第三节空间曲面与曲线
微积分课件第3节 空间曲线及其在坐标面上的投影.

空间曲线在坐标面上的投影.
H ( x , y ) 0 R( y , z ) 0 z 0 x 0 T ( x , z ) 0 y 0
练习:P267:1(单),2(单),3,4(单)
第三节 空间曲线及其在坐标面上的投影
思考题
求椭圆抛物面2 y x z 与抛物柱面 2 2 x z 的交线关于 xoy面的投影柱面和 在 xoy面上的投影曲线方程.
柱面方程,因而曲线 在 x y
坐标面上的投影曲线是圆.
x 2 ( y 4)2 16
x2 y2 8 y , z 0 .
二、空间曲线在坐标面上的投影
例5 求曲线
x2 y2 z2 1 在坐标面上的投影. 1 z 2
解 (1)消去变量z后得 3 2 2 x y , 4 在 xoy 面上的投影为 3 2 2 x y 4, z 0
x 2 y 2 z 2 64 球面
x 2 ( y 4)2 16 圆柱面
面上的投影曲线的方程.
x 2 y 2 z 2 64 , 例4 求曲线 Γ : 在 xoy坐标 2 2 x y 8y
2 2 方程 x y 8y 解 就是 关于xoy 坐标面的投影
2 2
2 2 x 5 y 4 xy x 0 z 得投影 (1)消去 , z 0
x 2 5 z 2 2 xz 4 x 0 (2)消去y 得投影 , y 0 y z 2y z 0 . (3)消去x 得投影 x 0
2 2
2 x 3 y 3 z 6 表示平面,
x2 y2 1 2 x 3 y 3z 6
曲面与曲线知识点总结

曲面与曲线知识点总结一、曲线与曲面的基本概念曲线是在平面上的点按照特定的规则所组成的图形,而曲面则是在三维空间内的点按照特定的规则所组成的图形。
在数学上,我们可以用函数来描述曲线和曲面,从而研究它们的性质和特点。
1.1 曲线的性质曲线可以是直线、圆、椭圆、抛物线、双曲线等不同类型的图形。
我们可以通过曲线的方程以及参数方程来描述它的形状和位置。
曲线的长短、曲率、切线、法线等性质对于描述曲线的形态和特点至关重要。
1.2 曲面的性质曲面可以是球面、圆柱面、圆锥面、双曲面、抛物面等不同类型的图形。
我们可以用二元函数或者参数方程来描述曲面的形状和位置。
曲面的曲率、切线、法线等性质是研究曲面形态的重要工具。
1.3 直角坐标系和参数方程在研究曲线和曲面的性质时,我们可以使用直角坐标系、参数方程和极坐标系等不同的数学工具来描述它们的形态和位置关系。
不同的描述方法可以帮助我们更好地理解曲线和曲面的性质。
二、曲线的方程与性质曲线方程是研究曲线性质的重要工具,通过曲线方程我们可以得到曲线的形状、位置、长度、曲率等重要信息。
2.1 一元曲线的方程一元曲线的方程可以用直角坐标系的方程或者参数方程来表示。
常见的一元曲线包括直线、圆和椭圆、抛物线、双曲线等。
这些曲线都有各自的特点和性质,通过曲线方程我们可以了解它们的形状和位置关系。
2.2 二元曲线的方程二元曲线的方程可以用参数方程或者隐式方程来表示。
常见的二元曲线包括螺线、双曲线、阿基米德螺线等。
通过曲线方程我们可以了解二元曲线的性质和特点。
2.3 曲线的性质曲线的性质包括长度、曲率、切线、法线等重要内容。
通过曲线方程和导数的求解,我们可以求得曲线的长度、曲率和切线、法线等相关信息,从而了解曲线的形态和特点。
三、曲面的方程与性质曲面方程是研究曲面性质的重要工具,通过曲面方程我们可以得到曲面的形状、位置、曲率等重要信息。
3.1 一元曲面的方程一元曲面的方程可以用隐式方程或者参数方程来表示。
空间曲线与空间曲面

空间曲线与空间曲面空间曲线和空间曲面是数学几何学中的重要概念,它们在描述和分析三维物体的形状和特征时起着关键作用。
本文将就空间曲线和空间曲面的定义、性质和应用进行深入探讨。
一、空间曲线的定义与性质空间曲线是三维空间中的一条连续曲线,它由一系列相互关联的点组成。
可以用参数方程或者向量函数来表示,以便对其进行解析研究。
