万有引力定律的发现历程
万有引力定律的发现

万有引力定律的发现万有引力定律发现是人类认识史上最重大的事件之一。
在这一发现过程中,牛顿对引力平方反比定律的发现,即所谓“开普勒命题”的证明,起到了关键性作用,它标志着牛顿成熟地掌握了动力学原理是发现万有引力定律的必要前提。
牛顿在惠更斯1673年发表离心力定律之前,结合开普勒周期定律,得到了圆轨道上的平方反比关系;胡克与牛顿在1679年底至1680年初之间的通信,诱发了牛顿首次理解开普勒面积定律的物理意义,并应用几何图形法来解决开普勒命题。
也就是说,牛顿是在1680年才发现我们现在所理解意义上的引力平方反比定律。
一、圆轨道上平方反比关系的发现牛顿对动力学的研究从研究圆周运动问题已经开始的;牛顿借助他有关相撞问题的研究成果,卓有成效地从动力学角度去定量处置圆周运动中力与“运动的发生改变”之间的关系,并利用等价性将直线运动的分析结论推展至圆周运动和椭圆运动,为其有关力学的进一步研究奠定了稳固的基础。
同时期的惠更斯也注意到圆周运动问题,并从运动学角度对它展开了较为深入细致的研究;就离心力定律的辨认出而言,惠更斯跑在牛顿的前面。
牛顿是在1665或1666年写的“仿羊皮手稿”(thevelluomanuscript)中提出“(l/2)r公式”:“一个在直线上从静止开始运动的物体,其所受的力等于作用在沿半径为r的圆周、以速度v运动的同等物体的力;则在圆周上运动的物体通过距离r的时间内,直线上运动的物体将行进(1/2)r距离。
”根据牛顿的手稿,我们可以得到上述公式的推断过程:首先,牛顿得出直线运动、圆周运动状态的初始条件,即同等的时间、物体和力;其次,牛顿依据已认识到的两种运动(量)之间的等价性,推断出来:直线上从恒定已经开始运动的物体,在时间r/v内获得的运动量为mv、末速度为v;最后,牛顿/得到直线上由恒定已经开始运动的物体,在时间r/v内经过的距离为:[(1/2)v]·(r/v)=(1/2)r。
万有引力定律的建立过程及意义

万有引力定律的建立过程及意义万有引力定律的发现,是17世纪自然科学最伟大的成果之一。
苹果的落地引起了牛顿科学的遐想,在通过大量数学计算后推导出了著名万有引力定律。
然而万有引力定律的确立,却并非牛顿一个人的功劳。
在牛顿研究万有引力之前,已有不少人从事这个问题的研究,如第谷、开普勒。
此外和牛顿同时代的科学家,如胡克、哈雷、惠更斯、伦恩等,对万有引力定律的建立也有贡献。
正如牛顿本人所说:“我之所以有这样的成就,因为我是站在巨人们的肩膀上的。
”丹麦天文学家第谷花费多年时间进行观测行星,编制了篇幅庞大、高度精确的星表。
而后德国数学家、天文学家、物理学家开普勒对第谷的星表进行整理研究,最终提出了行星运动三定律。
这些对于牛顿提出万有引力定律具有至关重要的作用。
此外,惠更斯的向心力公式,胡克、哈雷、伦恩重力问题的研究都给予了牛顿不少启发。
1665-1666年,因为瘟疫流行,牛顿从剑桥大学回到家乡。
而看到苹果偶然落地引发了牛顿思考引力问题。
之后1684年,牛顿做了《论运动》的演讲,明确叙述了向心力定律,证明了椭圆轨道运动的平方反比关系。
此后不久,又在一篇关于物体在均匀介质中的运动的论文中定义了质量概念,并探讨了引力与质量的关系。
这些将牛顿引向了万有引力定律的发现。
牛顿设想了从高山上平抛一个铅球的理想实验,他认为当发射速度足够大时,铅球将可能绕地球运动而不再落回地面,指出月球也可以由于重力或者其他力的作用使其偏离直线形成围绕地球的运转。
牛顿通过一个靠近地面的“小月球”的运动的思想实验,论证了“使月球保持在它轨道上的力就是我们通常称的为‘重力’的那个力。
”接着,牛顿根据向心力公式和开普勒三定律推导了平方反比关系。
牛顿证明,由面积速度定律可以得出物体受中心力的作用,由轨道定律可以得出物体这个中心力是吸引力,由周期定律可以得出这个吸引力与半径的平方成反比。
