转炉炉衬设计

合集下载

AOD精炼炉耐火材料的选择及炉衬设计

AOD精炼炉耐火材料的选择及炉衬设计

AOD炉耐火材料的选择及炉衬设计唐山不锈钢有限责任公司(简称唐钢)不锈钢生产线于2008年9月19日正式投产。

其工艺路线为:脱磷转炉(铁水低温脱磷)→AOD精炼炉→LF炉→连铸机;或:脱磷转炉(铁水低温脱磷)→A0D精炼炉→VOD 真空精炼炉→LF炉→连铸机。

其主要设备有100t的脱磷转炉1座,110t氩氧脱碳转炉1座,110t真空吹氧脱碳炉1座,110t钢包精炼炉1座,不锈钢板坯连铸机1台,年产合格不锈钢板坯60万t。

下面简单介绍AOD炉冶炼用耐火材料的选取及炉衬设计过程。

1 AOD炉冶炼的特点.1.1 炉温高,冶炼周期长,温度变化大有研究表明[1],当熔池温度在1700℃以上时,温度每提高50℃,炉衬耐火材料的侵蚀速度就提高1倍。

AOD炉冶炼不锈钢时,脱碳期熔池温度高达1750℃以上,且不锈钢冶炼周期较长,炉衬耐火材料在高温下的工作时问也相应较长,加快了耐火材料侵蚀速度。

由于生产是间歇式的,在出钢后等待装入半钢水(即脱磷铁水)期间,炉衬温度会下降至1300℃左右,此时,风枪环缝管依然吹入常温的保护性气体,使周围炉衬耐火材料温度进一步急降至850℃以下;冶炼过程中,风口区吹入的氧气混合气体会与钢水中的元素发生放热反应,造成风口局部炉衬温度较高,而其他区域的炉衬温度相对较低;由于在不锈钢精炼期间,需要向熔池内加入大量的冷料,所以会在较短时间内造成渣线部位炉衬温度的急剧下降。

上述几种急冷急热的状况,极易造成耐火材料的剥落,影响炉衬寿命。

1.2 熔渣的侵蚀在AOD炉精炼过程中,炉内熔渣碱度的波动范围很大,在1.0~3.0之间。

进入还原期时,大量还原硅铁的加入使渣中SiO含量突然升高,尽管配加了一定量的石灰,但炉渣碱度还是仅约为1.2,在惰性气体的搅拌下,渣中的SiO会与碱性耐火材料炉衬中的MgO和CaO发生反应,生成低熔点的钙镁橄榄石CMS 和镁蔷薇辉石C3MS2,同时破坏了方镁石之间的结合。

而这些低熔物在AOD精炼期间会发生软化和脱落,从而使炉衬寿命降低。

转炉炉型和炉衬设计

转炉炉型和炉衬设计

转炉炉型和炉衬设计转炉炉型和炉衬设计(design of。

onverter furnaee outline and lining)确定适合于转炉炉容量和操作条件的转炉炉型和各部位炉衬材质的设计。

是转炉炼钢车问设计的主要组成部分。

转炉炉型设计转炉炉型是指新砌成的转炉炉衬的内腔形状和尺寸。

氧气转炉的炉型通常是先用统计公式计算出转炉各部位的主要尺寸,然后再与炉容量相近、条件相似的实际生产转炉进行比较和调整后确定的。

氧气转炉炉型绝大多数是轴对称回转体结构,由截锥型炉帽(仅有少数转炉呈偏口形)、圆柱形炉身和不同形状的炉底三部分组成。

按转炉熔池形状不同,常见的炉型有筒球型、锥球型和截锥型三种(见图)。

筒球型炉型形状简单,砌筑方便,炉壳制造容易,大容量转炉采用较多。

锥球型炉型与相同容量的筒球型炉相比,在熔池深度相同的情况下,更有利于冶金反应;截锥型炉型的优点是炉底砌筑方便,这两种炉型在中小容量转炉炉型设计中采用较多。

l炉帽l} 产户-十一月力沪身r护ee卞we育久厂广一十一耳尧还丰少一沪底又导刃又导公筒球型锥球型截锥型氧气转炉常用炉型图对氧气转炉炉型的主要技术参数要求为:(l)炉容比(工作容积与公称容量之比)与铁水条件、冶炼操作方法和转炉炉容量有关,通常每公称吨炉容比为。

