1215P X ==,{}2315P X ==,{}145P X ==, {}4515P X ==,{}163P X ==,……..7分 所以 ()121411423456151551533E X =⨯+⨯+⨯+⨯+⨯=.……………………10分 3、解 由密度函数的性质()1f x dx +∞-∞=⎰,可得()31421ax b dx a b +=+=⎰,………..3分又由 {}{}23212P X P X <<=-<<,可得()()32212ax b dx ax b dx +=+⎰⎰,即02ab +=,…..7分联立方程,解得11,36a b ==-.………………………………………….10分4、解 方法1 由题设知工程队完成工程所需天数()~100,25X N .设所获奖金为Y 万元,Y 的可能取值为10,3,-5,Y 取各值的概率为()100100{10}{100}(100)00.55P Y P X F -⎛⎫==≤==Φ=Φ= ⎪⎝⎭, ()115100100100{3}{100115}(115)(100)30.555P Y P X F F --⎛⎫⎛⎫==<≤=-=Φ-Φ=Φ- ⎪ ⎪⎝⎭⎝⎭, 115100{5}{115}1(115)11(3)5P Y P X F -⎛⎫=-=>=-=-Φ=-Φ ⎪⎝⎭,…………….8分Y 因此 ()()()()100330.5513E Y =⨯Φ+Φ---Φ⎡⎤⎡⎤⎣⎦⎣⎦()()()100.5330.551383 1.5=⨯+Φ---Φ=Φ-⎡⎤⎡⎤⎣⎦⎣⎦.…………10分方法2 由题设知工程队完成工程所需天数()~100,25X N , 所获奖金10,100;3,100115;5,115.X Y X X ≤⎧⎪=<≤⎨⎪->⎩…………………………………………….2分5 / 8而()100100{10}{100}(100)00.55P Y P X F -⎛⎫==≤==Φ=Φ= ⎪⎝⎭, ()115100100100{3}{100115}(115)(100)30.555P Y P X F F --⎛⎫⎛⎫==<≤=-=Φ-Φ=Φ- ⎪ ⎪⎝⎭⎝⎭, 115100{5}{115}1(115)11(3)5P Y P X F -⎛⎫=-=>=-=-Φ=-Φ ⎪⎝⎭,…….8分因此 ()()()()100330.5513E Y =⨯Φ+Φ---Φ⎡⎤⎡⎤⎣⎦⎣⎦()()()100.5330.551383 1.5=⨯+Φ---Φ=Φ-⎡⎤⎡⎤⎣⎦⎣⎦.…………10分5、解 关于X 的边缘分布密度函数()Xf x :当0x ≤或1x ≥时,(,)0f x y =,所以()(),00Xf x f x y dy dy +∞+∞-∞-∞===⎰⎰,当01x <<时,()()()1212,8441Xxxf x f x y dy xydy xy x x +∞-∞====-⎰⎰,所以,()()241,01;0,X x x x f x ⎧-<<⎪=⎨⎪⎩其他. ………………………….4分关于Y 的边缘分布密度函数()Yf y :当0y ≤或1y ≥时,(,)0f x y =,所以()(),00Yf y f x y dx dx +∞+∞-∞-∞===⎰⎰,当01y <<时,()()230,844yyYf y f x y dx xydx yx y +∞-∞====⎰⎰,所以()34,01;0,Yy y f y ⎧<<⎪=⎨⎪⎩其他..……………………………………………8分于是()()()()32161,01,01;,0,X Y xy x x y f x f y f x y ⎧-<<<<⎪=≠⎨⎪⎩其他,所以X 与Y 不相互独立.……………………………………………10分 6、解 因为()~,X U a b ,所以()2a bE X +=,()()212b a D X -=,于是有()241,2123b a a b -+==,解得 1,3a b =-=,………….…..4分故X 的概率密度函数为()1,13;40,x f x ⎧-<<⎪=⎨⎪⎩其他..………………….6分7、22(0,1),(),.x X N x x ϕ-=-∞<<∞Y 的分布函数为2()()()Y F y P Y y P X y =≤=≤ ……………………2分 当0y ≤时,()()0Y F y P Y y =≤=,从而()0.Y f y = ……………………4分当0y>时,2()(){(YF y P X y P X=≤=≤≤=Φ-Φ…6分从而2()()(((Y Yyf y F yϕϕϕϕ-'''==Φ-Φ==+=7分所以20()0,0-⎧>=≤⎩yYyf yy……………………………………………8分6 / 8。