并且通过同磁力的类比,得出“这些指向物体的力应与这些物体的性质和量有关”,从而把质量引进万有引力定律。
牛顿万有引力定律的发现过程

牛顿万有引力定律的发现过程摘要:牛顿万有引力定律的发现是人类认识自然规律方面取得的一个重大成果,万有引力定律是经典力学的重要组成部分,而且为天体力学奠定了坚实的理论基础,牛顿无疑是一位世界公认的伟大科学家。
在牛顿之前,有许多科学家致力于对宇宙的观测和研究,但无人能建立一套系统的理论。
牛顿在前人的研究成果上进行加工,并且更深入的思考与研究,灵活运用各种数学知识,将微积分、几何法与开普勒三个定律以及离心力、向心力定律相结合,从而证明了椭圆轨道上的引力平方反比定律,接着他又将“质量”引入引力理论,从向心力演化出引力,并证明它们与质量和距离的定量关系,最终将向心力定律演化成万有引力定律。
从1665牛顿开始着手研究到1685年正式发现万有引力定律,花了整整20年的漫长时间。
关键词:离心力向心力离心力定律引力平方反比定律万有引力定律The Establishment Of Newton'Law Of Universal GravitationAbstract:The detection of Newton's Low of Universal Gravitation is an important result of the cognition of nature rule obtain. The Law of UniversalGravitation is an important part of the classic mechanics, and it lay thesolid theories foundation for the gravitational astronomy.Newton is agenerally accepted and great scientist in the world. Before Newton, therewere many scientists concentrating on to the observation and study of theuniverse, but no one can establish a system theory. Newton went forwardthe persons’ research result,and considered more thoroughly with study,using flexibly every kind of mathematics knowledge, and left calculus,geometry ,Kepler’s Laws, centrifugal force laws and centripetal forcelows combine together, thus proved the inverse-square law of theattraction on the oval orbit.Then immediately after he led the " quantity"into the gravitation theories, he evolved the gravitation from thecentrifugal force, and proved them related to the quantity and the distance.At last he evolved the centrifugal force laws to Low of UniversalGravitation. From 1665 Ne wton’s entering upon to the study todiscovering