.80 ~1.oom3/t;(2)高宽比(炉子全高与炉壳直径之比) 对转炉操作和建设费用有直接影响,一般取为1.25一1.65;(3)炉帽的倾角为60。

士30;(4)炉口直径一般为熔池直径的。

.43~0.53倍;(5)熔池直径系指转护熔池在平静状态时金属液面的直径,它与转炉装人量和供氧强度有关,可按D一K丫瓦万进行计算,式中 D为熔池直径,m;K为比例常数,一般为1.85~2·3; G为转炉装入量,t;T为转炉供氧时间,min。

炉衬耐火材料选择转炉炉衬分为工作层、填充层和永久层。

工作层衬砖与熔池钢水和熔渣接触工作条件十分恶劣,要求有良好的物理性能和化学稳定性,同时也要有较低的价格。

毕业论文--年产100万吨连铸坯的全连铸转炉炼钢车间工艺设计

毕业论文--年产100万吨连铸坯的全连铸转炉炼钢车间工艺设计

毕业论文--年产100万吨连铸坯的全连铸转炉炼钢车间工艺设计年产1000万吨连铸坯的全连铸转炉炼钢车间工艺设计摘要本说明书在实习和参考文献的基础上,对所学知识进行综合利用。

讲述了设计一转炉车间的方法和步骤,说明书中对车间主要系统例如铁水供应系统,废钢供应系统,散装料供应系统,铁合金供应系统,除尘系统等进行了充分论证和比较确定出一套最佳设计方案。

并确定了车间的工艺布置,对跨数及相对位置进行设计,简述了其工艺流程,并在此基础上进行设备计算,包括转炉炉型计算,转炉炉衬计算及金属构件计算,氧枪设计,净化系统设备计算,然后进行车间计算和所用设备的规格和数量的设计,在此基础上进行车间尺寸计算,确定各层平台标高。

最后对转炉车间设计得环境和安全要求进行说明为了更加详细说明转炉车间设计中的一些工艺及设备结构,本设计穿插了图形,为能够明确、直观的介绍了转炉炼钢车间的工艺布置。

Abstract In practice this manual and reference, based on the comprehensive utilization of the knowledge. Design a workshop about the methods and procedures converter, manual systems such as hot metal on the workshop mainly supply system, scrap supply system, bulk material supply system, ferroalloy supply system, dust removal system was fully demonstrated and compared to determine a set of best good design. And determine the layout of the workshop process, the number and relative position of the crossdesign, outlines the process and devices based on this calculation, including the calculation of the converter furnace, converter lining calculation and calculation of metal components, oxygen lance design , purification system equipment, calculation, and then workshop equipment used in the calculation and the number of design specifications and, in this workshop based on the size of calculations to determine the elevation of each floor platform. Finally, the converter workshop designed to explain environmental and safety requirements.For a more detailed description of some of the converter process plant design and equipment in the structure, the design interspersed with graphics, to be able to clear, intuitive introduction to the process of converter steelmaking plant layout.Key Words: Steel, blowing converter, continuous casting, billet, slab, material balance, heat balance, furnace design目录1 文献综述 11.1国外炼钢技术的发展 11.2钢铁工业在国民经济中的地位和作用 11.3现代转炉炼钢工艺流程21.4 我国氧气转炉炼钢技术展望 20>. 转炉大型化和流程优化 2. 转炉高效化 3. 钢水洁净化 3. 控制模型化 3. 资源综合利用化 31.5 现代转炉炼钢技术存在的问题 42 转炉炼钢厂设计方案52.1 转炉车间组成 52.2 转炉座数、容量和车间生产能力的确定 5 . 转炉座数 5. 车间生产能力的确定52.3 主要钢种的选择 62.4 工艺流程 62.5 原料方案7. 铁水的供应7. 废钢的供应7. 散装料的供应7. 铁合金的供应82.6 主厂房工艺布置8. 原料跨的布置8. 炉子跨的布置9. 精炼跨的布置93 物料平衡与热平衡计算103.1 物料平衡10.需原始数据10.衡基本项目11.骤113.2 热平衡计算18.需原始数据18.骤194 顶底复吹转炉炉型设计234.1 炉型选择234.2 原始条件234.3 主要参数的确定234.4 炉衬各层填充材料选择275 生产工艺设计285.1炼钢原料28. 28. 28. 28. 28. 28.石29. 295.2装料制度295.3供氧制度29.膛内氧气射流的特性29.流对转炉熔池的作用30.气转炉的氧枪操作305.4造渣制度30.度的控制与石灰加入量的确定30 .灰熔解速度的因素31.度的控制 31.化性的控制31.及其控制 32.留渣操作 325.5温度制度33.度的确定 33.及其加入量的确定335.6终点控制和出钢345.7脱氧制度和合金化 35.气转炉炼钢的脱氧方法35.的一般原理356 转炉炉体金属构件设计376.1炉壳设计376.2支撑装置设计376.3倾动机构的设计387 氧气转炉供氧系统设计397.1氧气的供应39.钢车间需氧量计算39.能力的选择397.2氧枪设计39.型与选择 40.计407.3氧枪枪身设计41.层尺寸的确定41.度的确定 427.4转炉底部供气构件设计42.类42.量43.件43.件布置438 转炉车间烟气净化与回收44 8.1转炉烟气与烟尘44.特征44.特征448.2烟气净化方案选择 44.近烟气处理方法44.气净化方法458.3烟气净化系统458.4烟气净化回收系统主要设备45 . 45.尘器46. 46车间主要设备的选择479.1原料跨47.的设计47.斗的计算 489.2转炉跨48. 48.量的确定 499.3精炼跨499.4连铸跨50.生产:尺寸为170mm×1500mm 50 .生产:尺寸为150mm×150mm 53 .艺参数的确定54.主要工艺参数的确定54.的有关参数54.重机的选择5510 主厂房工艺布置5610.1 原料跨间的布置5610.2 转炉跨间的布置58.的布置58.各平台的确定5910.3 连铸设备的布置6211 总劳动定员表651 炼钢工序652 连铸工序663 燃气674 给排水675 热力686 通风687 电气688 精炼工序689 机修6910 检化室 6912 主要技术经济指标70致谢711 文献综述10-6。