概率论与数理统计学习自测练习题1

第一章 概率论的基本概念自测练习题 A1.填空题(将正确答案填在题中横线上):(1)设A 和B 是任意两事件,则()()()()A B A B A B A B =U U U U .(2)设事件A 和B 及A 和B 各互不相容,则A 和B 为 .(3)设A 、B 为随机事件,3.0)( ,6.0)(=−=B A P A P ,则=)(AB P .(4)甲、乙二人独立地对同一目标射击一次,其命中率分别为0.7和0.6,则目标被击中的概率为 .(5)设三次独立试验中,事件A 出现的概率相等,若已知A 至少出现一次的概率等于2719,则事件A 在一次试验中出现的概率为 . 2.选择题(题中所给4个选项中只有一个是正确的,把正确选项的代号填在题后的括号内)(1)设A 、B 为任意两个随机事件,则事件()()A B S AB −U 表示( ).(A )必然事件 (B )A 与B 恰有一个发生 (C )不可能事件(D )A 与B 不同时发生(2)当事件A 与B 同时发生时,事件C 必发生,则( )(A ))()(AB P C P = (B ))()(B A P C P +=(C )1)()()(−+≥B P A P C P (D )1)()()(−+≤B P A P C P(3)设A 和B 是两个概率不为零的不相容的随机事件,则下列结论一定正确的是( ) (A )A 与B 互不相容 (B )A 与B 相容 (C ))()()(B P A P AB P =(D ))()(A P B A P =−(4)设1|()|( ,1)(0 ,1)(0=+<<<<B A P B A P B P A P ,则( )(A )事件A 与B 不独立 (B )事件A 与B 相互独立(C )事件A 与B 互斥 (D )事件A 与B 互为对立事件(5)袋中有5个球,其中3个红球,2个白球,现无放回地从中随机地抽取两次,每次取一球,则第二次取到红球的概率为( )(A )53 (B )42 (C )43 (D )103 3.设随机事件A 、B 及其和事件B A U 的概率分别为0.4,0.3和0.6,求(B A P .4.盒中有5张卡片,上面分别标有数字1,2,3,4,5,第一次从盒中任取一张且不放回,第二次再从盒中任取一张. 求(1)第一次取到的卡片上标有奇数的概率;(2)第二次取到的卡片上标有奇数的概率;(3)两次都取到标有奇数的卡片的概率.5.某种动物由出生活到10岁的概率为0.8,活到12岁的概率为0.56,问现年10岁的这种动物活到12岁的概率是多少?6.设甲、乙、丙三人独立地破译一种密码,他们能译出的概率分别是51,31,41,求密码能被译出的概率.7.盒中有12个乒乓球,其中9个新球,第一次比赛时从中任取3个来用,比赛后仍放回盒中,第二次比赛时再从盒中任取3个球,求第二次取出的球都是新球的概率(第一次用后的新球就成了旧球). 自测练习题 B1.选择题(在题中所给的4个选项中只有一项是正确的,把正确答案的代号填到题后的括号中)(1)设A ,B ,C 为三事件,则=B C A )(U ( )(A )ABC (B )B C A U ( (C )C B A U U ( (D )B C A U U )((2)已知31)()(==B P A P ,61)|(=B A P ,则=)(B A P ( ) (A )1811 (B )31 (C )187 (D )41 (3)在电炉上安装了4个温控器,其显示温度的误差是随机的.在使用过程中,只要有两个温控器显示的温度不低于临界温度0t ,电炉就断电.以E 表示事件“电炉断电”,设)4()3()2()1(T T T T ≤≤≤为4个温控器显示的按递增顺序排列的温度值,则E 等于( ). (A )}{0)1(t T ≥ (B )}{0)2(t T ≥ (C )}{0)3(t T ≥ (D )}{0)4(t T ≥(4) 对于任意两事件A 和B ,有=−)(B A P ( ).(A ))()(B P A P − (B ))()()(AB P B P A P +− (C ))()(AB P A P −(D )()()(B A P B P A P ++(5)设A ,B ,C 三个事件两两独立,则A ,B ,C 相互独立的充要条件是( ).(A )A 与BC 独立 (B )AB 与C A U 独立 (C )AB 与AC 独立(D )B A U 与C A U 独立2.填空题(将正确答案填到题中的横线上)(1)已知A ,B 两个事件满足()(B A P AB P =,且p A P =)(,则=)(B P .