伺服电机选型介绍
伺服电机的选型计算方法

伺服电机的选型计算方法伺服电机是一种应用于自动控制系统中的电动机,它具有高精度、高速度、高可靠性和高动态性等特点,广泛应用于工业自动化领域。
在进行伺服电机选型计算时,需要考虑以下几个方面:1.负载特性分析:首先需要对负载进行特性分析,包括负载的惯性矩、负载力矩和负载转矩等参数的测量和计算。
负载特性分析是伺服电机选型计算的基础,它直接影响到电机输出的动力和转速。
2.动力需求计算:在进行伺服电机选型计算时,需要考虑到所需的动力大小。
动力大小与负载的力矩和转速有关,可以通过下式计算:动力大小=负载力矩×负载转速动力大小的计算可以参考负载特性分析中得到的参数。
3.转矩需求计算:转矩需求是指伺服电机在运行过程中所需的最大转矩。
转矩需求可以通过下式计算:转矩需求=负载转矩+惯性转矩负载转矩和惯性转矩可以通过负载特性分析中得到的参数进行计算。
4.速度需求计算:速度需求是指伺服电机在运行过程中所需的最大转速。
速度需求可以通过下式计算:速度需求=负载转速+加速度×加速时间负载转速是伺服电机在运行过程中所需的最大转速,加速度是伺服电机在加速阶段的加速度大小,加速时间是加速阶段的时间。
5.动态性能计算:伺服电机的动态性能是指其快速响应的能力,包括动态转矩响应和动态速度响应。
动态性能的计算需要考虑到转矩和速度的波动范围,以及加速度和减速度的大小。
6.选型参数计算:在进行伺服电机选型计算时,还需要考虑到电机的额定功率、额定转矩、额定转速、额定电压和额定电流等参数。
这些参数可以通过上述计算得到,也可以通过伺服电机的性能曲线和规格表进行查询。
总之,伺服电机的选型计算方法需要综合考虑负载特性、动力需求、转矩需求、速度需求和动态性能等方面的因素。
同时,还需要根据具体的应用场景和要求进行合理的选型。
三菱伺服电机选型资料ppt

专用型号
FZ5000
该型号为高精度伺服电机,适用于需要精密控制的定位系统,如医疗设备和 科研装置等。
FZ1000
该型号为紧凑型高精度伺服电机,适用于空间有限的精密控制系统,如工业 自动化设备和机器人等。
其他系列型号
FS5000
该型号为高性能伺服电机,适用于需要高动态性能和快速响应的应用场景,如物 料搬运和机床等。
超过保修期后,如需维修,需 用户承担全部维修费用
07
三菱伺服电机前景展望
市场趋势
工业4.0和智能制造的发展
全球范围内,越来越多的制造业正在向工业4.0和智能制造转型,这给三菱伺 服电机带来了更广阔的应用前景。
新能源汽车和电动车市场的增长
随着环保意识的提高和新能源汽车技术的不断发展,电动车市场正在迅速扩 大。三菱伺服电机在新能源汽车中具有广泛的应用前景。
了解电机的维护和保养要求,以便及时更换磨损部件或进 行预防性维护。
05
三菱伺服电机应用案例
案例一:华润水泥
华润水泥是国内知名的水泥生产商,在选择伺服电机时,他 们注重设备的稳定性和可靠性。
三菱伺服电机的高性能和耐用性赢得了华润水泥的信任,成 为其生产线的重要驱动设备。
案例二:中联重科
中联重科是全球知名的工程机械制造商,选择伺服电机时 ,他们需要能够承受高强度作业的设备。
使用寿命
01
长寿命设计
三菱伺服电机的设计寿命长,能够在长期连续运行状态下保持良好性
能。
02
维护简便
电机维护简单,只需定期检查和保养即可,减少了维护成本和时间。
03
持久耐用
采用高品质的材料和先进的加工工艺,使电机具有较高的耐用性,确
保长期稳定运行。
伺服电机选型和编码器选型计算

伺服电机选型和编码器选型计算
摘要
本文介绍了如何进行伺服电机和编码器的选型计算。
通过以下步骤,您可以选择适合您应用需求的伺服电机和编码器组合。
1. 确定应用需求
首先,您需要确定您的应用的一些关键需求,例如输出动力、扭矩要求、速度要求等。
2. 计算负载参数
根据您的应用需求,计算系统的负载参数,例如惯性矩、负载扭矩等。