转炉设计

转炉设计

180t 顶底复吹转炉设计一、转炉炉型设计原始条件: 炉子平均出钢量180t 。

金属收得率取92%,最大废钢比取20%,采用废钢矿石冷却,铁水采用P08低磷生铁{w (si )≤0.85%,w (p )≤0.2%,w (s )≤0.05%}1、熔池形状确定转炉炉型有筒球型、锥球型、截锥型,熔池形状选用截锥型。

为了满 足顶底复吹的要求,炉型趋于矮胖型,由于在炉底上要设置底吹喷嘴,炉底为平底,所以熔池为截锥形。

2、炉容比确定炉容比系指转炉有效容积t V 与公称容量T 之比值。

t V 系炉帽体积帽V 、炉身体积身V 、和容池体积c V 三个内腔容积之和。

由于顶底复吹转炉吹炼过程比较平稳,产生泡沫渣的量比顶吹转炉要少得多,喷溅较少,因此其炉容比比顶吹转炉小,但比底吹转炉要大。

根据冶炼条件取炉容比为0.95m 3/t 。

3、熔池尺寸的确定熔池是容纳金属并进行一系列复杂物理化学反应的过程,其主要尺寸有熔池 直径和熔池深度。

设计时,应根据装入量、供氧强度、喷嘴类型、冶金动力学条件以及炉衬蚀损的影响综合考虑。

截锥型熔池尺寸如图(1)所示:则其体积为: )(12h2112d Dd D V ++=π熔(1) 熔池直径D :熔池直径通常指熔池处于平静状态时金属液面的直径。

D=Kt G =1.63×15180=5.646m 式中G ——炉子公称容量,180t ;t ——平均每炉钢纯吹氧时间,取15分钟; K ——比例系数,根据炉子容量取1.63; (2)熔池深度h :根据经验,取D d 7.01== 3.952m其中熔池体积38.268.6180m GV c ===ρ故熔池深度: 20.574c V h D == 2646.5574.08.26⨯=1.465m校核26.0646.5465.1/==D h 符合要求 4、炉帽尺寸的确定(1)炉帽倾角θ:本计算中取θ=65度(2)炉口直径d :炉口直径为熔池直径的43~53%,本计算中取48%则 d=48%D=0.48×5.646=2.710m(3)炉帽高度H 帽:炉帽高度是截椎体高度与炉口直线段高度值和。

转炉设计报告(毕业设计)

转炉设计报告(毕业设计)