the Low of Universal Gravitation formally till 1685, itspended exactly 20 years.Key words:centrifugal force centripetal force the centrifugal force laws the inverse-square law of attraction the Low of UniversalGravitation艾萨克·牛顿(Isaac Newton,1642~1727)于伽利略(Galileo Galilei,1564~1642)逝世的同一年出生。
万有引力定律的推导过程

万有引力定律的推导过程引力是自然界中普遍存在的一种作用力,它是负责使物体相互吸引的力。
在古代,人们对引力的存在有直观的认识,但直到17世纪,牛顿通过深入的研究和实验才发现了引力的普遍性,并且提出了著名的万有引力定律。
万有引力定律可以描述任意两个物体之间的引力大小和方向。
它的推导过程基于牛顿的三大运动定律和开普勒行星运动定律。
我们来看牛顿的第一、第二和第三定律。
第一定律告诉我们,一个物体如果没有外力作用,将保持静止或匀速直线运动。
第二定律则指出,一个物体所受的力等于其质量乘以加速度。
第三定律表明,力是相互作用的,任何两个物体之间都会相互施加相等大小、方向相反的力。
根据这些定律,我们考虑两个质量分别为m1和m2的物体之间的引力。
根据第三定律,这两个物体之间互相施加的力大小相等,记为F。
根据第二定律,物体1所受的力F1等于m1乘以物体1的加速度a1,物体2所受的力F2等于m2乘以物体2的加速度a2。
当两个物体距离很远时,它们之间的相互作用力可以近似看作是一个点力,即可以看作是两个物体质心之间的引力。
质心是一个物体中所有质点质量的平均位置。
假设物体1和物体2的质心之间的距离为r,那么根据万有引力定律,这两个物体之间的引力F可以表示为F = G * (m1 * m2) / r²,其中G为万有引力常数。
为了更好地理解这个公式,我们可以将其与开普勒行星运动定律相联系。
根据开普勒第一定律,行星绕太阳运动的轨道是一个椭圆,太阳位于椭圆的一个焦点上。
根据开普勒第二定律,行星在其轨道上的面积速率是恒定的。
根据开普勒第三定律,行星绕太阳的周期的平方与它们距离太阳的平均距离的立方成正比。
通过对这些定律的分析,我们可以得出结论:万有引力定律可以解释行星绕太阳运动的规律。
行星绕太阳的引力与其质量和距离太阳的距离有关,质量越大、距离越小,引力越大。
万有引力定律的推导过程基于牛顿的三大运动定律和开普勒行星运动定律,通过考虑质心之间的引力以及质量和距离的关系,最终得出了引力大小的计算公式。
万有引力定律的发现

万有引力定律的发现万有引力定律是牛顿在17世纪发现的,它是物理学中最重要的定律之一。
这个定律描述了物体之间的引力作用,它是我们理解宇宙运动的基础。
牛顿发现万有引力定律的过程是一个漫长而艰苦的过程。
他在1665年开始思考这个问题,当时他还是一个年轻的学生。
他注意到,当一个苹果从树上掉下来时,它会落到地上。
他想知道为什么苹果会落下来,而不是飞向天空。
他开始思考这个问题,并尝试用数学方法解决它。
牛顿的第一个想法是,地球上的物体会被吸引到地心。
他认为,这个吸引力是由地球的质量引起的。
他开始研究这个问题,并发现了一些有趣的事情。
他发现,如果两个物体之间的距离越近,它们之间的引力就越强。
他还发现,如果两个物体的质量越大,它们之间的引力也越强。
牛顿的第二个想法是,太阳对地球的引力也是由质量引起的。
他认为,太阳的质量比地球大得多,所以太阳对地球的引力比地球对苹果的引力强得多。
他开始研究这个问题,并发现了一些有趣的事情。
他发现,如果两个物体之间的距离越远,它们之间的引力就越弱。