常见的空间曲线有直线、曲线和闭合曲线等。
直线是最简单的空间曲线,可由两个不同的点确定。
曲线则弯曲或扭转,并有无数个点组成。
闭合曲线是形状回到起点的曲线,如圆或椭圆。
空间曲线具有以下重要性质:1. 弧长:空间曲线的长度称为其弧长,可以通过对曲线进行参数化和积分计算得到。
2. 切线:对于空间曲线上的每个点,都有一个切线与其相切。
切线是曲线在该点弯曲方向上的极限。
3. 曲率:曲线的曲率描述了曲线在某点处的弯曲程度。
曲率可以通过曲线的切线和法线计算得到。
4. 弯曲方向:曲线可以向左弯曲或向右弯曲,具体取决于曲线上连续两个点的位置关系。
二、空间曲面的定义与性质空间曲面是三维空间中的一个连续平面,由一系列相关的点构成。
类似于空间曲线,空间曲面也可以用参数方程或者向量函数进行表示。
常见的空间曲面有平面、球面和圆锥面等。
平面是最简单的空间曲面,由无限多个平行于其自身的直线组成。
球面由到球心距离相等的点组成。
圆锥面则由一个尖点和无数个从尖点射出的直线构成。
空间曲面具有以下重要性质:1. 切平面:对于空间曲面上的每个点,都存在一个切平面与其相切。
切平面是曲面在该点处切割曲面所得的截面。
2. 法线:曲面上每个点都有一个法线垂直于曲面。
法线方向是指在该点处曲面向外的方向。
3. 曲率:曲面的曲率描述了曲面在某点处的弯曲程度。
曲率可以通过曲面的切平面和法线计算得到。
4. 弯曲特性:曲面可以是凸的(向外弯曲)、凹的(向内弯曲)或既不凸也不凹。
三、空间曲线与空间曲面的应用空间曲线和空间曲面在实际应用中有着广泛的应用,特别是在工程学和物理学领域。
空间中曲线与曲面方程

空间中曲线与曲面方程在三维空间中,曲线和曲面是几何学中重要的概念,在数学和物理学等领域有广泛的应用。
曲线是指在空间中表示为一系列点的集合,而曲面是在空间中表示为一系列点的集合的一个二维面。
本文将就空间中曲线与曲面方程进行探讨。
一、空间曲线的方程在三维空间中,曲线可以用参数方程或者一般方程来表示。
参数方程是指将曲线的坐标用参数表示,例如(x(t), y(t), z(t))。
每个参数t对应曲线上的一个点。
一般方程则是通过给出曲线上的点满足的关系式来表示,例如F(x, y, z) = 0。
参数方程的优势在于可以轻松描述曲线的形状,通常直接从曲线的定义出发,选择合适的参数方程。
而一般方程则更适合用于描述曲线的性质和特征。
二、空间曲面的方程空间中的曲面可以用参数方程、一般方程或者隐函数方程来表示。
参数方程类似于曲线的参数方程,将曲面上的点用参数表示,例如(x(u, v), y(u, v), z(u, v))。
每个参数对应曲面上的一个点。
一般方程则通过给出曲面上的点满足的关系式来表示,例如F(x, y, z) = 0。
隐函数方程则将曲面的方程化简为一个关于x、y、z的方程,例如F(x, y, z) = 0。
选择曲面的方程格式取决于具体的问题和需求。
参数方程可以直观地描述曲面的形状,适用于绘制和计算曲面上的点。
一般方程和隐函数方程更适合用于分析曲面的性质和特征。
三、曲线和曲面的方程求解对于空间中的曲线和曲面方程,求解其解析式是数学中一个重要的问题。
有时可以通过直接求解得到解析式,有时需要借助计算机和数值方法进行求解。
对于一些简单的曲线和曲面方程,可以通过代数运算得到解析式。
例如对于一条直线,可以通过给出直线上两点的坐标,然后通过两点间的直线方程求解出直线的解析式。
对于一些复杂的曲线和曲面方程,可以通过数值方法进行求解,如迭代法、线性插值等,以获得近似解。
四、曲线和曲面方程的应用曲线和曲面方程在数学和物理学中有广泛的应用。
第3讲空间解析几何—曲面、曲线及其方程

第3讲 空间解析几何—曲面、曲线及其方程本节主要内容第三节 曲面及其方程1 曲面方程的概念2 旋转曲面3 柱 面 4二次曲面第四节 空间曲线及其方程1 空间曲线的一般方程2 空间曲线的参数方程3 空间曲线在坐标面上的投影讲解提纲:第七章 空间解析几何与向量代数第三节 曲面及其方程一、 曲面方程的概念空间曲面研究的两个基本问题是:1.已知曲面上的点所满足的几何条件,建立曲面的方程;2.已知曲面方程,研究曲面的几何形状.二、旋转曲面以一条平面曲线绕其平面上的一条直线旋转一周形成的曲面叫做旋转曲面,旋转曲线和定直线分别叫做旋转曲面的母线和轴。