摘要钢铁工业是我国国民经济的支柱产业。

我国钢铁产量连续十几年雄踞世界首位,已经成为了世界上最大的钢铁生产国和消费国,为国民经济的持续、稳定、健康发展做出来突出贡献。

炼钢是钢铁生产过程中的重要环节,而氧气转炉炼钢法则是目前国内外主要的炼钢方法。

钢铁市场的繁荣对钢铁产品的质量提出了更高的要求,为此我们必须采用新的设计理念和设计方法来满足新时代炼钢工艺水平。

在本次设计中,我们小组以奥钢联氧气转炉为模型,参考国内外已成功使用的各种转炉的结构和设计方法,来进行设计。

首先根据所要求的吨位确定炉型的尺寸,选出合适的炉衬尺寸,由此确定出炉壳的基本尺寸。

尺寸确定后进行炉壳的强度计算、热应力计算、焊缝的强度校核。

设计出的转炉在所要求的吨位下具有良好的承载能力和安全系数。

关键词:转炉炉壳壳体理论热应力焊缝AbstractIron and steel industry is the backbone industry of our national economy . China's steel production decade ranked first in the world, has become the world's largest steel producer and consumer countries, for the national economy and sustainable, stable and healthy development to make it outstanding contributions. Steel is steel production of important links, and oxygen steelmaking law is at present a major steelmaking methods at home and abroad. Iron and steel market prosperity on steel products quality high demands, we must adopt new design concept and design to a new era of steelmaking process level. In this design, our team to Vai oxygen converter as a model, a reference to domestic and international has been successfully using various converter of structure and design methods, for design. First of all, according to the required type of tonnage determine size, choose the right size of furnace lining, determined the basic dimensions come out of the shell. After size determination ,the next is the shell's strength, heat stress, weld strength check. The designed converter under the request of tonnage possesses good carrying capacity and safety factors.Key words : converter Shell Shell theory Thermal stress Weld目录绪论 (1)1 炉体的结构简介 (3)2 转炉炉腔类型的选择和计算 (4)2.1 炉形的类别 (4)2.2 炉型主要尺寸的确定原则 (4)2.2.1 熔池直径的确定 (4)2.2.2 熔池深度与氧流穿透熔池深度的确定 (5)2.2.3 炉帽、炉身、炉底尺寸的确定 (8)3 炉体设计计算 (12)3.1 炉体理论基本方程 (12)3.2 炉身圆筒壳的设计计算 (15)3.3 炉底球壳的设计计算 (16)3.4 下锥段的设计计算 (18)3.5 上锥段的设计计算 (19)4 炉壳热应力的计算 (21)4.1 炉身圆筒壳热应力的简化计算 (21)4.2 炉底热应力计算 (22)4.3 炉底锥段热应力的计算 (24)5 炉壳各部分连接焊缝的强度计算 (24)5.1 炉帽与炉身连接焊缝的计算 (25)5.2 炉身与炉底连接处的焊缝 (25)5.3 炉底下锥段与炉底球壳连接处的焊缝 (26)结束语 (27)参考文献 (28)致谢 (29)附录一图纸目录及总量 (30)绪论氧气顶吹转炉炼钢又称LD炼钢法,1949年6月由奥地利的Voest-Alpine联合公司实验成功,并在1952年和1953年先后在其所属的林茨(Linz)和多纳维兹([)onawitz)两钢厂投入工业生产(顾称LD法)。

转炉设计改111

转炉设计改111

氧气顶吹转炉设计姓名XXX学号XXXX冶金工程XXXX材料科学与工程学院目录1.原始条件------------------------------32.炉型选择------------------------------33.炉容比的确定------------------------34.熔池直径的计算---------------------45.炉帽尺寸的确定---------------------66.炉身尺寸的确定---------------------67.出钢口尺寸的确定------------------78.炉衬厚度确定------------------------89.炉壳厚度的确定---------------------910.验算高宽比---------------------------9氧气顶吹转炉设计1. 原始条件炉子平均出钢量为50t ,钢水收得率为92%,最大废钢比取20%,采用废钢矿石法冷却;铁水采用P08低磷生铁;氧枪采用五孔拉瓦尔型喷头,设计氧压为1.0MPa 。