这些参数将帮助您选择合适的伺服电机。
3. 伺服电机选型计算
使用所得到的负载参数,结合电机性能曲线和应用需求,计算所需的伺服电机的额定功率和最大扭矩。
同时,考虑电机的尺寸和重量限制来选择合适的型号。
4. 编码器选型计算
对于伺服电机,选择适当的编码器也是重要的。
根据应用需求和所选电机的分辨率,计算编码器的分辨率、线数和精度等参数。
5. 选择合适的组合
最后,在满足应用需求的前提下,根据电机和编码器的参数进行选择,以确保系统性能达到预期。
6. 总结
选型计算是有效选择适合应用需求的伺服电机和编码器的重要步骤。
通过明确应用需求、计算负载参数、进行选型计算和选择合适的组合,您可以确保您的系统能够高效稳定地工作。
以上是关于伺服电机选型和编码器选型计算的简要指南。
希望对您有所帮助!。
伺服电机选型的原则和注意事项

伺服电机选型的原则和注意事项伺服电机是一种精密控制器件,广泛应用于各种自动化设备和机械领域。
在进行伺服电机选型时,需要考虑多个因素,包括负载特性、控制精度、环境条件、成本等,才能选择到最适合的产品。
下面将介绍一些伺服电机选型的原则和注意事项,希望能为大家在选择伺服电机时提供一些帮助。
一、负载特性在进行伺服电机选型时,首先要考虑的是负载特性。
需要根据负载的特点来选择合适的伺服电机。
负载的特性可以通过负载转矩和负载惯量来描述。
负载转矩是指负载所需的最大转矩,而负载惯量则是负载对于运动的惯性。
根据负载的特性,可以确定所需的伺服电机的转矩和速度范围,以便选择合适的型号。
二、控制精度在伺服系统中,控制精度是非常重要的指标。
控制精度取决于伺服电机的性能和控制器的精度。
需要根据实际需要确定所需的控制精度,然后选择合适的伺服电机和控制器。
控制系统的动态响应速度也是一个重要的指标,需要根据实际应用来确定。
三、环境条件在选择伺服电机时,还需要考虑环境条件。
包括温度、湿度、震动等因素。
一些特殊的工作环境可能需要选择耐高温、防尘防水等特殊的型号。
还需要考虑伺服电机的安装方式和外壳材质等因素,以确保伺服电机可以在恶劣的环境条件下正常运行。
四、成本在进行伺服电机选型时,成本是一个重要的考虑因素。
除了伺服电机本身的成本外,还需要考虑安装、维护和使用成本。
需要综合考虑各种因素,选择性价比最高的产品。
还需要考虑产品的品牌和售后服务等因素,确保选择到性能可靠、服务完善的产品。
五、其他注意事项1. 选型人员需要了解伺服电机的基本原理和性能指标,避免因为对产品不熟悉而选择错误的型号。
2. 需要对负载特性进行准确的测量和分析,以确保选型的准确性。
3. 在选择伺服电机时,还需要考虑到未来的发展需求,以避免产品在后期无法满足实际需求的情况。
伺服电机选型是一个复杂的过程,需要综合考虑多个因素才能选择到最合适的产品。
希望上述原则和注意事项能够帮助大家在伺服电机选型时有所帮助。
伺服电机怎么选型

伺服电机多用在数控机床,用来补助马达间接变速,但是对于很多第一次接触该产品的人员来说,如何选择一台适合自己工厂的伺服电机显然是个难题。
小编今天就给大家讲讲伺服电机怎么选型更好。
伺服电机选型一般从几个方面出发:
1、电机的最高转速,这个关系到机床的行程时间,即运行速度。
2、惯量匹配及负载惯量,跟设备运行的稳定性及精确度有关系。
3、空载加速转矩,涉及到电机从零速到额定速度的快慢。
4、负载转矩,例如切削负载转矩不得超过额定转矩的80%。
5、连续过载时间,过载时间应控制在电机允许过载时间范围内剩下的就是经济、货期、质保等方面的考虑了。
以上就是由四川志方科技有限公司为大家提供的关于伺服电机选型的相关信息,为了保证伺服电机使用的稳定性,所有伺服电机都应该在使用前进行测试。
因此,在需要用到伺服电机的企业有必要购进一台专业的伺服电机测试系统。
采购伺服电机测试系统建议咨询专业厂家。
伺服电机的选型计算办法

伺服电机的选型计算办法一、确定负载惯量:负载惯量是指伺服电机需要驱动的负载系统的惯性矩阵。