(2)甲袋中有5个白球,5个红球,15个黑球;乙袋中有10个白球,5个红球,10个黑球,从两袋中各取一球,则两球颜色相同的概率为 .(3)甲、乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5.现已知目标被击中,则它是被甲击中的概率为 .(4)设在一次试验中事件A 发生的概率为p ,现进行n 次独立重复试验,则A 至少发生一次的概率为 .(5)在区间(0,1)中随机地取两个数,则事件“两数之和小于56”的概率为 . 3.设A ,B ,C 是三个随机事件,且有41)()()(===C P B P A P ,61)(=AC P ,0)()(==BC P AB P .求A ,B ,C 至少出现一个的概率.4.在n 次独立重复试验中,事件A 在每次试验中发生的概率为0.3. 进行4次独立重复试验,若事件A 一次不发生,则事件B 也不发生,若事件A 发生一次,则事件B 发生的概率为0.6;若事件A 发生两次或两次以上,则事件B 一定发生. 求事件B 发生的概率.5. 设甲、乙两名射手轮流独立地向同一目标射击,直到有一人击中为止,击中者获胜.在一次射击中甲命中的概率为α,乙命中的概率为β,甲先射,求甲获胜的概率.6.做一系列独立的试验,每次试验中成功的概率为p ,求在成功n 次之前已经失败了m 次的概率.7.设有两门高射炮,每一门击中飞机的概率都是0.6,求同时发射一发炮弹而击中飞机的概率是多少?又若有一架敌机入侵领空,欲以99%以上的概率击中它,问至少要配备多少门高射炮?。
《概率论与数理统计》习题及答案

概率论与数理统计 第一部份 习题第一章 概率论基本概念一、填空题1、设A ,B ,C 为3事件,则这3事件中恰有2个事件发生可表示为 。
2、设3.0)(,1.0)(=⋃=B A P A P ,且A 与B 互不相容,则=)(B P 。
3、口袋中有4只白球,2只红球,从中随机抽取3只,则取得2只白球,1只红球的概率为 。
4、某人射击的命中率为0.7,现独立地重复射击5次,则恰有2次命中的概率为 。
5、某市有50%的住户订晚报,有60%的住户订日报,有80%的住户订这两种报纸中的一种,则同时订这两种报纸的百分比为 。
6、设A ,B 为两事件,3.0)(,7.0)(==B A P A P ,则=)(B A P 。
7、同时抛掷3枚均匀硬币,恰有1个正面的概率为 。
8、设A ,B 为两事件,2.0)(,5.0)(=-=B A P A P ,则=)(AB P 。
9、10个球中只有1个为红球,不放回地取球,每次1个,则第5次才取得红球的概率为 。
10、将一骰子独立地抛掷2次,以X 和Y 分别表示先后掷出的点数,{}10=+=Y X A{}Y X B >=,则=)|(A B P 。
11、设B A ,是两事件,则B A ,的差事件为 。
12、设C B A ,,构成一完备事件组,且,7.0)(,5.0)(==B P A P 则=)(C P ,=)(AB P 。
13、设A 与B 为互不相容的两事件,,0)(>B P 则=)|(B A P 。
14、设A 与B 为相互独立的两事件,且4.0)(,7.0)(==B P A P ,则=)(AB P 。
15、设B A ,是两事件,,36.0)(,9.0)(==AB P A P 则=)(B A P 。
16、设B A ,是两个相互独立的事件,,4.0)(,2.0)(==B P A P 则=)(B A P 。
17、设B A ,是两事件,如果B A ⊃,且2.0)(,7.0)(==B P A P ,则=)|(B A P 。
概率论与数理统计练习题第一章答案

(A) P(A 8) = 032 (B) P(AB) = 0・2 (C) P (B-A) = 04 (D) P(P4) = O ・487•有6本中文书和4 [D 1 本外文书.任意往书架摆放,则4本外文书放在一起的槪率是,、4!・6! (A) -----10!二、填空题:7(B)—1010!1.设P(A) = P(B) = P(C) = -, P{AB) = 0 ,P(AC) = P{BC}=-,则 A. B. C 全不发 4 8概率论与数理统计练习题(公共) 系 _______ 专业______ 班姓名—第一章 威机事件及其概率(一)2.甲、乙两人进行射击,久B 分别表示甲、乙射中目标,则Aug 表示3-以A 表示事件“甲种产品畅销,乙种产品滞销5 则其对应事件A 为.(A )“甲种产品滞销,乙种产品畅销m (B ) “甲、乙两种产品均畅销 (C ) “甲种产品滞销”;(D ) “甲种产品滞销或乙种产品畅销4.在电炉上安装了 4个温控器,其显示温度的误差是随机的。
