轴对称与坐标变化学案

合集下载

鲁教版五四学制:2024-2025年七年级第一学期上册数学5.3轴对称与坐标变化(1)学案和答案

鲁教版五四学制:2024-2025年七年级第一学期上册数学5.3轴对称与坐标变化(1)学案和答案

2024--2025学年度七年级数学上册第五章学案5.3轴对称与坐标变化(1)【学习目标】1.在同一直角坐标系,感受图形上点的横、纵坐标的变化与图形的轴对称之间的关系;2.经历图形的坐标变化与图形的轴对称之间的关系的探索过程,发展形象思维能力和数形结合意识. 【自主学习】1.点P(a,b)关于x轴对称的点的坐标是;关于x轴对称的两个点的坐标特点:横坐标,纵坐标。

2.点P(a,b)关于y轴对称的点的坐标是;关于y轴对称的两个点的坐标特点:横坐标,纵坐标。

3.点P(a,b)关于原点对称的点的坐标是;关于原点对称的两个点的坐标特点:横坐标,纵坐标。

口诀:关于谁,谁不变;关于原点,都改变。

【课堂练习】知识点一轴对称与坐标变化1.关于x轴或y轴对称的两个点的坐标的关系如图,点A,B,C,D的坐标分别为_______,_______,_______,________,(1)作出点A,B,C,D关于x轴的对称点A1,B1,C1,D1,则A1,B1,C1,D1的坐标分别为________,________,________,_________.(2)作出点A,B,C,D关于y轴的对称点A2,B2,C2,D2,则A2,B2,C2,D2的坐标分别为________,________,________,________.(3)作出点A,B,C,D关于原点的对称点A3,B3,C3,D3,则A3,B3,C3,D3的坐标分别为________,________,________,________.【当堂达标】1.已知A、B两点的坐标分别是(-2,3)和(2,3),则下面四个结论:①A、B关于x轴对称;②A、B关于y轴对称;③A、B关于原点对称;④A、B之间的距离为4,其中正确的有( )A.1个B.2个C.3个D.4个2.已知:△ABC在平面直角坐标系中的位置如图所示,如果△A1B1C1与△ABC关于y轴对称,那么点A 的对应点A1的坐标为( )A.(-4,2)B.(-4,-2)C.(4, 2)D.(4,2)3.点()2223A ,和点()2223B -,的位置关系是( ) A .关于x 轴对称 B .关于y 轴对称C .关于直线22x =对称D .关于直线23y =对称4.已知点()1,3A a --和点()2,1B b -+关于y 轴对称,则()2023a b +的值是( ) A .0 B .1 C .1- D .()20223-5.在平面直角坐标系中,点()1,2A 向右平移3个单位长度,再向下平移2个单位长度后的对应点A '的坐标是 .【课后拓展】6. △ABC 各顶点的坐标分别是()2,3A -,()3,1B -,()1,2C -.(1)写出△ABC 关于x 轴对称的111A B C △的顶点1A ,1B ,1C 的坐标;(2)求△ABC 的面积;(3)在y 轴上作出一点P ,使PA PB +的值最小.(保留作图痕迹,不写作法)5.3轴对称与坐标变化(1)【自主学习】1. (a,-b ) 不变 互为相反数2. (-a,b ) 互为相反数 不变3.(-a,-b )互为相反数 互为相反数【课堂练习】1. A (3,2) B(4,5) C(5,3) D(-6,4)(1) A (3,-2) B(4,-5) C(5,-3) D(-6,-4)(2) A (-3,2) B(-4,5) C(-5,3) D(6,4)(3) A (-3,-2) B(-4,-5) C(-5,-3) D(6,-4)【当堂达标】1. B2.C3.(2,3) (-2,-3)4.A5.A【课后拓展】1. (1)4 2 (2)-4 -22.C3.A4.(1)C (-3,0)(2)BC=3-(-3)=6 (3)A(0,) 第6题图。