三、柱面平行于定直线并沿定曲线C 移动的直线L 形成的轨迹叫做柱面,定曲线C 叫做柱面的准线,动直线L 叫做柱面的母线。
四、二次曲面三元二次方程0),,(=z y x F 所表示的曲面称为二次曲面。
例题选讲:曲面方程的概念例1 建立球心在点),,(0000z y x M 、半径为R 的球面方程. 解:易得球面方程为2222000()()()x x y y z z R -+-+-=例2 求与原点O 及)4,3,2(0M 的距离之比为1:2的点的全体所组成的曲面方程. 解:易得曲面方程为22224116()(1)()339x y z +++++=。
例3 已知()1,2,3,A ()2,1,4,B - 求线段AB 的垂直平分面的方程.解:设点(,,)M x y z 为所求平面上的任一点,由 A M B M ==整理得26270x y z -+-=。
例4方程2222440x y z x y z ++-++=表示怎样的曲面?旋转曲面例5 将xOz 坐标面上的抛物线25z x =分别绕x 轴旋转一周,求所生成的旋转曲面的方程.解:易得旋转曲面的方程225y z x +=例6 直线L 绕另一条与L 相交的定直线旋转一周, 所得旋转曲面称为叫圆锥面. 两直线的交点称为圆锥面的顶点, 两直线的夹角α)20(πα<<称为圆锥面的半顶角. 试建立顶点在坐标原点, 旋转轴为z 轴, 半顶角为α的圆锥面方程解:在yoz 坐标平面上,直线L 的方程为 c o tz y α= 可得圆锥面的方程为2222()z x y α=+柱面例7 分别求母线平行于x 轴和y 轴,且通过曲线222222216x y z x y z ⎧++=⎨-+=⎩的柱面方程.解:母线平行于x 轴的柱面方程:22316y z -= 母线平行于y 轴的柱面方程:223216x z += 二次曲面.椭球面:1222222=++cz b y a x )0,0,0(>>>c b a抛物面椭圆抛物面 qy p x z 2222+= (同号与q p )双曲抛物面 z qy p x =+-2222 ( p 与q 同号)双曲面单叶双曲面 1222222=-+c z b y a x )0,0,0(>>>c b a双叶双曲面 1222222-=-+c z b y a x )0,0,0(>>>c b a二次锥面 0222222=-+cz b y a x例8 由曲面,0,0,0===z y x 1,122=+=+z y y x 围成的空间区域(在第一卦限部分), 作它的简图.课堂练习 1.求直线11:121x y z L --==绕z 轴旋转所得到的旋转曲面的方程. 2.指出方程221x y -=及22z x =-所表示的曲面. 3 方程()()22234z x y =-+--的图形是怎样的?第四节 空间曲线及其方程一、 空间曲线的一般方程 ⎩⎨⎧==0),,(0),,(z y x G z y x F二、空间曲线的参数方程 ⎪⎩⎪⎨⎧===)()()(t z z t y y t x x三、 空间曲线在坐标面上的投影⇒⎩⎨⎧==.0),,(,0),,(z y x G z y x F ⇒=0),(y x H ⎩⎨⎧==00),(z y x H例题选讲:空间曲线的一般方程例1方程组 221493x y y ⎧+=⎪⎨⎪=⎩表示怎样的曲线?空间曲线的参数方程例2 若空间一点M 在圆柱面222a y x =+上以角速度ω绕z 轴旋转, 同时又以线速度v 沿平行于z 轴的正方向上升 (其中ω、v 是常数), 则点M 构成的图形叫做螺旋线. 试建立其参数方程.解:取时间t 为参数,在t=0时,动点位于x 轴上的一点(,0,0)A a 处。
空间曲线与曲面