2. 炉型选择根据初始条件采用筒球型作为设计炉型。

转炉由炉帽、炉身、炉底三部分组成,转炉炉型是指由上述三部分组成的炉衬内部空间的几何形状。

有于炉帽和炉身的形状没有变化,所以通常按熔池形状将转炉炉型分为筒球型、锥球型和截锥型三种。

炉型的选择往往与转炉的容量有关。

和相同体积的筒球型相比,锥球型熔池比较深,有利于保护炉底。

在同样熔池深度的情况下,熔池直径可以比筒球型大,增加了熔池反应面积,有利于去P ,S 。

我国的中小型转炉普遍采用这种炉型。

3. 炉容比的确定炉容比是指转炉有效容积V t 与公称容量G 的比值V t /G(m 3/t)。

V t 系炉帽、炉身和熔池三个内腔容积之和。

公称容量以转炉炉役期的平均出钢量来表示。

确定炉容比应综合考虑。

通常,铁水比增大,铁水中Si 、S 、P 含量高,用矿石作冷却剂以及供氧强度提高时,为了减少喷溅或溢渣损失,提高金属收得率和操作稳定性,炉容比要适当增大。

氧气转炉设计

氧气转炉设计

氧气(顶吹)转炉设计1 转炉炉型设计1.1 炉型定义转炉炉型指转炉炉膛的几何形状,即由耐火材料砌成的炉衬内形。

1.2 炉型设计的意义(简提冯P34)1.3 炉型设计的内容⑴炉型种类的选择⑵炉型主要参数的确定⑶炉型尺寸设计计算⑷炉衬和炉壳厚度的确定[ ⑸顶底复吹转炉设计]1.4炉型种类的选择⑴选择原则①炉型应能适应炉内钢液、炉渣和炉气的循环运动规律,使熔池得到激烈而又均匀的搅拌,从而加快炼钢过程的物理化学反应;②有利于提高供氧强度,缩短冶炼时间,减少喷溅,降低金属损耗;③新砌好的炉型要尽量接近于停炉以后残余炉衬的轮廓,减少吹炼过程中钢液、炉渣和炉气对炉衬的冲刷侵蚀及局部侵蚀,提高炉龄,降低耐火材料的消耗;④炉壳应容易制造,炉衬砖的砌筑和维护要方便,从而改善工人的劳动条件,缩短修炉时间,提高转炉作业率。

总之应能使转炉炼钢获得较好的经济效益,优质、高产、低耗。

⑵炉型种类转炉由炉帽、炉身和炉底三部分组成,按熔池形状分三种炉型:转炉常用炉型示意图①筒球型特点:形状简单,砌砖简便,炉壳容易制造;形状接近于金属液的循环运动轨迹;金属装入量大(与其他两种炉型在相同熔池直径和熔池深度的情况下相比),适用于大型转炉。

②锥球型(国外又叫橄榄形)特点:(在装入量和熔池深度均相同的情况下,与其他炉型相比)反应面积大,有利于钢、渣之间的反应,适用于吹炼高磷铁水;熔池形状更符合钢、渣环流的要求,炉衬侵蚀均匀,其形状变化小,对操作较为有利;炉型上下对称(橄榄形),空炉重心接近于炉体的几何重心位置,使得转炉的倾动国矩小。

(有些国家将这种炉型用于大容量炉子,我国中型转炉采用此型较多)③截锥型特点:形状简单,炉底砌筑简便;在装入量和熔池直径相同的情况下,其熔池最深,适用于小型转炉。

④大炉膛形炉型(矿石含P较高的一些国家采用)特点:炉身上大下小且炉帽倾角很小,具有较大的反应空间,对冶炼过程中增大渣量、造泡沫渣脱P 有利;但炉型砌筑复杂,炉衬寿命短,一般不用。

转炉设计

转炉设计

转炉设计1.1转炉炉型设计1.1.1转炉炉型设计概述(1)公称容量及其表示方法公称容量(T),对转炉容量大小的称谓。

即平时所说的转炉的吨位。

(2)炉型的定义转炉炉型是指转炉炉膛的几何形状,亦即指由耐火材料切成的炉衬内形。

炉型设计内容包括:炉型种类的选择;炉型主要参数的确定;炉型尺寸设计计算;炉衬和炉壳厚度的确定;顶底复吹转炉设计。

1.1.2炉型种类及其选择(1)炉型种类根据熔池(容纳金属液的那部分容积)的形状不同来区分,炉帽、炉身部位都相同,大体上归纳为以下三种炉型:筒球形、锥球形和截锥形。