3_轴对称与坐标变化_学案2

3_轴对称与坐标变化_学案2

3 轴对称与坐标变化1.图形的坐标变化与图形平移之间的关系在平面直角坐标系中,当纵坐标不变,横坐标都加上或减去一个正数a时,图形会向右或向左平移a个单位长度;当横坐标不变,纵坐标都加上或减去一个正数a时,图形会向上或向下平移a个单位长度.【例1】如图①所示的箭头是将坐标为(0,0),(1,2),(1,1),(4,1),(4,-1),(1,-1),(1,-2),(0,0)的点用线段依次连接而成的,若纵坐标保持不变,横坐标分别加1,再将所得的点用线段依次连接起来,所得的图案与原来的图案相比有什么变化?若是横坐标保持不变,纵坐标分别减2呢?分析:当横坐标不变,纵坐标加上或减去一个正数a时,原图形就相应地向上或向下平移a 个单位长度;当纵坐标不变时,横坐标加上或减去一个正数a时,则原图形会向右或向左平移a 个单位长度.解:若纵坐标保持不变,横坐标分别加1,则所得各点的坐标依次是(1,0),(2,2),(2,1),(5,1),(5,-1),(2,-1),(2,-2),(1,0),将各点用线段依次连接起来,所得图案如图②所示,所得图案与原图案相比,箭头的形状、大小不变,整个箭头向右平移了1个单位长度.若横坐标保持不变,纵坐标分别减2,则所得各点的坐标依次是(0,-2),(1,0),(1,-1),(4,-1),(4,-3),(1,-3),(1,-4),(0,-2),将各点用线段依次连接起来所得图案如图③所示,所得图案与原图案相比,箭头的形状、大小不变,整个箭头向下平移了2个单位长度.点评:解答本题的关键是求出图形变化后的点的坐标,再根据坐标用线段依次将点连接起来即可得到新图案.2.图形的坐标变化与图形的伸长和压缩之间的关系在平面直角坐标系中,当图形的纵坐标不变,横坐标扩大或缩小一定倍数时,图形就相应地被横向拉长或压缩该倍数,而纵向不变;当图形的横坐标不变,纵坐标扩大或缩小一定倍数时,图形就相应地被纵向拉长或压缩该倍数,而横向不变.【例2】如图所示的小船是将坐标为(1,0),(3,0),(4,1),(2,1),(2,3),(1,2),(1,1),(0,1),(1,0)的点用线段依次连接而成的,现将各点的坐标作如下变化:纵坐标保持不变,横坐标分别变成原来的 1.5倍,再将所得的点用线段依次连接起来,所得的图案与原来的图案相比有什么变化?解:纵坐标保持不变,横坐标分别变为原来的 1.5倍,所得各个点的坐标依次是:(1.5,0),(4.5,0),(6,1),(3,1),(3,3),(1.5,2),(1.5,1),(0,1),(1.5,0),将各点用线段依次连接起来,所得图案如图所示,与原图相比,整条船被横向拉长为原来的1.5倍.析规律坐标与图形变化的对应关系当横坐标不变,纵坐标扩大或缩小为原来的a倍时,图形就要被纵向拉长或压缩为原来的a 倍;当纵坐标不变,横坐标扩大或缩小为原来的b倍时,原图形就要被横向拉长或压缩为原来的b倍.3.图形的坐标变化与图形的轴对称之间的关系在平面直角坐标系中,当图形上各点的横坐标不变,纵坐标乘-1时,所得的新图形与原图形关于x轴对称;当图形上各点的纵坐标不变,横坐标乘-1时,所得的新图形与原图形关于y轴对称;当图形上各点的横、纵坐标都乘-1时,那么所得到的新图形与原图形关于原点对称.谈重点对称点的坐标变化规律对应点的坐标对称情况可以简单记为:关于横轴对称,“横不变,纵相反”;关于纵轴对称,“纵不变,横相反”;关于原点对称,“全相反”.【例3】按要求回答问题:(1)在平面直角坐标系中描出点(1,2),(1,4),(1,6),(3,6),(1,4),(3,2),(1,2),并将各点用线段依次连接起来.(2)将上述各点作如下变化:①纵坐标不变,横坐标分别变成原来的2倍,再将所得的点用线段按第一问中的顺序连接起来,所得的图形与原来的图形相比有什么变化?②横坐标保持不变,纵坐标分别加3呢?③横、纵坐标分别乘-1呢?分析:解决本题的关键是分别在两坐标轴上找到对应点,过这两点分别平行于两坐标轴的直线的交点即为所求的点.如要描点(1,6)的位置,先在x轴上找到点1,在y轴上找到点6,过这两点分别平行于两坐标轴的直线的交点即为所求的点;理解平移、旋转、伸缩等图形的特征.解:(1)如图所示.(2)①按题中的变化要求各点的坐标依次是:(2,2),(2,4),(2,6),(6,6),(2,4),(6,2),(2,2).所得的图案如图所示,与原图案相比,图形被横向拉伸为原来的2倍.②各点的坐标依次是:(1,5),(1,7),(1,9),(3,9),(1,7),(3,5),(1,5).所得的图案如图所示,与原来的图案相比,图形向上平移了3个单位长度.