第二章 质点和质点系动力学

合集下载

大学物理课件第二章质点动力学

大学物理课件第二章质点动力学
N sin m(a 'cos a) N cos mg m(a 'sin )

m0g N
N
a’ B mg
联立解得
(m m0 )sin m cos sin a g, a ' g 2 2 m0 m sin m0 m sin
例题2 质量为m的快艇以速率v0行驶,关闭发动 机后,受到的摩擦阻力的大小与速度的大小成 正比,比例系数为k,求关闭发动机后 (1)快艇速率随时间的变化规律; (2)快艇位置随时间的变化规律
B

A
F
B

m0g
A
解:隔离两物体,分别受力分析, aA-地对楔块A N sin m0a
N
F ( N cos m0 g ) 0
N
对物体B(aB地 aB A aA地 )
B
a
B-A
a
N sin m(aB A cos a)
A-地
mg
N cos mg m(aB A sin 0)
m0 m sin
(m m0 )sin 联立解得 a m cos sin g , aB A g 2 2 m0 m sin
B

A
F A a
解:隔离两物体,分别受力分析, 对楔块A N sin m0a N cos m0 g F 物体B相对楔块A以a’加速下滑
二、牛顿第二定律 1.动量: p mv
2.力的定义: dp d (mv ) F dt dt --牛顿第二定律(质点运动微分方程)
v c 物体质量为常量时:
dv F m ma dt
惯性演示实验
当锤子敲击在一大铁块上时,铁块下的手 不会感到有强烈的冲击;而当用一块木头取代 铁块时,木块下的手会感到明显的撞击。

第2章质点和质点系动力学

第2章质点和质点系动力学


静止在车厢中的小球受到绳的拉力和重力的作用,
这两个力的合力不为零,小球与车厢一起以加速度运动,
符合牛顿第二定律。
在车厢参考系看来, 相对车厢小球静止,而受到的合力不为零, 这是由于车厢不是惯性系,因此牛顿第二定律不适用。
引入惯性力 (ma0 ) ,
T

拉力、重力、惯性力
这三个力的合力为零,
ma0
m
a0
引入惯性力后

牛顿第二定律
W
适用于车厢
这个非惯性系
等效原理 (阅读)

《大学基础物理学》清华大学出版社(2003)-56页
N
m
N
mg
a
/
m
mg
2.参考系之间加速转动

相对惯性系转动的参考系也不是惯性系。
要在转动参考系中应用牛顿第二定律也要引进惯性力,
但其中的惯性力与加速平动参考系中的惯性力不同。
fd kv
三 惯性力

1.参考系之间加速平动

a K K 系为惯性系,K / 系相对 系作加速平动,加速度为 0
m 若质量为 的质点,在力 F
K a 相对于 系的加速度为 ,相对
的作用下,
K /系的加速度为
a
/
/
a a a0
对于 K 系F,由 于m设a 为惯m性(a系/,牛a顿0 )第二定律是成立
f
R —地球半径
—地球自转的角速度
—物体所在处的纬度
力学第2次课结束
例1

在皮带运输机中, 设砖块与皮带之间的,
静摩擦系数为 s ,
砖块的质量为 m ,

第2章 质点组力学

第2章 质点组力学
则质点系总外势能:
, 可引入外势能
对于第 i 个质点与第 j 个质点间的一对保守内力, 可引入 内势能 。
则质点系总内势能
把第 i 个质点所受非保守外力所做元功记为 把第个 i 质点与第 个 j 质点间的一对非保守内力所做元功 记为 ,则由质点系的动能定理可导出:
上式称为质点系的机械能定理。 定义质点系总势能: 总机械能:
质点间有内力相互作用是构成质点系的条件。
质点系内的质点是在外力与内力的共同作用下运动的; 对质点系内各质点的运动来说, 内力与外力有等同的作用。 质点系内一对对的内力造成了各质点间动量与角动量 的等量转移, 内力对质点系的运动至关重要 质点的动量 和角动量 分别从线运动和角运动的 角度描述质点的运动。质点的动量定理 和角动量 定理 指出, 力是质点动量变化率的度量, 力矩是质 点角动量变化率的度量。
对上式求时间导数可得:
由于 则:
由y 轴方向的动量定理
及y2=常量和
即可求出
用质点系动量定理解决问题可使未知内力不在方程中 出现, 因而使求解得以简化。
§2.3 动量矩定理与动量矩守恒律
一、质点系的角动量 1. 质点系角动量的定义 质点系对O点的总角动量 对O点角动量的矢量和: 定义为质点系内每个质点
式中
为质点系在质心系中对质心的角动量,
为质点系所受外力对质心力矩的矢量和。与惯性系中对固 定点的角动量定理形式相同, 均与内力矩无关。 证明: 由于各质点所受惯性力 量和 对质心力矩的矢 因此惯性力不在
方程中出现, 定理有与惯性系内定理相同的形式。 2. 质点系在质心系中对质心的角动量守恒定律 在某一过程中 则 常矢量 质点系在质心系中对过质心固定方向轴的角动量定理 (略)
证明:

大学物理——第2章-质点和质点系动力学

大学物理——第2章-质点和质点系动力学
2 2 2 α + a1 cos2 α
a1 = cot α 方 向: tanθ = ax g
由式④得:
ay
θ 为 a 与 x 正向夹角
FN = m(g + a1) cosα
10
例2-2 阿特伍德机 (1)如图所示滑轮和绳子的质量均不计,滑 轮与绳间的摩擦力以及滑轮与轴间的摩擦力 均不计.且 m > m2 . 求重物释放后,物体 1 的加速度和绳的张力. 解: 以地面为参考系 画受力图,选取坐标如图
ar
ar
m1 m2
a
m g FT = m a1 1 1 m2g + FT = m2a2
a1 = ar a
FT 0
a2 = ar + a
m1 m2 ar = m + m (g + a) 1 2 a1 FT = 2m1m2 (g + a) P 1 m1 + m2
a2
y FT
y
P0 2
12
8
桥梁是加速度 a
例2-1 升降机以加速度a1上升,其中光滑斜面上有一物体m沿 斜面下滑. 求:物体对地的加速度 a ? y 斜面所受正压力的大小? 解: 由于升降机对地有加速度,为一非惯性 系,故选地面为参考系,设坐标如图.
FN
a1
a2
a = a2 + a1
在 x , y 方向上有:
G
α
x
ax = a2 a1 sin α a = a cosα 1 y
m1 m2
FT 0
m g FT = m a 1 1 m2 g + FT = m2a
m1 m2 a= g m1 + m2
2m m2 1 FT = g m + m2 1

质点系的动能定理

质点系的动能定理
故质点系重力的功,等于质点系的重量与其在始末位置 重心的高度差的乘积,而与各质点的运动路径无关。
2.弹性力的功 设弹簧原长为l0,在弹性极限内,弹簧的刚度系数为k(使弹簧 发生单位变形所需的力,单位:N/m),变形后长为r,沿矢径
的单位矢量为
er r / r 则 F k(r l0 )er
M2
d
1 2
mivi
2
δ Wi
d
1 2mivi
2
δWi

dT δWi
此即质点系动能定理的微分形式。
将上式沿路径 M1M 2 积分,可得
T2 T1 (Wi )12
此即质点系动能定理的积分形式。即质点系在某段运动过程 中动能的增量,等于作用于质点系的全部力在这段过程中所 作功的和。
3.理想约束及内力作功 理想约束:约束力作功为零的约束。
1.光滑固定面 δW N dr 0 (N dr ) 2.固定铰支座、活动铰支座和向心轴承、固定端
3.刚体沿固定面作纯滚动 4.光滑铰链(中间铰)
δW N dr N 'dr N dr N dr 0
5.不可伸长的绳索、刚性二力杆(不计质量) 绳拉紧时,内部拉力的元功之和恒等于零。
下面考察质点系内力的功 δW F drA F ' drB
解:取系统为研究对象。T1 0
T2
1 2
Q g
v2
1 2
J
2
OA
1 2
J C B2
1 2
Q g
v2
1 2
P 2g
R2
2 A
1 2
3 2
P g
R2B2
v2 (8Q 7P) 16g
(v RA 2RB )