负载的形状、质量、分布和转动部件的位置等都会影响到负载的惯性矩阵。
1.如果负载是刚体,惯性矩阵可以通过测量负载的质量和尺寸,并进行计算得到。
2.如果负载是连续变形的物体,可以通过将其分为多个刚体部分,分别计算惯性矩阵,再进行合成得到整个负载的惯性矩阵。
二、计算定格转矩和定格转速:1.根据应用的工作周期,计算出所需的平均定格转矩。
定格转矩是指电机在长时间运行情况下,能够稳定输出的转矩。
2.根据应用的工作周期和速度要求,计算出所需的平均定格转速。
定格转速是指电机能够稳定运行的最大转速。
三、选择电机型号:1.根据定格转矩和定格转速的要求,查找电机制造商提供的电机规格表,找到满足要求的电机型号。
2.选择电机型号时还需要考虑其他因素,如电机的功率、最大转矩、过载能力、加速度能力等。
根据具体应用的需求进行综合考虑,选取合适的电机型号。
四、校核选型:1.根据选择的电机型号,计算电机的部分负载转矩和转矩脉冲响应时间。
与应用要求进行比较,确保选型的合理性。
2.根据负载惯量和转矩要求,计算伺服电机的加速时间。
与应用的加速要求进行比较,确保选型的合理性。
3.根据电机的定格转矩和转速,计算电机的输出功率。
与应用的功率需求进行比较,确保选型的合理性。
五、其他因素考虑:除了上述的基本选型计算办法外,还需考虑其他因素,例如电机的可靠性、寿命、环境适应性、维护和保养成本等。
总结:伺服电机的选型计算是一个综合考虑电机的转矩、转速、功率和其他性能指标的过程。
根据负载的惯性矩阵、应用的工作周期和速度要求,选择合适的电机型号,并进行校核以确保选型的合理性。
同时,还需要考虑其他因素,如电机的可靠性、寿命和维护成本等。
以上是伺服电机选型计算的一般步骤,具体要根据具体的应用需求来选择,需要结合实际情况进行综合决策。
伺服电机选型计算

伺服电机选型计算
1.负载惯量计算
负载惯量是指负载的转动惯量,计算方式为质量乘以质心距离平方。
负载惯性大会对电机的加速度和精度要求产生一定的影响。
伺服电机需要
具备足够的能力来加速和控制负载。
负载惯量的计算公式为:
J=m*r^2
其中,J表示负载的转动惯量,m表示负载的质量,r表示负载的质
心距离。
根据实际情况确定负载的质量和质心距离,可以估算负载的转动惯量。
2.加速度计算
加速度是指负载达到一定速度所需的时间。
加速度较大可以提高生产
效率,但可能会引起震动和噪音。
确定合适的加速度需要根据应用需要进
行权衡。
加速度的计算公式为:
a=(ωf-ωi)/t
其中,a表示加速度,ωf表示最终速度,ωi表示初始速度,t表示
加速时间。
3.扭矩计算
扭矩是伺服电机提供的力矩,其大小决定了电机的最大负载能力。
根据应用需求可以计算出负载所需的最大扭矩。
扭矩的计算公式为:
T=J*α
其中,T表示所需的最大扭矩,J表示负载的转动惯量,α表示加速度。
4.功率计算
功率是指电机输出的机械功率,也是伺服电机选型的一个重要参数。
根据应用需求可以计算出对应负载的最大功率。
功率的计算公式为:
P=M*ω
其中,P表示功率,M表示扭矩,ω表示角速度。
5.速度计算
速度是指电机的转速,根据应用需求可以计算出所需的最大速度。
速度的计算公式为:
V=ω*r
其中,V表示速度,ω表示角速度,r表示负载的质心距离。
伺服电机选型

-6-
影响选择伺服电机的因素 影响选择伺服电机的因素 六、动态刹车距离
刹车距离 = Vm × (t 1 + t 2) + (J M + J L ) × (A × N 0 + B× N 0 3 ) × L [mm/deg]
Vm :快速移动速度, mm / sec 或者[deg / sec] J M :电机惯量 [kg ⋅ m 2 ] J L :负载惯量 [kg ⋅ m 2 ] N 0:电机快速移动速度 [min −1 ] L:电机一转的移动距离 [ mm ]或者[deg ]( N 0 / 60 × L = Vm ) A : 计算动态刹车距离的刹 车系数 A B: 计算动态刹车距离的刹 车系数 B