③各点的坐标依次是:(-1,-2),(-1,-4),(-1,-6),(-3,-6),(-1,-4),(-3,-2),(-1,-2).所得的图案如图所示,与原图案相比,图形绕O点旋转了180°,即两个图形关于O点成中心对称.4.图形的变换与点的坐标的关系将图形放在平面直角坐标系中,我们可以求得各顶点的坐标,反过来,知道了一些点的坐标,我们还可以将各点顺次连接起来得到一些有趣的图形.通过点的坐标的变化与图形的变换,可以得到图形变换的规律.图形是由点组成的,点的坐标发生了变化,图形也会发生相应的变化;图形移动时,点的坐标也发生变化.其变化规律为:(1)纵坐标不变,横坐标按比例增大时,图形被横向拉长;纵坐标不变,横坐标按比例减小时,图形被横向“压缩”.(2)图形向右平移时,纵坐标不变,横坐标增大;图形向左平移时,纵坐标不变,横坐标减小;图形向上平移时,横坐标不变,纵坐标增大;图形向下平移时,横坐标不变,纵坐标减小.(3)横坐标加上一个数,纵坐标不变时,图形左、右平移(加负数,左移,加正数,右移);纵坐标加上一个数,横坐标不变时,图形上、下平移(加正数,上移,加负数,下移).(4)横坐标不变,纵坐标乘-1时,所得图形与原图形关于x轴对称;纵坐标不变,横坐标乘-1时,所得图形与原图形关于y轴对称.【例4】如图1,在平面直角坐标系内,一个封闭的图形ABCDE上各顶点的坐标分别为A(-2,0),B(1,2),C(2,1),D(3,2),E(2,0).(1)将各顶点的横坐标都加上3,纵坐标不变,并把得到的顶点依次连接,则所得的图形和原图形相比,位置有怎样的变化?(2)如果将各顶点的纵坐标都加上3,横坐标不变,顺次连接各顶点,所得图形与原图形的位置有什么变化?(3)将各顶点的横坐标都加上4,纵坐标都加上5,顺次连接各顶点,所得的图形与原图形的位置有怎样的变化?图2解:(1)A,B,C,D,E点的横坐标都加上3,所得顶点的坐标分别是A1(1,0),B1(4,2),C1(5,1),D1(6,2),E1(5,0),依次连接各点得图形A1B1C1D1E1,图形A1B1C1D1E1相当于图形ABCDE向右平移了3个单位长度后得到的(如图2).(2)A,B,C,D,E点的纵坐标都加上3,所得顶点的坐标分别是A2(-2,3),B2(1,5),C2(2,4),D2(3,5),E2(2,3),顺次连接各点得到图形A2B2C2D2E2,图形A2B2C2D2E2相当于图形ABCDE 向上平移3个单位长度后得到的(如图2).(3)各顶点的坐标横坐标都加上4,纵坐标都加上5,所得顶点的坐标分别是A3(2,5),B3(5,7),C3(6,6),D3(7,7),E3(6,5).依次连接各顶点,所得图形A3B3C3D3E3相当于先把图形ABCDE向右平移4个单位长度,再向上平移5个单位长度后得到的(如图2).5.从变化的“鱼”中探索坐标变化与图形变化的关系通过变化的“鱼”,在坐标系内,将图形的坐标变化与图形的平移、轴对称、伸长、压缩巧妙地融合在一起,既体现了图形的现实性、趣味性,又体现了数学的深刻性以及数形结合的思想方法.平移:原图形的坐标中,横坐标保持不变,纵坐标分别增加(减少)a(a>0),则所得图案被向上(向下)平移a个单位长度,形状、大小未发生改变;反之,纵坐标不变,横坐标分别增加(减少)a(a>0),则所得图案被向右(向左)平移a个单位长度.轴对称:原图形的坐标中,横(纵)坐标保持不变,纵(横)坐标分别乘-1,则所得的图案与原图案关于横轴(纵轴)对称.伸长:新图案的坐标变为原图案坐标的a倍,则将原图案伸长a倍,便可得新图案.压缩:新图案的坐标变为原图案坐标的1a(a>1),则将原图案压缩1a,便可得新图案.【例5】下面的方格纸中画出了一个“小猪”的图案,已知每个小正方形的边长为1.(1)“小猪”所占的面积为多少?(2)在上面的方格纸中作出“小猪”关于直线DE对称的图案(只画图,不写作法);(3)以G为原点,GE所在直线为x轴,GB所在直线为y轴,小正方形的边长为单位长度建立平面直角坐标系,可得点A的坐标是(__________,__________).分析:(1)只要数一数正方形的个数就能解决;(2)先利用网格的条件找到每个点的对称点,再连接起来即可;(3)按要求画出直角坐标系立即可得答案,这样的问题可充分考查学生的动手能力,又让学生在操作中体验着成功.解:(1)观察图形:“小猪”所占面积包括29个小正方形和7个小三角形面积和,每个小三角形面积是小正方形面积的一半,所以“小猪”所占面积为32.5.(2)“小猪”关于直线DE对称的图案如图所示.(3)点A的坐标是(-4,1).。