空间曲线与曲面空间曲线和曲面是几何学中的重要概念,它们在数学、物理学以及工程学等领域都有广泛的应用。
本文将介绍空间曲线和曲面的基本概念,并讨论它们的性质和应用。
一、空间曲线空间曲线是指在三维空间中由一组点按照一定规律组成的线条。
通常情况下,我们可以用参数方程或者向量函数来描述一条空间曲线。
1. 参数方程参数方程是一种用参数表示变量关系的方法。
对于空间曲线而言,参数方程可以表示为:x = f(t)y = g(t)z = h(t)其中,x、y、z分别表示曲线上一点的坐标,f(t)、g(t)、h(t)是关于参数t的函数。
通过改变参数t的取值范围,我们可以得到曲线上不同点的坐标。
2. 向量函数向量函数是一种将向量与参数相关联的函数。
对于空间曲线而言,向量函数可以表示为:r(t) = x(t)i + y(t)j + z(t)k其中,r(t)表示曲线上一点的位置向量,i、j、k是空间直角坐标系的单位向量,x(t)、y(t)、z(t)是关于参数t的函数。
通过改变参数t的取值范围,我们可以得到曲线上不同点的位置向量。
二、空间曲面空间曲面是指在三维空间中由曲线按照一定规律延伸得到的平面或者曲面。
与空间曲线类似,我们可以用参数方程或者向量函数来描述一个空间曲面。
1. 参数方程参数方程可以用来表示平面或曲面上每一个点的坐标。
对于空间曲面而言,参数方程可以表示为:x = f(u, v)y = g(u, v)z = h(u, v)其中,x、y、z分别表示曲面上一点的坐标,f(u, v)、g(u, v)、h(u, v)是关于参数u和v的函数。
通过改变参数u和v的取值范围,我们可以得到曲面上不同点的坐标。
2. 向量函数向量函数可以用来表示曲面上每一个点的位置向量。
对于空间曲面而言,向量函数可以表示为:r(u, v) = x(u, v)i + y(u, v)j + z(u, v)k其中,r(u, v)表示曲面上一点的位置向量,i、j、k是空间直角坐标系的单位向量,x(u, v)、y(u, v)、z(u, v)是关于参数u和v的函数。
空间几何中的曲线与曲面

空间几何中的曲线与曲面在空间几何中,曲线与曲面是两种重要的几何对象,它们在数学和物理学等领域中起着至关重要的作用。
本文将从定义、性质和应用等方面,探讨空间几何中的曲线与曲面。
一、曲线的定义与性质曲线是平面或空间中的一条连续有限点集。
在三维空间中,我们常见的曲线有直线、圆、椭圆等。
根据曲线的性质,可以将曲线分为开放曲线和闭合曲线两种。
开放曲线是指起点和终点不重合的曲线,例如直线。
闭合曲线是指起点和终点相重合的曲线,例如圆。
曲线的性质还包括曲率、切线、法线等。
曲线的曲率描述了曲线在某一点上的弯曲程度,切线是曲线在该点的切线方向,法线是曲线在该点的垂直于切线的方向。
二、曲线的应用曲线在现实生活中有着广泛的应用。
在物理学中,曲线被用于描述物体的运动轨迹。
例如,当我们研究一个抛体运动时,可以利用曲线来描述物体的运动轨迹,并通过曲线的方程来计算物体在不同时刻的位置和速度。
另外,在工程学和建筑学中,曲线也被广泛应用。
例如,在桥梁的设计中,曲线可用于描述桥梁的拱形结构,以提供更好的力学性能和美观性。
三、曲面的定义与性质曲面是空间中的一条连续无限点集,它可以由曲线沿某一方向无限延伸形成。
常见的曲面有球面、圆柱面、抛物面等。
曲面的性质包括曲率、切平面、法线等。
曲面的曲率描述了曲面在某一点上的弯曲程度,切平面是曲面在该点的切平面,法线是曲面在该点的垂直于切平面的方向。
四、曲面的应用曲面在科学研究和实际应用中也具有重要意义。
在物理学中,曲面被广泛应用于描述物体的形状和表面特性。
例如,在天文学中,天体的形状可以用曲面来描述,从而帮助我们研究它们的运动规律和属性。
另外,在工程学和设计领域,曲面也有广泛的应用。
例如,在造船工程中,曲面可以用于描述船体的外形,从而优化船体结构和流体力学性能。
总结空间几何中的曲线与曲面是空间中重要的几何对象,它们在数学和物理学等学科中具有广泛的应用价值。