Trms
T ⋅ t 1 + T2 ⋅ t 2 + T3 ⋅ t 3 + T4 ⋅ t 4 + T5 ⋅ t 5 + T6 ⋅ t 6 + T7 ⋅ t 7 + T8 ⋅ t 8 = 1 t0
2 2 2 2 2 2 2 2
-5-
影响选择伺服电机的因素 影响选择伺服电机的因素 五、电机速度
在实际机械运转中,电机的旋转速度不可以超过电机旋转的最大速度。
注:刹车系数A与B可以查询说明书65262EN以及65302EN。
-7-
伺服电机选定所必须的项目 伺服电机选定所必须的项目
一. ①移动物重量(W) 、②一次旋转移动量(I)、移动方向(判断是水平轴还是重力轴) 工件转动惯量(Jw)=移动物重量×(一次旋转移动量/2π)2 • 移动物重量1000kg、一次旋转移动量12mm(=0.012m)、Jw=0.0365kgm2 重力轴负载(Tw)=移动物重量×(一次旋转移动量/2π)×9.8÷机械效率 • 移動物重量1000kg、一次旋转移动量12mm(=0.012m)、機械効率0.8、Tw=23.4Nm 水平轴摩擦负载(Tf)=移动物重量×(一次旋转移动量/2π)×9.8×摩擦系数 • 移動物重量1000kg、一次旋转移动量12mm(=0.012m)、摩擦系数0.1、Tf=1.87Nm 二.丝杠(③直径(D)、④长度(L)、⑤螺距(p)) 丝杠转动惯量(Jb) =765×(丝杆直径)4×长度×(一次旋转移动量/螺距)2 • 螺纹直径40mm、长度1m 765×(0.04)4×1=0.00196kgm2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012-11-15
影响选择伺服电机的因素 影响选择伺服电机的因素 一、选择电机时候的考虑因素
影响电机选择的因素为机床选择进给驱动电机时,需要考虑机械部分的传 动结构与电机的匹配、电机的运转速度、机床的加减速时间大小、电机的停 止距离等因素。 概括言之,即选择与机械相匹配的电机,主要包括以下因素:
2、齿轮齿条传动 一转移动量(I)=2π*R*减速比(R为分度圆半径) (注:分度圆直径=齿数*模数) 比如齿轮齿条传动时,齿轮分度圆的半径为10mm,减速比为1/2, 则: 一转移动量=2π*10*(1/2)=10π 3、涡轮蜗杆传动 一转移动量(I)=(R*减速比*P)/r (注:R为涡轮半径,r为蜗杆半径,P为蜗杆导程)
-3-
影响选择伺服电机的因素 影响选择伺服电机的因素 二、加减速特性(短时加工因素)
在机械加工中,除了需要保证推动负载加工的连续推力之外,还必须要考 虑短时的加工因素,即:电机在加减速过程中的输出特性。在加减速过程 中,会达到机械需要的最大推力。因此,在选择电机时,需要考虑电机的最 大扭矩与机械加减速过程中所需要的最大扭矩是否匹配。电机的最大扭矩直 接影响加减速时间常数的设定。
-8-
一转移动量的计算 一转移动量的计算
一转移动量为电机旋转一圈机床的移动距离 1、丝杆传动 一转移动量(I)=丝杆螺距*减速比 比如10mm螺距,减速比为1:2,则一转移动量=10*(1/2)=5mm P*n=F (其中P为螺距,n为转速,单位为rpm/min;F为进给速度,单位为 mm/min)
-6-
影响选择伺服电机的因素 影响选择伺服电机的因素 六、动态刹车距离
刹车距离 = Vm × (t 1 + t 2) + (J M + J L ) × (A × N 0 + B× N 0 3 ) × L [mm/deg]
Vm :快速移动速度, mm / sec 或者[deg / sec] J M :电机惯量 [kg ⋅ m 2 ] J L :负载惯量 [kg ⋅ m 2 ] N 0:电机快速移动速度 [min −1 ] L:电机一转的移动距离 [ mm ]或者[deg ]( N 0 / 60 × L = Vm ) A : 计算动态刹车距离的刹 车系数 A B: 计算动态刹车距离的刹 车系数 B