初中数学 导学案3:轴对称与坐标变化

初中数学 导学案3:轴对称与坐标变化

轴对称与坐标变化(导学案)【学习目标】在同一直角坐标系中,感受图形上点的坐标变化与图形的轴对称变换之间的关系.【学习重点】经历图形坐标变化与图形轴对称之间关系的探索过程,明确图形坐标变化与图形轴对称之间关系。

【课前小测】1、下列各式中,正确的是( )A .24±=B .283-=-C .32)3()2(-⨯-=-⨯-D .3232--=--2、点A (3,-2)到轴的距离为_____,到轴的距离为________,到原点的距离为_________。

3、在平面直角坐标系中,点P (-1,2)的位置在( )A .第一象限B .第二象限C .第三象限D .第四象限【新课学习一】探索两个关于坐标轴对称的图形的坐标关系1、(1)第一、二象限内的两面小旗关于 对称(2)1(__,__)(__,__)A A 与 , 1(__,__)(__,__)B B 与1(__,__)(__,__)C C 与(3)关于y 轴对称的两点,它们的横坐标 ,纵坐标 ;2、(1)第一、四象限内的两面小旗关于 对称(2)2(__,__)(__,__)A A 与, 2(__,__)(__,__)B B 与2(__,__)(__,__)C C 与(3)关于x 轴对称的两点,它们的横坐标 ,纵坐标 ;3、小结:在直角坐标系中已知)Ax,(y(1)若点与点关于轴对称的两点,则____)A(___,1(2)若点与点关于轴对称的两点,则____)A(___,2【巩固练习】1、点A(2,-3)关于X轴对称的点的坐标是(,)。

2、点B(-2,1)关于Y轴对称的点的坐标是(,)。

3、点(4,3)与点(4,-3)的关系式()A、关于原点对称B、关于 x轴对称C、关于 y轴对称D、不能构成对称关系【新课学习二】探索坐标变化引起的图形变化1、(1)在平面直角坐标系中依次连接下列各点:(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0),你得到了一个怎样的图案?(2)将所得图案的各个顶点的纵坐标保持不变,横坐标分别乘以-1,顺次连接这些点,你会得到怎样的图案?这个图案与原图案又有怎样的位置关系呢?2、变式:如果1(1)中所得图案的各个顶点的横坐标保持不变,纵坐标分别变为原来的-1倍,顺次连接所得的点,你会得到怎样的图案?这个图案与原图案有怎样的位置关系呢?【巩固练习】五个点的坐标如下:A(-1,2), B(1,2), C(2,-1), D(-1,-2),E(2,1),其中关于x轴对称的点有,关于y轴对称的有。