①筒球形炉型:该炉型的熔池由一个圆筒体和一个球冠体两部分组成,炉帽为截锥体,炉身为圆筒形。

其特点是形状简单,砌砖简便,炉壳容易制造。

在相同的熔池直径D和熔池深度h的情况下,与其他两种炉型相比,这种炉型熔池的容积大,金属装入量大,其形状接近于金属液的循环运动轨迹,适用于大型转炉。

②锥球形炉型(国外又叫橄榄形):该炉型的熔池由一个倒置截锥体和一个球冠体两部分组成,炉帽和炉身与圆筒形形炉相同。

其特点是,与同容量的其他炉膛相比,在相同熔池深度h下,其反应面积大,有利于钢、渣之间的反应,适用于吹炼高磷铁水。

③截锥体炉型:该炉型的熔池有一个倒置的截锥体组成。

其特点是,形状简单,炉底砌筑简便,其形状基本上能满足于炼钢反应的要求。

与相同容量的其他炉型相比,在熔池直径相同的情况下,熔池最深,适用于小型转炉。

结合中国已建成的转炉的设计经验,在选择炉型时,可以考虑:100~200t以上的大型转炉,采用筒球形炉型;50~80t的中型转炉,采用锥球形转炉;30t以下的小型转炉,采用截锥体转炉。

1.1.3转炉炉型主要参数的确定迄今为止,国内外还没有一套完整的转炉炉型的理论计算公式,不能完全从理论上确定一个理想的转炉炉型和炉型各部分尺寸参数。

现有的公式都属于经验公式。

目前国内各厂进行转炉炉型设计时,一般都是采用“依炉建炉”的设计方法。

即通过考察和总结同类转炉的长期生产情况和较先进的技术经济指标,结合采用经验公式和进行可行的模拟试验,再结合当地的条件做适当的修改,来确定转炉的炉型尺寸。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

炉炉型和炉衬设计
转炉炉型和炉衬设计(design of conveter furnace outline and lining) 确定适合于转炉炉容量和操作条件的转炉炉型和各部位炉衬材质的设计。

是转炉炼钢车间设计的主要组成部分。

转炉炉型设计转炉炉型是指新砌成的转炉炉衬的内腔形状和尺寸。

氧气转炉的炉型通常是先用统计公式计算出转炉各部位的主要尺寸,然后再与炉容量相近、条件相似的实际生产转炉进行比较和调整后确定的。

氧气转炉炉型绝大多数是轴对称回转体结构,由截锥型炉帽(仅有少数转炉呈偏口形)、圆柱形炉身和不同形状的炉底三部分组成。

按转炉熔池形状不同,常见的炉型有筒球型、锥球型和截锥型三种(见图)。

筒球型炉型形状简单,砌筑方便,炉壳制造容易,大容量转炉采用较多。

锥球型炉型与相同容量的筒球型炉相比,在熔池深度相同的情况下,更有利于冶金反应;截锥型炉型的优点是炉底砌筑方便,这两种炉型在中小容量转炉炉型设计中采用较多。

对氧气转炉炉型的主要技术参数要求为:(1)炉容比(工作容积与公称容量之比)与铁水条件、冶炼操作转zhuan方法和转炉炉容量有关,通常每公称吨炉容比为0.80~1.00m3/t;(2)高宽比(炉子全高与炉壳直径之比)对转炉操作和建设费用有直接影响,一般取为1.25~1.65;(3)炉帽的倾角为60o±3。

;(4)炉口直径一般为熔池直径的0.43~0.53倍;(5)熔池直径系指转炉熔池在平静状态时金属液面的直径,它与转炉装入量和供氧强度有关,可按D=K(G/T)1/2进行计算,式中D为熔池直径,m;K为比例常数,一般为1.85~2.3;G为转炉装入量,t;T为转炉供氧时间,min。

炉衬耐火材料选择转炉炉衬分为工作层、填充层和永久层。

工作层衬砖与熔池钢水和熔渣接触工作条件十分恶劣,要求有良好的物理性能和化学稳定性,同时也要有较低的价格。

转炉工作层衬砖常采用焦油白云石砖、焦油镁砂砖、镁碳砖和二步煅烧砖,镁碳砖应用较广泛。

为了提高炉衬使用寿命,降低生产成本,设计和生产中广泛采用不同部位使用不同材质炉衬的“综合砌炉法”。

工作层砖型的设计既要考虑砌筑方便,又要不致于因砖型过于复杂而增加成本。

转炉炉衬各部位的厚度参考值见表。

耳轴位置选择大多数中小容量转炉,从安全观点出发采用“全正力矩”原则来选择最佳耳轴位置,使转炉在任何倾动角度下都能依靠自身的重力力矩自动返回零位。

而大型转炉则允许采用有少量负力矩存在的“正负力矩”原则来选择最佳耳轴位置,但要采取必要的安全保障措施。

相关文档
最新文档