《大学物理》第2章 质点动力学

《大学物理》第2章 质点动力学

TM
Tm
2Mm M m
g
a
ar
M M
m m
g
a
FM
TM
ar
F m
Tm m
a
M PM
ar
Pm
注:牛顿第二 定律中的加速 度是相对于惯 性系而言的 。
例2 在倾角 θ 30 的固定光滑斜面上放一质量为
M的楔形滑块,其上表面与水平面平行,在其上 放一质量为m的小球, M 和m间无摩擦,
且 M 2m 。
解:以弹簧原长处为坐标原点 。
Fx kx
F Bm A
元功:
O xB x
xA x
dW Fx dx kxdx
dx
弹力做功:W
xB xA
kxdx
1 2
kxA2
1 2
kxB2
2.3.4 势能 Ep
W保 Ep Ep0 Ep
Ep重 mgh
牛顿 Issac Newton(1643-1727) 杰出的英国物理学家,经 典物理学的奠基人.他的 不朽巨著《自然哲学的数 学原理》总结了前人和自 己关于力学以及微积分学 方面的研究成果. 他在光 学、热学和天文学等学科 都有重大发现.
第2章 质点动力学
2.1 牛顿运动定律 2.1.1 牛顿运动定律
1 牛顿第一定律(惯性定律) • 内容:一切物体总保持静止状态或匀速直线运动 状态,直到有外力迫使它改变这种状态为止。 • 内涵: 任何物体都有保持静止或匀速直线运动状态的趋势。 给出了力的定义 。 定义了一种参照系------惯性参照系。
非惯性参照系:相对于已知的惯性系作变速运动 的参照系。
惯性定律在非惯性系 中不成立。
2.2 动量定理 动量守恒定律

大学物理第2章-质点动力学基本定律

大学物理第2章-质点动力学基本定律
②保守力作功。
势能的绝对值没有意义,只关心势能的相对值。 势能是属于具有保守力相互作用的系统 计算势能时必须规定零势能参考点。但是势能差是一定的,与零点的选择无关。 如果把石头放在楼顶,并摇摇欲坠,你就不会不关心它。 一块石头放在地面你对它并不关心。
重力势能:以地面为势能零点
01
万有引力势能:以无限远处为势能零点
m
o
θ
设:t 时刻质点的位矢
质点的动量
运动质点相对于参考原点O的角动量定义为:
大小:
方向:右手螺旋定则判定
若质点作圆周运动,则对圆心的角动量:
质点对轴的角动量:
质点系的角动量:
设各质点对O点的位矢分别为
动量分别为
二.角动量定理
对质点:
---外力对参考点O 的力矩
力矩的大小:
力矩的方向:由右手螺旋关系确定
为质点系的动能,

---质点系的动能定理
讨论
内力和为零,内力功的和是否为零?
不一定为零
A
B
A
B
S
L
例:炸弹爆炸,过程内力和为零,但内力所做的功转化为弹片的动能。
内力做功可以改变系统的总动能
例 用铁锤将一只铁钉击入木板内,设木板对铁钉的阻力与铁钉进入木板之深度成正比,如果在击第一次时,能将钉击入木板内 1 cm, 再击第二次时(锤仍以第一次同样的速度击钉),能击入多深? 第一次的功 第二次的功 解:
(1)重力的功
重力做功仅取决于质点的始、末位置za和zb,与质点经过的具体路径无关。
(2) 万有引力的功
*
设质量M的质点固定,另一质量m的质点在M 的引力场中从a运动到b。
M
a
b

高一物理章节内容课件 第二章质点动力学

高一物理章节内容课件 第二章质点动力学

地面的加速度是多少?(以竖直向上为
正)
解:以绳为参照系,设绳对地 的加速度为 a绳对地
T '
T a绳对地
人 T mg (ma绳对地) ma0 物 Mg T (Ma绳对地) M 0
Mg ♕ mg
▲ 注意:ห้องสมุดไป่ตู้于滑轮这种左右两边的情形, 左右两边的正方向应相反
3 a绳对地 g a0 方向:右向上,左向下
★ 作用于桌面的压力
N1 N m已落下部分g , 3gm已落下的部分
4. 质点系的动量定理 任意一段时间间隔内质点系所受合外力 的冲量等于在同一时间间隔内质点系内 所有质点的动量矢量和的增量。
5.动量守恒定律(Law of Conservation of Momentum) (1)※
度,是Vx
N mg CyVx2