《轴对称与坐标变化》教案

《轴对称与坐标变化》教案

学习目标
1.探索图形坐标变化的过程.(重点) 2.掌握图形坐标变化与图形轴对称之间的关系.(难点)
导入新课
复习引入
1.什么叫轴对称图形? 沿着某一直线对折,直线两旁的部分能够完全重合的图
形就是轴对称图形;这条直线称为对称轴. 2.如何在平面直角坐标系中确定点P的位置?
a称为点P的横坐标, b称为点P的纵坐标.
连接PB,则PB=PB1,有AP+PB=AB+PB1;
根据两点之间线段最短知:AP+PB的最 小值即为线段AB1的长度。于是,问题转化 为求线段AB1的长度.
分别过点A、B1作x轴、y轴的垂线,交点为C,得到Rt△AB1C.
显然AC=3,B1C=4,根据勾股定理可得AB1=5. 于是,AP+P个村庄在如图所示的直角坐标系中,那么: (1)点A的坐标为 ( 1 , 1 ),点B的坐标为 ( 5 , 2 ;)
(2)在x轴上有一条河,现准备在河流边上建一个抽水站P,使得抽水站P 到A、B两个村庄的距离之和最小,请作出点P的位置,并求此时距离之和 的最小值.
作出点B关于x轴的对称点B1,连接AB1,与x轴的交点就是抽水 站P的位置,理由如下:
讲授新课
一 轴对称与坐标变化
探索一 两个关于坐标轴对称的图形的坐标关系
1. △ABC与△A1B1C1在如图所示的直角坐标系中,仔细观察, 完成下列各题:
(1)△ABC与△A1B1C1有怎样的位置 关系?
△ABC与△A1B1C1关于x轴对称
(2)请在下表中填入点A与A1、点B与B1、点C与C1 的坐标,并思考:这些对应点的坐标之间有什么关系?
第三章 位置与坐标
轴对称与坐标变化
本编为大家提供各种类型的PPT课件,如数学课件、语文课件、英语 课件、地理课件、历史课件、政治课件、化学课件、物理课件等等, 想了解不同课件格式和写法,敬请下载! Moreover, our store provides various types of classic sample essays, such as contract agreements, documentary evidence, planning plans, summary reports, party and youth organization materials, reading notes, post reading reflections, essay encyclopedias, lesson plan materials, other sample essays, etc. If you want to learn about different formats and writing methods of sample essays, please stay tuned!

《轴对称与坐标变化》教案

《轴对称与坐标变化》教案

《轴对称与坐标变化》教案《《轴对称与坐标变化》教案》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!作业内容2017——2018八年级数学教学设计课题名称:轴对称与坐标变化姓名:吕欢工作单位:水城县比德中学学科年级:八年级教材版本:北师大版一、教学难点内容分析七年级上册同学们已经掌握了轴对称图形,那么再平面执教坐标系中关于两条“轴”对称的图形它们的顶点坐标有怎样的关系呢?同学们经过了前几节课的学习,已经学习了怎样确定物体的位置,系统的学习了平面直角坐标系的基本概念,并且能再直角坐标系中表示物体的位置,认识了点与左边之间的对应关系,同时能根据坐标描点,进而连线形成图形。

对于将相应的图顶点坐标按照一定的规律来变化后得到的图形与原图形的位置关系,从而学生自行的探索和发现图形的对称性与坐标变化的情况,本节课中“中心对称图形”作为本节课的拓展知识点与难点,因为同学们还没有认识“中心对称图形”,所以该拓展内容作为了本节课探索的难点。

同时,使用动态PPT演示关于“中心对称图形”成为了我设计的一个难点。

二、教学目标【知识目标】:1、在同一直角坐标系中,感受图形上点的坐标变化与图形的轴对称变换之间的关系.2、经历图形坐标变化与图形轴对称之间关系的探索过程,发展形象思维能力和数形结合意识。

【能力目标】:1.经历探究物体与图形的形状、大小、位置关系和变换的过程,掌握空间与图形的基础知识和基本技能,培养学生的探索能力。

【情感目标】1.丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维。

2.通过有趣的图形的研究,激发学生对数学学习的好奇心与求知欲,能积极参与数学学习活动。

3.通过“坐标与轴对称”,让学生体验数学活动充满着探索与创造。

教学重点:经历图形坐标变化与图形轴对称之间关系的探索过程,明确图形坐标变化与图形轴对称之间关系。

教学难点:由坐标的变化探索新旧图形之间的变化探索过程,发展形象思维能力和数形结合意识。

轴对称与坐标变化教学设计教案

轴对称与坐标变化教学设计教案

轴对称与坐标变化教学设计-教案第一章:引言1.1 课程背景本课程旨在帮助学生理解和掌握轴对称与坐标变化的概念,通过实例分析和练习,使学生能够熟练运用这些概念解决实际问题。