通过对曲线与曲面的定义、性质和应用的讨论,我们可以更好地理解和应用空间几何中的曲线与曲面。
第三节 空间曲面及方程

即
( x x0 )2 ( y y0 )2 ( z z0 )2 R
x2+y2+z2=R2
故球面方程为: (x-x0)2+(y-y0)2+(z-z0)2=R2 特别,当M0在原点时,球面方程为: 球面方程的一般式为: x2+y2+z2+Ax+By+Cz+D=0 其特征为: (1) x2, y2, z2系数相同; (2)无 xy , xz, yz项。 例: x2+y2+z2 -2x+4z -4=0 配方得(x-1)2+y2+(z+2)2=32
缺谁,母线平行谁
a
o
b y
y a o
x
x
14
柱面
z
(3) 抛物柱面: y2 =2x
母线平行于z 轴,
o x y z
准线为xoy 面上的抛物线:
(4) 平面: y-2z=0 母线平行于x 轴,
y2 =2x
。
y-2z=0
•
准线为yoz 面上的直线: y-2z=0 。
x
y
o
x2 y2 ——— =1 (1) 椭圆柱面: ——— + a2 b2
M•
任取曲面S上点M(x, y, z), 其点必是由曲线L上点M0(x0, y0, z0) 绕 z 轴转旋转而来. 则有: z=z0; x2+ y2 =y0; 因为f (y0, z0)=0, x
• M0
S
L
y
所以f ( x2+ y2 , z)=0.
6
旋转曲面
2、设yoz面上曲线 L: f (y, z)=0 绕 z 轴旋转一周, 所成曲面的方程为:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
F(x, y, z) 0 G( x, y, z) 0
称此方程组为曲线c的一般方程。
例1:方程组
x
2
y2
z2
5 表示怎样的曲线?
z2
解:平面z=2上以(0,0,2)为圆心的单位圆。
例2:方程
Z
a2 x2 y2
(
x
a
)2
y2
(a
)2
2
2
表示怎样曲线?
解:z a2 x2 y2
表示中心在原点,半径为a的上半球面
线平行于y轴和x轴的柱面。 母线平行于坐标轴的柱面的特点为:缺一个变量, 母线平行于未出现哪个变量的同名坐标轴。
几种常见柱面: (1)x+y=a 平面;
(2) x2 y2 a2 圆柱面;
(3)x 2
a2
y2 b2
1
椭圆柱面;
(4)x a
2 2
y2 b2
1
双曲柱面;
(5)x2 2 py 抛物柱面。
以上所举例均为母线平行于 z轴的情况,其他情况类似。
4.旋转曲面: 一般情况下我们将一平面曲线c绕同一平面内
的定直线L旋转一周所成的曲面称为旋转曲面。
其中c称为母线,L称为其轴。本章中我们只研究绕
坐标轴放置的曲面。
现在建立方程:
设yoz平面上有一已知曲线c其方程
为f(y,z)=0,将c绕z轴旋转一周后,设 曲面上任一点为P(x, y,z ),过点P可作 P
组,并由它解出y=y(t),z=z(t)得
x x(t)
方程组
y
y (t )
称为空间中曲线的参数方程。
z
z (t )
例3:如果空间一点M在圆柱面 x2 +y2 =a2 上以等 角速度绕z轴旋转,同时,以等速度v沿平行于z轴 的正方向移动,则点M运动的轨迹叫螺旋线,求其 参数方程
圆柱面 x 2 y 2 a 2
M
c
N
圆面,其与z轴相交得到的点为M(0,
0,z ),与曲线c的交点为N(0, y1,z ), 此三点满足方程:PM MN y1 x2 y2
点N满足方程 f ( y, z) 0 f ( y1, z) 0
f ( x2 y2 , z) 0
同理, 曲线c绕y轴旋转所得曲面方程为:f ( y, x2 z2 ) 0 同理, 设xoz平面上有一已知曲线c其方程为f(x,z)=0,
(x a )2 y2 (a )2 表示母线平行于z轴,准线在xoy
2
2
面上其圆心在( a , 0) ,半径为 a的圆柱面
2
2
它们的交线是xoy面上的一个圆.