他还发现,如果两个物体的质量越大,它们之间的引力也越强。
牛顿的第三个想法是,太阳对地球的引力也会影响地球的运动。
他认为,地球绕着太阳转是因为太阳对地球的引力。
他开始研究这个问题,并发现了一些有趣的事情。
他发现,地球绕着太阳转的速度越快,它离太阳的距离就越远。
他还发现,地球绕着太阳转的轨道是一个椭圆形。
牛顿最终发现了万有引力定律。
这个定律描述了物体之间的引力作用,它是我们理解宇宙运动的基础。
万有引力定律是一个简单而又优美的公式,它可以用来计算任何两个物体之间的引力。
这个公式是:F =G * (m1 * m2) / r^2其中,F是两个物体之间的引力,G是一个常数,m1和m2是两个物体的质量,r是它们之间的距离。
万有引力定律的发现是一个伟大的成就。
它不仅解释了地球和太阳之间的引力作用,还解释了行星、卫星和彗星之间的引力作用。
它是现代天文学和物理学的基础,它使我们能够更好地理解宇宙的运动。
《万有引力定律的应用》 讲义

《万有引力定律的应用》讲义一、万有引力定律的发现在人类对宇宙的探索历程中,万有引力定律的发现无疑是一座重要的里程碑。
这一定律是由英国科学家艾萨克·牛顿在 1687 年出版的《自然哲学的数学原理》一书中提出的。
牛顿在思考苹果为什么会从树上落向地面时,受到启发开始研究引力问题。
经过深入的思考和大量的数学推导,他得出了万有引力定律:任意两个质点有通过连心线方向上的力相互吸引。
该引力大小与它们质量的乘积成正比、与它们距离的平方成反比,与两物体的化学组成和其间介质种类无关。
万有引力定律的表达式为:F = G×(m1×m2) / r²,其中 F 表示两个物体之间的引力,G 是万有引力常量,其值约为 667×10⁻¹¹ N·m²/kg²,m1 和m2 分别表示两个物体的质量,r 表示两个物体质心之间的距离。
二、万有引力定律在天体物理学中的应用1、计算天体的质量通过观测天体周围物体的运动情况,可以利用万有引力定律来计算天体的质量。
例如,对于围绕恒星运转的行星,我们可以通过测量行星的轨道半径和公转周期,根据万有引力提供向心力的公式:F = m ×(4π² / T²) × r ,其中 m 是行星的质量,T 是公转周期,r 是轨道半径。
由于引力 F = G×(M×m) / r²(M 为恒星质量),联立这两个方程就可以计算出恒星的质量。
2、预测天体的运动轨迹万有引力定律可以帮助我们准确地预测天体的运动轨迹。
比如,哈雷彗星的回归周期和轨道就可以通过万有引力定律进行计算和预测。
3、研究星系的结构和演化在星系尺度上,万有引力定律同样发挥着重要作用。
星系中恒星之间的相互作用、星系团中星系之间的引力相互作用,都遵循万有引力定律。
通过研究这些引力作用,我们可以了解星系的结构形成和演化过程。
牛顿是如何发现万有引力的故事

牛顿是如何发现万有引力的故事
咱来唠唠牛顿是咋发现万有引力的,可有意思了呢。
牛顿啊,那时候就是个特爱琢磨事儿的聪明人。
传说有一天啊,他坐在自家院子里,正悠闲地晒着太阳呢。
这时候,一个苹果“啪嗒”一声,从树上掉下来了,正好砸到了他的脑袋上。
一般人被砸了,可能就骂骂咧咧几句,然后把苹果吃了就完事儿了。
可牛顿他不一样啊,他就开始想了:“这苹果为啥是往地上掉,而不是往天上飞呢?”他就琢磨啊,这肯定是有一种力量在拉着苹果,让它只能往地面这个方向走。
然后呢,他就开始把这个事儿往大了想。
他想啊,这地球这么大,能拉住苹果,那月亮在天上,是不是也被地球拉着呢?可是月亮为啥没像苹果一样“哐当”掉到地上来呢?
他就继续研究,研究什么圆周运动啊之类的知识。
他就明白了,月亮其实是一直在往地球掉,但是它有一个速度,这个速度让它一边掉一边还能绕着地球转,就像你拿个绳子拴着个东西,然后甩起来,那东西就会绕着你的手转,这个时候绳子就像地球拉着月亮的力。