1.2 教学目标通过本章的学习,学生将能够:(1) 理解轴对称的定义和性质;(2) 理解坐标变化的概念;(3) 运用轴对称和坐标变化解决实际问题。

第二章:轴对称2.1 轴对称的定义本节将通过实例介绍轴对称的概念,使学生能够理解轴对称的定义。

2.2 轴对称的性质本节将通过几何图形来说明轴对称的性质,使学生能够熟练运用这些性质。

2.3 轴对称的实际应用本节将通过实例分析,使学生能够运用轴对称解决实际问题。

第三章:坐标变化3.1 坐标变化的定义本节将通过实例介绍坐标变化的概念,使学生能够理解坐标变化的定义。

3.2 坐标变化的性质本节将通过几何图形来说明坐标变化的性质,使学生能够熟练运用这些性质。

3.3 坐标变化的实际应用本节将通过实例分析,使学生能够运用坐标变化解决实际问题。

第四章:轴对称与坐标变化的关系4.1 轴对称与坐标变化的关系本节将通过实例分析,使学生能够理解轴对称与坐标变化之间的关系。

4.2 运用轴对称与坐标变化解决实际问题本节将通过实例分析,使学生能够综合运用轴对称和坐标变化解决实际问题。

第五章:总结与练习5.1 总结本节将通过总结本章内容,使学生能够巩固所学的知识。

5.2 练习本节将通过练习题,使学生能够检测自己的学习效果,并加深对轴对称与坐标变化的理解。

第六章:轴对称在几何中的应用6.1 轴对称与几何图形的对称性本节将通过几何图形来说明轴对称在几何中的应用,使学生能够理解轴对称与几何图形的对称性。

6.2 轴对称与几何图形的变换本节将通过实例分析,使学生能够运用轴对称与几何图形的变换。

第七章:坐标变化在数学中的应用7.1 坐标变化与函数图像的变换本节将通过函数图像的变换来说明坐标变化在数学中的应用,使学生能够理解坐标变化与函数图像的变换。

最新北师版八年级初二上册数学《轴对称与坐标变化》精品学案

最新北师版八年级初二上册数学《轴对称与坐标变化》精品学案

3.3 轴对称与坐标变化学习目标:1.经历图形坐标变化与图形的平移、轴对称、伸长、压缩之间的关系的探索过程,发展学生的形象思维能力和数形结合意识。

2.在同一直角坐标系中,感受图形上点的坐标变化与图形的变化(平移、轴对称、伸长、压缩)之间的关系。

重点 :经历图形坐标变化与图形的平移、轴对称、伸长、压缩之间关系的探索过程,发展学生的形象思维能力和数形结合意识。

点难 :由坐标的变化探索新旧图形之间的变化。

课前热身:练习:拿出方格纸,并在方格纸上建立直角坐标系,根据我读出的点的坐标在纸上找到相应的点,并依次用线段将这些点连接起来。

坐标是(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0)。

-2-1O 14321xy23456自主学习:例1 将上图中的点(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0)做以下变化:(1)纵坐标保持不变,横坐标分别变成原来的2倍,再将所得的点用线段依次连接起来,所得的图案与原来的图案相比有什么变化?(2)纵坐标保持不变,横坐标分别加3,再将所得的点用线段依次连接起来,所得的图案与原来的图案相比有什么变化?先根据题意把变化前后的坐标作一对比。

如下:根据变化后的坐标,把变化后的图形在自己准备的方格纸上画出来。

例2 将第一个图形中的点(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0)做如下变化:(1)横坐标保持不变,纵坐标分别乘-1,所得的图案与原来的图案相比有什么变化?(2)横、纵坐标分别变成原来的2倍,所得的图案与原来的图案相比有什么变化 -4-3-2-1O 14321x y2345657891011-4-3-2-1O 14321xy2345678910115678归纳总结:平移:1.纵坐标不变,横坐标分别增加(减少)a 个单位时,图形平移 a 个 单位;2.横坐标不变,纵坐标分别增加(减少) a 个单位时,图形平移a 个单位;缩放:1.纵坐标不变,横坐标分别变为原来的a 倍,图形为原来的a 倍(a>1)2.横坐标不变,纵坐标分别变为原来的a 倍,图形为原来的a 倍(a>1)3.横坐标与纵坐标同时变为原来的a 倍,图形为原来的a 倍(a>1)对称:1.纵坐标不变,横坐标分别乘-1,所得图形与原图形关于Y 轴对称;2.横坐标不变,纵坐标分别乘-1,所得图形与原图形关于 X 轴对称;3.横坐标与纵坐标都乘-1,所得图形与原图形关于坐标原点中心对称。