N
CxVx2

m
dVx dt
(mg CyVx2 ) CxVx2

m dVx dx
dx dt
dx dt
(mg CyVx ) CxVx m
2
2 dVx dx
条件:Vx V0 90km/ h时,
Vx
N

0
mg

C yV02
解:★ 注意 摩此擦M力分r布F在整个圆盘上,因
第一步:在距轴为 r 处取质量元 dm ,它受到
的摩擦力为 df
df kdm g
方向:
df

r
第二步:求 df 产生的摩擦力矩 dM 大小、方向
dM rdf sin rkdm g 方向:沿轴
dm

m
R2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二、 质点系的动量定理
对于质点系有:
F内 f i内 f ji 0
i i j(ji)
4. 惯性参照系与非惯性参照系
1) 惯性系 牛顿定律成立的参考系。一切相对于惯性系作匀 速直线运动的参考系也是惯性系。 实际的惯性系都是局部的相对的惯性系。 2) 非惯性系 相对于惯性系作加速运动的参考系。 在非惯性系内牛顿定律不成立。

a0
x ´
非惯性系中牛顿运动定律不适用:
例如在一个以加速度作直线运动的车箱内,一 质量为m 的小球拴在绳上,取车箱为参照系,小球 受合外力不为零,但却静止不动 。
y’
N
r fs
存在摩擦力: f s man m 2 r
转动的圆盘上观察: 物体静止 合外力应该为0:

z’
0‘
Fi
x’
mg
f s Fi 0
惯性离心力:
2 Fi m r
例:估算地球转速增大到目前转速的多少倍时,赤道 处的物体会飞离地球? 解:分析:飞离地球——惯性离心力大于万有引力。 g=9.778m/s2
基本内容:
一、牛顿运动定律 二、惯性系与非惯性系,惯性力 三、功 四、机械能守恒定律 五、动量守恒定律 六、质心 重点
§2.1 牛顿运动定律 和质心运动定理
一. 牛顿运动三定律
1. 牛顿第一定律: 任何物体都保持静止或匀速直线运动的状态,除非
作用在物体上的力迫使它改变这种状态。
• 物体的惯性:物体具有保持其运动状态不变的性质。
质点的动量定理:质点受合外力的冲量等于同一时间 内该质点动量的增量 t2 p2 t1 F合 外 力 dt=p1 dp=p2-p1 t2 I 合 外 力 p2-p1=mv 2-mv1 冲量 I =t F合 外 力 dt
1
可以看出动量定理是牛顿第二定律变形 动量定理积分形式
2) 质心的计算
rC
m i ri M 源自C m i ri M mi xi xC M mi yi yC M mi zi zC M
质量连续分布的物体: r C
r dm M
xdm xC M ydm yC M zdm zC M
N1

m
y
mg
M
O
地面参考系
x
解:

a0
N
2
' a
' N1


Mg
例 2.1 如图,设所有的接触面都光滑,求物体 m 相对于 斜面的加速度和 M 相对于地面的加速度
N1

m
a0
y O
地面参考系
M
物体m相对于 静止的xoy参考系
θ
mg
θ
x
mg sin ma x 解: N 1 mg cos ma y N 1 sin Ma0
例:如图,求质量均匀分布的直角三角形的质心。 y 解:
xC
xdm
M

a
b
0
x ( a x )tandx
ab / 2

1 a 3
O
1 同理: yC b 3
x
x+dx
a
x
2. 质心运动定理
系统质心加速度的大小与于所受的合外力大小成正 比,与系统的总质量成反比,加速度的方向沿合外力 的方向。
y
O
地面参考系
mg
θ
N2
x


a0
' a
' N1


Mg
二. 惯性力
非惯性系与惯性系之间的加速度变换式为:
a′= a - a0 a′:质点相对非惯性系S′的加速度 a
:质点相对惯性系S 的加速度
a0 :非惯性系S′相对惯性系S 的加速度
在惯性系S中,有牛顿运动定律:
F ma ma ma0
F Fi , rC