牛顿这脑袋啊,就像开了挂一样,他想这个力肯定不是地球独有的,别的东西之间应该也有这种互相吸引的力。
不管是大的星球,还是小的物体,都存在这种力。
于是呢,他就总结出了万有引力定律。
你看,就这么一个苹果砸脑袋的事儿,让牛顿发现了这么伟大的万有引力定律,这就是人家牛顿厉害的地方,能从平常事儿里看到不平常的东西。
(完整)万有引力定律的发现历程

万有引力定律的发现历程在很早以前,人们就在不断地探索天体运动的奥妙.亚里士多德曾提到过力的概念,他认为力是产生非自然运动的原因,力的作用只有在相互接触时才能传递,因此,对于遥远的天体,这个力是毫无用处的.开普勒为天体运动奥妙的揭开做出了重大贡献,但却未解开天体运动的动力学之谜.1645 年法国天文学家布里阿德提出一个假设:从太阳发出的力,和离太阳距离的平方成反比.笛卡儿1644 年提出“旋涡"假说,把行星的运动归结为动力学原因.1666 年意大利的玻列利提出引力是距离的幂的某种函数.1673 年惠更斯在研究摆的运动时给出了向心加速度理论.英国的胡克已经觉察到引力和重力有同样的本质,1674 年他提出引力随离吸引中心距离而变化,1680 年他又进一步提出了引力反比于距离的平方的假设.哈雷的伦恩从圆形轨道与开普勒定律出发,导出了作用于行星的引力与它们到太阳的距离的平方成反比.当科学的接力棒传到了牛顿手中时,他便向万有引力定律的红线冲刺了.他站在前人的肩上,发挥他卓越的才能,建立了万有引力定律,为科学做出了重大的贡献.牛顿发现万有引力定律的过程中包含着丰富的物理学思想和物理学方法论内容,其主要的思路与运用的物理学方法大致体现在以下几方面.一、运用科学想象和推理,牛顿论证了行星运行都要受到一个力的作用牛顿对行星运动的研究工作首先是从研究月球开始的.牛顿想象,如果没有任何力作用于月球的话,根据牛顿当时已发现的牛顿第一定律可知,月球就应当做匀速直线运动.但月球是绕地球作圆周运动,所以月球必定要受到力的作用.牛顿当年写道:“没有这种力的作用月球不可能保持在自己的轨道上;如果这个力比轨道所需的力小,则它使月球偏离直线的程度不够;如果这个力比轨道所要求的力大,则它使月球偏离直线的程度太大,并使月球的轨道更靠近地球.”那么迫使月球绕地球旋转的力的性质是如何的呢?据说,有一次牛顿正在思考这个问题时,忽然看到一个苹果从树上掉了下来,他吃了一惊,同时便陷入了沉思.当时已知苹果是受重力作用而下落的,他推想,如果苹果树长得很高,熟透了的苹果会不会落地呢?当然是会的!但如果苹果树长得象月球那么高,树上的苹果是否还会落地呢,牛顿作了合理的设想,设想这种作用力的范围要比通常所想象的还要大得多,比如说,很可能一直延伸到月球那么高,因此,这样既使苹果树长得象月球那么高,苹果仍会落地的.正是这种作用力使地球对月球施加影响.同时,从开普勒第一定律(行星沿椭圆轨道绕太阳运行,太阳位于这些椭圆的一个焦点上)可知,各行星和卫星都是沿椭圆形路径运动(非匀速直线运动)因此,根据牛顿第一定律便可推知,各行星如卫星的运动都要受到一种力的作用.二、运用类比方法,牛顿推证了行星运行所受到的力是一种连续地指向一确定中心的作用力牛顿在由地面上的苹果下落联想到天上的月球也受一种力的作用,但进而思考,月球为什么不会象树上的苹果那样落地呢?这样他又联想到物体的旋转问题:绳子的一端系着一块石头,另一端抓在我们手中,让石头作旋转运动,这时如果我们松手,石头就会沿直线轨道飞出去,这说明石头之所以作圆周运动是由于一种力拉着石头.进而类比,这块石头好比月球,而我们的手又相当于地球,手通过绳子施于石头的力又很相似于地球施于月球的作用力.牛顿接着又描述了从高山上平抛一个铅球的理想实验,他设想,从高山上铅球平抛出去,本来应当笔直的前进,可是在重力作用下,它就沿抛物线落到了地面.如果平抛速度增加,它就会落得更远一些,再增加抛出速度,则铅球可能会绕地球半圈.