在使用过程中,只要有两个 温控器显示的温度不低于临界温度F 。
,电炉就断电0以f 表示事件“电炉断电”,设 人"<7;2)<7;3)<:>为4个温控器显示的按递增排列的温度值, 2000) (C ){丁⑶} — ^0一・选择题1.对掷一颗骰子的试验,在概率论中将“出现奇数点”称为 【C ] (A )不可能事件 (B )必然事件 (C )随机事件 (D )样本事件学号(A )二人都没射中 (C )二人没有都射着(B )二人都射中 (D )至少一个射中则事件f 等于(考研题(A)(A)掷两颗均的骰子•事件“点数之和36事件,若P(A Q B) = 0・8,P(A) = 02P(P) = 0・4 . 则生的概率为4 2.设人和 B 是两事件,BuA ,P(A) = 0.9,P(B)= 0.36 •则 P(AB)= 3.在区间(0/1)内随机取两个数,则两个数之差的绝对值小于一的概率为的 。
《概率论与数理统计》练习题(含答案)

《概率论与数理统计》练习题(含答案)一、单项选择题1.设,,A B C 为三个事件,且,A B 相互独立,则以下结论中不正确的是( ) (A )若()1P C =,则AC 与BC 也独立. (B )若()1P C =,则A C 与B 也独立. (C )若()0P C =,则A C 与B 也独立. (D )若C B ⊂,则A 与C 也独立.答案:(D ).解答:因为概率为1的事件和概率为0的事件与任何事件独立,所以(A ),(B ),(C )都是正确的,只能选(D ).事实上由图 可见A 与C 不独立.2.设随机变量~(0,1),X N X 的分布函数为()x Φ,则(||2)P X >的值为( ) (A )2[1(2)]-Φ. (B )2(2)1Φ-. (C )2(2)-Φ. (D )12(2)-Φ.答案:(A )解答: ~(0,1)X N 所以(||2)1(||2)1(22)P X P X P X >=-≤=--<≤ 1(2)(2)1[2(2)1]2[1(2)]=-Φ+Φ-=-Φ-=-Φ 应选(A ).3.设随机变量X 和Y 不相关,则下列结论中正确的是( ) (A )X 与Y 独立. (B )()D X Y DX DY -=+. (C )()D X Y DX DY -=-. (D )()D XY DXDY =.SABC答案:(B )解答:由不相关的等价条件知,0y x cov 0xy =⇒=),(ρ ()+2cov x y D X Y DX DY -=+(,) 应选(B ).4.设离散型随机变量X 和Y 的联合概率分布为(,)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)111169183X Y P αβ若,X Y 独立,则,αβ的值为( )(A )21,99αβ==. (A )12,99αβ==.(C ) 11,66αβ== (D )51,1818αβ==.答案:(A )解答: 若,X Y 独立则有(2,2)(2)(2)P X Y P X P Y α======1121()()()3939αβαα=+++=+∴29α=, 19β=故应选(A ).5.设总体X 的数学期望为12,,,,n X X X μ为来自X 的样本,则下列结论中正确的是( )(A )1X 是μ的无偏估计量. (B )1X 是μ的极大似然估计量. (C )1X 是μ的相合(一致)估计量. (D )1X 不是μ的估计量. 答案:(A ) 解答:1EX μ=,所以1X 是μ的无偏估计,应选(A ).6. 设A 、B 、C 为三个事件,()0P AB >且(|)1P C AB =,则有( )Y X(A )()()() 1.P C P A P B ≤+- (B )()().P C P A B ≤ (C )()()() 1.P C P A P B ≥+- (D )()().P C P A B ≥答案:C 解答:由(|)1P C AB =知()()P ABC P AB =,故()()P C P AB ≥ ()()()()()()()1P C P AB P A P B P A B P A P B ≥=+-≥+- 应选C.7. 设随机变量X 的概率密度为2(2)4(),x f x x +-=-∞<<∞, 且~(0,1)Y aX b N =+,则在下列各组数中应取( ) (A )1/2, 1.a b == (B)2,a b ==(C )1/2,1a b ==-. (D)2,a b == 答案:B 解答:22(2)4()x f x +-==即~(2,)X N - 故当a b ===时 ~(0,1)Y aX b N =+ 应选B.8. 