mi ri M
2 d rC F M MaC 2 dt
1. 质心
1) 质心的定义:由下式决定的位置矢量 rC 所对应的点 C,称 为质点系的质心:
mi ri rC M
mi xi xC M mi yi yC M mi zi zC M
Re=6378km
现在: 可得:
例 2.1 如图,设所有的接触面都光滑,求物体 m 相对于 斜面的加速度和 M 相对于地面的加速度
m M
图2.6
物体m相对于 运动的M参考系 解 2: 利用惯性力解答:
N1 ma 0

mg sin ma 0 cos ma' N 1 mg cos ma 0 sin 0 N sin Ma 0 1
• 质量: 物体惯性大小的量度:
a 1/ m
3. 牛顿第三定律
两物体间的相互作用力总是大小相等而方向相反,即
F F
ab
ba
a对b
• • • •
b对a
反映了力的来源:力来自物体与物体间的相互作用 作用力和反作用力同时存在。 分别作用于两个物体上,不能抵消。 属于同一种性质的力。 三个定律适用于质点,惯性系
v t dv a dv adt dv adt 0 0 dt t 1 2 2 v (t 3t )dt t t 3 (m / s ) 0 2
m2

F
图13
T
T'
m1 m2
θ m1 g
F
例 : 质量为m的小球最初位于A点,然后沿半径为 R的光滑圆弧面下滑。求小球在任一位置时的速度和 对圆弧面的作用。
解: mg cos m dv dt
A
2
v N mg sin m R

n
N
dv dvds dv v dt dsdt Rd

vdv Rg cos d
mg


例 2.1 如图,设所有的接触面都光滑,求物体 m 相对于 斜面的加速度和 M 相对于地面的加速度
例 : 如 图 , 已 知 F 9.8 5t 15t 2 , m1 4kg ,
m 2 1kg , 30 0 , t 0 时系统保持静止,求 t 时刻 m1(m2) 的加速度和速度。
m1 m2

F
图13
m1
F m2 g T m2 a 解: T m1 g sin m1 a F m 2 g m1 g sin a t 3t 2 ( m / s 2 ) m1 m 2
F MaC
• 内力不影响系统质心的运动。
例2.3 如图,求当人从小车的一端走到另一端时,小 车相对与地面移动的距离。
ml Ml / 2 mM ms M ( s l / 2) xC 2 mM 由 x C 1 x C 得:
解: x C1
2
y M
m x l
ml s mM
自然界严格的惯性系是不存在的。在一般精度
范围内,地球也可近似看作惯性系。
地面参考系 地心参考系 自转加速度: a≈0.034 m/s2 公转加速度: a≈0.006 m/s2
太阳参考系
绕银河加速度: a≈3×10-10 m/s2
一个参照系是不是惯性系只能根据观察和 实验的结果来判断。 目前实用的惯性系是以选定的1535颗恒星平 均静止位形作为基准的参考系:FK4系
• 力与运动的关系:
力是使物体运动状态发生变化的物体间的相互作用。
力的作用是改变物体的运动状态(运动速度),而不 是维持物体的运动状态(运动速度)。
2. 牛顿第二定律
物体运动的量(简称动量)的变化率与施加在 该物体上的力成正比,并且发生在该力的方向上。
• 力与运动的定量关系: a F
d ( mv ) F dt 若物体质量m是一个常量,则有: d(mv ) md v F = =m a dt dt
二. 惯性力
将上式改写为:
F (-ma0) ma
在惯性系S中,有牛顿运动定律: F ma ma ma0
若把上式仍视为作用在质点上的合力,则 牛顿第二定律在非惯性系 S’中就依然成立。
为此而加入的修正项称为惯性力: F -m a 0
加入惯性力之后,牛顿第二定律是协变的。
m1 : F1 m 2 : F2 f 21 m1 a1 f 12 m 2 a 2
F1 F2 ( f 21 f 12 ) m1 a1 m2 a 2 F内 f i内 f ji 0 F1 F2 m1 a1 m2 a2
N

a0
2
' a
' N1
a x a 0 cos a' a a0 a'
a y a 0 sin


Mg
mg sin ma x N 1 mg cos ma y N 1 sin Ma0
a a0 a'
( M m) g sin a ' M m sin 2 a mg sin cos 0 M m sin 2
y
O
地面参考系
θ
mg
θ
N2
x


a0
' a
' N1
相关文档
最新文档