北师大版八年级数学上册:3.3《轴对称与坐标变化》教学设计1

北师大版八年级数学上册:3.3《轴对称与坐标变化》教学设计1

北师大版八年级数学上册:3.3《轴对称与坐标变化》教学设计1一. 教材分析《轴对称与坐标变化》是北师大版八年级数学上册第三章第三节的内容。

本节内容是在学生已经掌握了坐标系、二元一次方程组等知识的基础上,引出轴对称的概念,并探讨其在坐标系中的运用。

通过本节内容的学习,使学生理解轴对称的性质,学会运用坐标系解决轴对称问题,提高学生的逻辑思维能力和解决问题的能力。

二. 学情分析学生在学习本节内容时,已具备一定的数学基础,但对于轴对称的概念和其在坐标系中的应用可能还存在一定的困惑。

因此,在教学过程中,需要教师通过生动形象的讲解和丰富的实例,帮助学生理解和掌握轴对称的性质和坐标系在解决轴对称问题中的应用。

三. 教学目标1.理解轴对称的概念,掌握轴对称的性质。

2.学会运用坐标系解决轴对称问题。

3.提高学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.轴对称的概念和性质。

2.坐标系在解决轴对称问题中的应用。

五. 教学方法1.采用问题驱动法,引导学生主动思考和探索。

2.使用生动形象的讲解和丰富的实例,帮助学生理解和掌握轴对称的性质和坐标系在解决轴对称问题中的应用。

3.学生进行合作交流,提高学生的团队协作能力。

六. 教学准备1.准备相关的教学PPT和教学素材。

2.准备轴对称的实物模型,如剪刀、纸张等。

3.准备坐标系的相关教具,如坐标轴模型等。

七. 教学过程1.导入(5分钟)教师通过展示一些生活中的轴对称现象,如剪刀、纸张等,引导学生关注轴对称的概念。

然后,教师提问:“请大家思考一下,什么是轴对称?”让学生进行思考和讨论。

2.呈现(10分钟)教师通过PPT呈现轴对称的定义和性质,让学生初步了解轴对称的概念。

同时,教师结合实例进行讲解,帮助学生理解和掌握轴对称的性质。

3.操练(10分钟)教师学生进行小组讨论,让学生运用坐标系解决一些轴对称问题。

教师给予学生一定的指导,并引导学生总结解决轴对称问题的方法。

4.巩固(10分钟)教师通过一些练习题,让学生巩固本节课所学的知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

轴对称与坐标变化
学习目标
1.在平面直角坐标系中,探索关于x轴、y轴对称的点的坐标规律.
2.利用关于x轴、y轴对称的点的坐标的规律,能作出关于x轴、y•轴对称的图形.
3在探索关于x轴,y轴对称的点的坐标的规律时,•发展学生数形结合的思维意识.
4在同一坐标系中,•感受图形上点的坐标的变化与图形的轴对称变换之间的关系.
学习过程
探究一
如图:
(1)观察上图中两个圆脸有什么关系?
(2)已知右边图脸右眼的坐标为(4,3),左眼的坐标为(2,3),嘴角两个端点,右端点的坐标为(4,1),左端点的坐标为(2,1).
你能根据轴对称的性质写出左边圆脸上左眼,右眼及嘴角两端点的坐标吗?
探究二
在平面直角坐标系中,将坐标为(2,2),(4,2),(4,4),(2,4),(2,2)的点用线段依次连接起来形成一个图案.
(1)纵坐标不变,横坐标分别乘以-1,再将所得的各个点用线段依次连接起来,所得的图案与原图案相比有何变化?
(2)横坐标不变,纵坐标分别乘以-1,再将所得的各个点用线段依次连接起来,所得的图案又与原图案相比有何变化?
探究三
关于x轴对称的点具有什么规律呢?
关于y轴对称的点具有什么规律呢
随堂练习
1.分别写出下列各点关于x轴和y轴对称的点的坐标:
(-2,6),(1,-2),(-1,3),(-4,-2),(1,0).
堂淸2.如图,△ABC关于x轴对称,点A的坐标为(1,-2),标出点B的坐标.
3.如图,利用关于坐标轴对称的点的坐标的特点,分别作出与△ABC关于x•轴和y轴对称的图形.
练习册练习5.6 1.2.3.4
布置作业课后习题1.2必做3选做。

相关文档
最新文档