设随机变量X 与Y 相互独立,其概率分布分别为010.40.6X P010.40.6Y P则有( )(A )()0.P X Y == (B )()0.5.P X Y ==(C )()0.52.P X Y == (D )() 1.P X Y == 答案:C解答:()(0,0)(1,1)P X Y P X Y P X Y ====+== 0.40.40.60.60.52=⨯+⨯= 应选C.9. 对任意随机变量X ,若EX 存在,则[()]E E EX 等于( )(A )0. (B ).X (C ).EX (D )3().EX 答案:C 解答:[()]E E EX EX = 应选C.10. 设12,,,n x x x 为正态总体(,4)N μ的一个样本,x 表示样本均值,则μ的置信度为1α-的置信区间为( ) (A )/2/2(x u x u αα-+ (B )1/2/2(x u x u αα--+ (C )(x u x uαα-+ (D )/2/2(x u x u αα-+ 答案:D 解答:因为方差已知,所以μ的置信区间为/2/2(X u X u αα-+应选D. 11、设为总体的一个样本,为样本均值,则下),,,(21n X X X )2,1(2N X列结论中正确的是( D )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
杭州师范大学《概率与统计 》练习题(1)参考答案
命题教师 杨益民
一、单选题(在每小题的四个备选答案中选出一个正确答案,并将正确答案的序号填入题后的括号内。
每小题5分,共30分。
)
一、填空(共30分,每空格5分)
1.两封信随机地投入到四个邮筒,则前两个邮筒没有信的概率是: ( A )
A.0.25
B.0.3
C.0.45
D.0.98
2.袋内装有两个5分、三个2分、五个1分的硬币,任意取出5个,求总数超过1角的概率。
( B )
A.0.25
B.0.5
C.0.45
D.0.6
3.有两个口袋,甲袋中盛有两个白球,一个黑球,乙袋中盛有一个白球,两个黑球。
由甲袋任取一个球放入乙袋,再从乙袋中取出一个球,求取到白球的概率。
( A ) A.5
12 B.0.3 C.0.45 D.0.55 4.已知随机变量ξ只能取-1,0,1,2四个值,相应概率依次为1
2c
,
357,,4816,
c c c ,则常数c 的值是 ( A )
A.
37
16
B.1
C.2
D.12
5、已知某炼铁厂的铁水含碳量在正常生产情况下服从正态分布,其方差
220.108σ=。
现在测定了9炉铁水,其平均碳含量为4.484。
,若要求有95%的可靠性,则该厂铁水平均碳含量的置信区间是 ( A )
A.4.484 1.96 4.484 1.96μ<<+
B. 4.484 2.58 4.484 2.58μ<<+
C. 22
4.484 1.96 4.484 1.96μ-
<<+
D. 22
4.484 2.58 4.484 2.58μ<<+ 6.某商店为了了解居民对某种商品的需要,调查了100家住户,得出每户每月
平均需要量为10kg,方差为9。
如果这个商店供应1000户,试就居民对该种商品的平均需求量进行区间估计(α=0.01),并依此考虑最少要准备多少这种商品才能以0.99的概率满足需要。
( B )
A.(10 1.96,10 1.96)-+
B. (10 2.58,10 2.58)
C. (10 1.96,10 1.96)-+
D. (10 2.58,10 2.58)
二、名词解析 (每小题5分,共10分。
)
7.全概率定理:如果事件A 1,A 2
,
构成一个完备的事件组,并
且都具有正概率,则对任何一个事件B,有:
P ()()()i i i
B P A P B A =∑
8.李雅普诺夫定理:设12,,
ξξ是互相独立的随机变量,有期望值E i i a ξ=及方
差D ()21,2,i i i ξσ=<+∞=,
若每个i ξ,对总和1
n
i i ξ=∑影响不大,令1
2
21
n
n i i S σ=⎛
⎫= ⎪⎝⎭
∑,
则
()2
2
011
()lim x
t n
i i
n i n
P a x e
dt x S ξ-
→∞=⎛⎫-≤==Φ
⎪⎝⎭
∑⎰
三、填空题(每空4分,共16分。
) 9.若ξ有概率密度:
()()
x b a b x λϕ α≤≤<={0 其 它
则称ξ服从区间[],a b 上的均匀分布。
试求λ=1
b a
- 10、设随机变量ξ的概率密度是()2,F x ξξ则的分布函数是
(F F ξ
ξ
- 。
11、设ξ是区间[],a b 上均匀分布的随机变量,则D ξ=