当抛出速度足够大时,铅球就会绕地球一圈、两圈、乃至永远绕地球作圆周运动而不落回到地面上,这说明,只要有一个指向确定中心点的力,又具有足够的初速度,则物体就可作圆周运动.把月球类比于这个铅球,则可知,月球受一个指向确定中心点的力,所以才会作圆周运动.行星也应如此.牛顿进一步在开普勒第二定律的基础上改换问题的提法,开普勒第二定律是说:对于任何一个行星来说,它的矢径(行星到太阳的联线)在任何地点、在相等的时间内,沿轨道所扫过的面积相等.(这条定律也适用于月球绕地球的运行)牛顿则寻找在相等的时间间隔内物体若受一指向确定中心的力的作用,物体到中心联线扫过的面积存在什么规律?牛顿从数学上证明了(证明过程从略)在这种情况下,各面积之间存在相等的关系.牛顿接着又证明了这个命题的逆命题,即在任何一曲线上运动的物体,如果它到一确定点的连线在相等时间内扫过相等的面积,则物体受一指向该确定点的向心力.牛顿接着由开普勒第二定律所概括的现象推出行星或卫星受一连续的指向一确定中心的力,并且这个中心就在椭圆的一个焦点上.三、运用数学方法,牛顿推导出行星运行所受到的向心力遵从平方反比定律牛顿在由开普勒第二定律得到的存在一个连结指向一确定中心点的力作用于行星上的基础上,进一步去寻找物体在前人提出的椭圆轨道上运动时,所受的指向椭圆焦点的向心力的规律.牛顿利用了开普勒第一定律,用数学方法证明了(证明过程从略)沿所有圆锥曲线(或双曲线、抛物线、圆、椭圆等)在任何时刻的向心力必定与该物体到焦点的距离平方成反比,其数学形式为F =c/R 2即—-向心力定律 式中R 是从该物体中心到椭圆焦点的距离,c 为该物体的一个常数.牛顿由开普勒第三定律进一步推知向心力平方反比定律.其数学推导为:设某一行星的质量为m ,行星的运行轨道近似圆(由于行星椭圆轨道的偏心率很小,如地球为0.0167,因而其轨道可近似看作圆)根据开普勒第二定律,可将行星视为匀速圆周运动由牛顿第二定律.F =ma =m ·22224)2(TmR T R R m R v ππ== 式中m —行星质量,T —行星运行周期,R-圆周轨道半径.再由开普勒第二定律.T 2= kR 3 代入上式得224kR m F π= 令k24πμ= 得 2R m F μ= 式中μ是一个与行星无关而只与太阳的性质有关的量,称为太阳的高斯常数;m 为行星质量.由上式可知:引力与行星的质量成正比.牛顿通过研究引力使不同大小的物体同时落地和同磁力的类比,得出引力的大小与被吸引物体的质量成正比,从而把质量引进了万有引力定律.牛顿又进一步用实验作了验证:他用摆做了一系列实验,实验的结果以千分之一的准确度表明,对于各种不同的物质,万有引力与质量的比例始终是一个常数.牛顿又接着作了大胆的假设,行星受到的引力与太阳的质量有关,并用数学作了推证地球对一切物体包括太阳的引力应为2R M F μ'= μ′—地球的高斯常数,M —太阳的质量 太阳对地球的引力为2Rm F μ=,式中m —地球的质量,μ—太阳的高斯常数 根据牛顿第三定律有:F =F ′即2R M μ'2R m μ= G mM ='=μμ G 是一个与地球和太阳的性质都无关的恒量,所以引力的平方反比定律的数学形式为2RMm G F = 四、运用演绎推理方法,牛顿把引力的平方反比定律推广到一切物体,得出一切物体间均存在引力的结论牛顿得到平方反比定律之后,寻求进一步的原因:符合这个定律的力是什么性质的力?它是由什么决定的?牛顿首先由月球运行情况探讨了使月球保持轨道运行的力与重力之间的关系.由平方反比定律可知,月球受一指向地球的力的作用,它与月球到地心距离的平方成反比.通过数学计算和实验验证,牛顿得到了月球受的向心力就是重力的结论,这样牛顿就把地面落体运动的原因和月球运行的原因归于同一了.此后,牛顿运用牛顿第三定律推知,地球对月球也有引力,地球对太阳也有吸引力.牛顿由木星卫星和木星有吸引、土星与土星卫星有吸引,行星与太阳之间有吸引力等现象出发,认为这些和月地之间的现象系“同类现象,使月球不能出离轨道的力的原因可推至于一切行星”.