2.空间曲线的参数方程:
设空间曲线方程 GF (( xx,,
y, y,
z) z)
0 0
如果选定一个适当的函数x=x(t)代入上述方程
x=0; y=0; x=a; y=b
3. 球面方程:
①球面的标准方程:以M0(x0,y0,z0)为球心,R为 半径的球面方程为(x-x0)2+(y-y0)2+(z-z0)2=R2 ②球面的一般方程:x2+y2+z2+Ax+By+Cz+D=0
如: x2+y2+z2+2x-2y-2=0
特点:平方项系
整理得: (x+1)2+(y-1)2+z2=22
§3 空间曲面与空间曲线
一.曲面及其方程:
1.曲面方程的一般概念: 定义:若曲面上的点的坐标(x,y,z) 都满足方程 F(x,y,z) =0, 而满足此方程的点都在曲面上,则称此方程为 该曲面的方程,而曲面称为此方程的图形。 例1:求与A(2,3,1)和B(4,5,6)等距离的点的运 动规迹。 解:设 M(x,y,z)为动点的坐标,动点应满足的 条件是|AM|=|BM|
0
三.空间曲线在坐标面上的投影:
F(x, y, z) 0 L : G( x, y, z) 0
在该方程组中消去z得H(x,y)=0,此为一个通过曲
线L ,母线平行于z轴的柱面,称为曲线c关于
xOy面的投影柱面。
此投影柱面与xOy平面的交线即为c在xOy平面上的
投影曲线,简称投影,其方程为
H
(
x, y) z0
如:xoy 平面上的曲线 x2 y2 1 34
绕x轴旋转得曲面方程:
x2 ( y2 z2 )2
1
即
x2 y2 z2 1
3
4
34
绕y轴旋转得曲面方程:
( x2 z2 )2 y2
1
3
4
即
x2 z2 y2 1
34
二.空间曲线及其方程:
1.空间曲线的一般方程:
空间曲线一般可看作两个曲面的交线,若两 个曲面的方程分别为F(x,y,z)=0和G(x,y,z)=0,则易 知其交线c的方程为
绕x轴为 f ( x, y2 z2 ) 0 绕z轴为 f ( x2 z2 , y) 0
设xoy平面上有一已知曲线c其方程为f(x,y)=0,
绕x轴为 f (x, y2 z2 ) 0 绕z轴为 f ( x2 y2 , z) 0
特点: (1)旋转曲面总有两个变量的平方的系数相同。 (2)求旋转曲面方法:绕哪个轴旋转,那个变量 就不变,另一个变量变成 该变量2 未出现的变量2
M(x,y,z)
x = acos t y = asin t z = bt (移动及转动都是
等速进行,所以z 与t成正比。)
当 t 从 0 2,
螺线从点P Q
PQ 2b 叫螺距.
x
z
Q 0 t
P
点P在圆柱面上等 速地绕z轴旋转;
同时又在平行于z
轴的方向等速地 上升。其轨迹就 是圆柱螺线。
M
a
y
N
由距离公式得
(x 2)2 ( y 3)2 (z 1)2 (x 4)2 ( y 5)2 (z 6)2
整理得 4x 4y 10z 63 0
此即所求点的规迹方程,为一平面方程。 2.坐标面及与坐标面平行的平面方程:
①坐标平面xoy的方程:z=0 ②过点(a,b,c)且与xoy面平行的平面方程:z=c ③坐标面yoz 、坐标面xoz以及过点(a,b,c) 且分别与之平行的平面方程为:
数相同;没有交 叉项。
表示一个球心在(-1,1,0),半径为2的球。
4.母线平行于坐标轴的柱面方程:
一般我们将动直线L沿定曲线c平行移动所形 成的轨迹称为柱面。其中直线L称为柱面的母线, 定曲线c称为柱面的准线。
本章中只研究母线平 行于坐标轴的柱面方 程。
此时有以下结论:
ห้องสมุดไป่ตู้若柱面的母线平行于z轴,准线c是xOy面上的一条 曲线,其方程为 F(x,y)=0,则该柱面的方程为 F(x,y)=0; 同理, G(x,z)=0, H(y,z)=0在空间中分别表示母