六、动态刹车距离
动态刹车距离是指当意外事故发生时,需要机床停止时的刹车距离。动态刹车的 方法是将电机动力线的两端进行短接(系统放大器内完成,不需要进行额外的连线)。 动态刹车的过程分为三个过程: 1)放大器接收时间延迟产生的移动距离。延时时间为t1; 2)电磁接触器(MCC)的关断时间产生的移动距离。延时时间为t2; 3)电磁接触器关断后,动态刹车过程产生的距离。 通常,t1 + t 2 = 0.05秒。
三、空载扭矩
空载扭矩指不进行切削时电机所承受的扭矩,主要包括机械摩擦以及重力轴中重力的作用 力矩,通常空载的扭矩应该不超过伺服电机堵转扭矩的30%。 在无配重重力轴电机的使用中,空载扭矩最高可至伺服电机堵转扭矩的70%。
-4-
影响选择伺服电机的因素 影响选择伺服电机的因素 四、扭矩的均方根值
¾ 扭矩的均方根值在一个加工周期内应该小于电机的堵转扭矩的90% Trms ≤ 堵转扭矩× 90%
1. 2. 3. 4. 5. 6.
负载惯量比; 加减速特性(短时加工因素); 连续负载扭矩; 电机速度; 扭矩的均方根值; 动态刹车距离。
-2-
影响选择伺服电机的因素 影响选择伺服电机的因素 一、负载惯量比
负载惯量比是指进给轴的负载惯量与进给轴电机惯量的比值。该值反映了电 机对于负载的控制能力。该值越小,电机的控制力越强。要确保伺服电机能够有效的 工作,需要为机床选择具有恰当惯量的电机。而其选择的技术指标称为负载惯量比 (负载惯量 / 电机惯量)。推荐选取范围:负载惯量/电机惯量 = 3~5,用于模具加 工或有频繁加减速要求的机床要求小于300%,用于零件加工的机床最大可至500%。
注:刹车系数A与B可以查询说明书65262EN以及65302EN。
-7-
伺服电机选定所必须的项目 伺服电机选定所必须的次旋转移动量(I)、移动方向(判断是水平轴还是重力轴) z 工件转动惯量(Jw)=移动物重量×(一次旋转移动量/2π)2 • 移动物重量1000kg、一次旋转移动量12mm(=0.012m)、Jw=0.0365kgm2 z 重力轴负载(Tw)=移动物重量×(一次旋转移动量/2π)×9.8÷机械效率 • 移動物重量1000kg、一次旋转移动量12mm(=0.012m)、機械効率0.8、Tw=23.4Nm z 水平轴摩擦负载(Tf)=移动物重量×(一次旋转移动量/2π)×9.8×摩擦系数 • 移動物重量1000kg、一次旋转移动量12mm(=0.012m)、摩擦系数0.1、Tf=1.87Nm 二.丝杠(③直径(D)、④长度(L)、⑤螺距(p)) z 丝杠转动惯量(Jb) =765×(丝杆直径)4×长度×(一次旋转移动量/螺距)2 • 螺纹直径40mm、长度1m 765×(0.04)4×1=0.00196kgm2
Trms
T ⋅ t 1 + T2 ⋅ t 2 + T3 ⋅ t 3 + T4 ⋅ t 4 + T5 ⋅ t 5 + T6 ⋅ t 6 + T7 ⋅ t 7 + T8 ⋅ t 8 = 1 t0
-5-
2
2
2
2
2
2
2
2
影响选择伺服电机的因素 影响选择伺服电机的因素 五、电机速度
在实际机械运转中,电机的旋转速度不可以超过电机旋转的最大速度。
• 螺纹直径100mm、长度3m 765×(0.1)4×3=0.230kgm2 相同的螺纹一次旋转移动量10mm、螺距20mm 765×(0.1)4×3×(10/20)2=0.0574kgm2 三. ⑥快速进给速度(V) z 电机旋转速度(N)=快速进给速度V÷一次旋转移动量 • 快速进给速度36m/分、一次旋转移动量12mm N=3000rpm
-9-
小型加工中心的电机选定例(1/2) 小型加工中心的电机选定例(1/2)