这样,牛顿就把天体和其运行中心之间的力都归于引力.此后,他又由土星、木星会合点附近相互间的“运动失调”以及太阳使月球的“运动失调”现象,提出行星之间和恒星与卫星之间均有引力的作用,于是才提出了万有引力的假说.这样,牛顿由研究月球、地球,以至研究行星、恒星、卫星等推出了一切物体相互间均存在引力的结论.五、运用归纳概括方法,牛顿总结出了万有引力定律,完成了万有引力定律的发现工作牛顿对提出的万有引力假说进行了充分的论证,牛顿由原来得出的天体运行向心力平方反比定律,得出万有引力符合平方反比关系;由引力使不同大小物体同时落地,得出引力的大小和被吸引物体的质量成正比;又由牛顿第三定律,得出吸引物体和被吸引物体的区分是相对的,所以引力也和吸引物体的质量成正比,从而得出引力符合221R m m GF =.这样,牛顿就完成了万有引力的发现工作.牛顿发现的万有引力定律的内容为:宇宙间的任何物体之间都存在相互作用的吸引力,这种吸引力的大小与它们的质量的乘积成正比,与它们之间距离的平方成反比,作用力的方向是沿两物体的联线方向,即21221R m m G F = G 为引力恒量(引力常数);m 1m 2 分别为两个相互吸引的物体的质量;R 12为物体m 2 与m 1 的质心间距离.六、运用科学观察和科学实验验证万有引力定律理论牛顿的万有引力定律是经过科学观察和科学实验的检验后才得到普遍承认的:1.关于地球形状的测定牛顿根据他的引力理论指出,地球不是正球体,而是两极方向稍扁的扁球体,后经过法国科学家的几次测量证明了牛顿的推论是正确的.牛顿这个足不出户的人正确地给出了地球的形状,这显示了牛顿理论的威力.2.地月验证由运动学公式可计算出月球的向心加速度R TR v a n 2224π== 已知R =3.84×108 米;T =2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
万有引力定律的发现历程
高一(6)班
在很早以前,人们就在持续地探索天体运动的奥妙。
当科学的接力棒传到了牛顿手中时,他站在前人的肩上,发挥他卓越的才能,建立了万有引力定律。
牛顿发现万有引力定律的过程中,其主要的思路与使用的物理学方法大致体现在以下几方面。
一、使用科学想象和推理,论证了行星运行都要受到一个力的作用
牛顿对行星运动的研究工作首先是从研究月球开始的。
据说,有一次牛顿正在思考这个问题时,忽然看到一个苹果从树上掉了下来,他吃了一惊,同时便陷入了沉思。
当时已知苹果是受重力作用而下落的,牛顿作了合理的设想,设想这种作用力的范围要比通常所想象的还要大得多,比如说,很可能一直延伸到月球那么高,由此外推出:各行星如卫星的运动都要受到同一种力的作用。
二、使用数学方法,推导出行星运行所受到的向心力遵从平方反比定律
牛顿由开普勒第三定律推知向心力平方反比定律。
其数学推导为:
设某一行星的质量为m,将行星的运动视为匀速圆周运动。
由牛顿第二定律:
运行周期,R—圆周轨道半径。
再由开普勒第三定律。
式中μ是一个与行星无关而只与太阳的性质相关的量,称为太阳的高斯常数;m为行星质量。
由上式可知:引力与行星的质量成正比。
三、使用归纳概括方法,牛顿总结出了万有引力定律
牛顿由研究月球、地球,以至研究行星、恒星、卫星等推出了一切物体相互间均存有引力的结论。
又由牛顿第三定律,得出吸引物体和被吸引物体的区分是相对的,所以引力
牛顿就完成了万有引力的发现工作。
G为引力恒量,m1 m2分别为两个相互吸引的物体的质量,R为物体m2与m1的质心间距离。
四、使用科学观察和科学实验验证万有引力定律理论
牛顿的万有引力定律是经过科学观察和科学实验的检验后才得到普遍承认的,哈雷慧星回归周期的预言被证实以及海王星的发现在天王星发现都证实了万有引力定律的准确性。