()2
112
a b - 12、设ξ是参数为λ的指数分布则:E ξ=1λ-, D ξ=2λ-
四、计算题(每小题8分,共32分。
) 13.假定某工厂甲、乙、丙3个车间生产统一中螺钉,产量
依次占全厂的45%、35%、20%。
如果各车间的次品率依次为4%、2%、5%。
现从待出厂的产品中检查出1个次品,试计算它是甲车间生产的概率。
解:设事件B 表示“产品为次品”,A 1、A 2、A 3分别表示“产品为甲、乙、丙车间生产的”。
显然,A 1、A 2、A 3构成一个完备事件组。
依题意有:
P ()1A =45% P ()2A =35% P ()3A =20% (2分)
P ()14%B A = P ()22%B A = P ()35%B A = (2分)
于是由贝叶斯公式有:
(2分)
()
()()
()()
1113
1
i
i
i P A P B A P A B P A P B A ==
∑
45%4%
45%4%35%2%20%5%⨯=⨯+⨯+⨯≈0.514 (2分)
14、同一品种的5个产品中,有2个正品。
每次从中取1个检验质量,不放
回地抽取,连续2次。
用"0"k ξ=表示第k 次取到正品,而"1"k ξ= 为第k 次取到次品(k=1,2)。
写出()12,ξξ的联合分布律。
解:试验结果共由4个基本事件组成,相应概率可按公式计算:
P {}{}{}121210,0000P P ξξξξξ=======21
0.154
⨯= (2分)
P {}{}{}121210,1010P P ξξξξξ=======23
0.354
⨯= (2分)
P {}{}{}121211,0101P P ξξξξξ=======32
0.354
⨯= (2分)
P {}{}{}121211,1111P P ξξξξξ=======32
0.354
⨯=
具体分布如下表: (2分)
15.根据长期经验和资料分析,某砖瓦厂生产砖的“抗断强度”ξ服从正态分布,方差2σ 1.21=。
现从该厂产品中随机抽取6块,测得抗断强度的平均值为
231.13/X kg cm =若设α=0.05,试检验这批砖的平均抗断强度为32.50kg/2
cm 是否成立?
解:0:32.50H μ=.如果0H 是正确的,即样本()126,,
,X X X
来自正态总体N (32.50,1.12),于是有:
()0,1
N ,因而选取统计量
U = (4分)
对于给定的α=0.05,可以确定u α=1.96,其中满足:().P U u αα>=这就是说,对于0H 拒绝与否的临界值u α=1.96,再由取定的样本观察值实际计算得到U 的值,
3.05 1.96u =
≈>
最后结论是否定0H 。
(4分)
16、某炼铁厂的铁水含碳量在正常情况下服从正态分布。
现对操作工艺进行了某些改进,从中抽取5炉铁水测得含碳量数据220.228S =.若设α=0.05,据此是否可以认为新工艺炼出的铁水含碳量的方差仍为0.1028? 解:220:0.108;H σ=.如果0H 是正确的,即样本()12,,,n X X X 的函数
()22210.108n S χ-=作为统计量于是有样本
来自正态总体N (μ,0.1082),于是有:
()222
10.108n S χ-=()21n χ-, (4分)
对于给定的α=0.05,可以确定2αχ及2b χ使
()222(10.108)2
b P n S α
χ->=, ()222
(10.108)2
a
P n S α
χ-<=
其中 :2222
0.9750.275(4)0.484,(4)11.1a
b χχχχ====
具体计算统计量2χ的值有:
2
2
2
40.22817.82711.10.108
χ⨯=≈>
因而拒绝0H (4分)
五、证明题(每小题12分,共12分。
)
1.从总体ξ中取一样本()12,,
,n X X X ,E ξ=μ,D ξ=2,
σ试证明样本平均数X 及样本方差2S 分别是μ及2σ的无偏估计。
证:11111n n
i i i i EX E X EX n n n n μ==⎛⎫=== ⎪⎝⎭∑∑ (3分)
D 2211111n n
i i i i X D X DX n n n σ==⎛⎫=== ⎪⎝⎭∑∑ (3分)
E 2
211()1n i i S E X X n =⎡⎤=-⎢⎥-⎣⎦
∑
=
()211
1n i E x X n μμ=⎡⎤---⎣
⎦-∑
=()2211()1n
i i E X n X n μμ=⎡⎤---⎢⎥-⎣⎦
∑
=()22
11()11
n i
i n X E X n n μμ=-----∑ (6分)
证明完毕。