2019届高三数学一轮复习培优讲义含课时作业:第11章第3讲合情推理与演绎推理Word版含答案

合集下载

2019版高考数学一轮复习讲义 第十一章 推理与证明 11.1 合情推理与演绎推理讲义

2019版高考数学一轮复习讲义 第十一章 推理与证明 11.1 合情推理与演绎推理讲义

§合情推理与演绎推理命题探究考纲解读分析解读推理与证明是新课标新增加的内容,江苏高考一般很少单独考查,但是演绎推理是解答试题必需的过程,所以仍需要认真掌握.五年高考考点一合情推理.(课标全国Ⅱ文改编分)甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有位优秀位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则以下四种说法正确的是.①乙可以知道四人的成绩;②丁可以知道四人的成绩;③乙、丁可以知道对方的成绩;④乙、丁可以知道自己的成绩.答案④.(山东分)观察下列等式:××;××;…××;…××;……照此规律,….答案考点二 演绎推理.(北京理分)三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中点的横、纵坐标分别为第名工人上午的工作时间和加工的零件数,点的横、纵坐标分别为第名工人下午的工作时间和加工的零件数. ①记为第名工人在这一天中加工的零件总数,则中最大的是;②记为第名工人在这一天中平均每小时加工的零件数,则中最大的是.答案 ① ②.(重庆理分)对正整数,记{,…}.()求集合中元素的个数;()若的子集中任意两个元素之和不是..整数的平方,则称为“稀疏集”.求的最大值,使能分成两个不相交的稀疏集的并.解析 ()当时,中有个数与中的个数重复,因此中元素的个数为×.()先证当≥时不能分成两个不相交的稀疏集的并.若不然,设为不相交的稀疏集,使∪⊇.不妨设∈,则因,故∉,即∈.同理∈∈,又推得∈,但,这与为稀疏集矛盾.再证符合要求.当时可分成两个稀疏集之并,事实上,只要取{}{},则为稀疏集,且∪.当时,集中除整数外剩下的数组成集,可分解为下面两稀疏集的并.当时,集中除正整数外剩下的数组成集,,,,…,,,可分解为下面两稀疏集的并:。

高三新课标数学(理)一轮复习(讲义+课件+课时训练):第

高三新课标数学(理)一轮复习(讲义+课件+课时训练):第

第四课时推理课前预习案1.了解合情推理的含义,能进行简单的归纳和类比推理,体会合情推理在数学发现中的作用。

2.了解演绎推理的含义,了解合情推理和演绎推理之间的联系和差异;3.掌握演绎推理的“三段论”进行一些简单演绎推理。

1.合情推理(1)归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出的推理,称为归纳推理.简言之,归纳推理是由的推理.(2)类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理.简言之,类比推理是由特殊到的推理.(3)合情推理:归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、,然后提出猜想的推理,我们把它们统称为合情推理.2.演绎推理演绎推理:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.简言之,演绎推理是由的推理.它的特点是:前提为真时,结论必然_________.(1)“三段论”是演绎推理的一般模式,包括:①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况作出的判断(2)传递性关系推理推理规则是:“如果,则”(其中表示具有传递性的关系),这种推理叫传递性关系推理,如:推出。

(3)完全归纳推理把所有情况都考虑在内的演绎推理规则叫做完全归纳推理.1.(2011江西理7)观察下列各式: =3125, =15625, =78125,…,则的末四位数字为()A.3125 B.5625 C.0625 D.81252.(2010山东文10)观察,,,由归纳推理可得:若定义在上的函数满足,记为的导函数,则=( )(A) (B) (C) (D)课堂探究案考点一归纳推理【典例1】观察下列等式:可以推测:13+23+33+…+n 3=________ (n ∈N *,用含有n 的代数式表示)【变式1】 已知经过计算和验证有下列正确的不等式:3+17<210,7.5+12.5<210,8+2+12-2<210,根据以上不等式的规律,请写出一个对正实数m ,n 都成立的条件不等式________ . 【变式2】(2011山东理15)设函数()(0)2x f x x x =>+,观察:1()(),2x f x f x x ==+21()(()),34x f x f f x x ==+32()(()),78x f x f f x x ==+43()(()),1516x f x f f x x ==+根据以上事实,由归纳推理可得: 当且2n ≥时,1()(())n n f x f f x -== .【变式3】(2012江西理 6)观察下列各式: 3344554,7,11,a b a b a b +=+=+=则( )A .28B .76C .123D .199考点二 类比推理【典例2】在平面几何里,有“若△ABC 的三边长分别为a ,b ,c ,内切圆半径为r ,则三角形面积为S △ABC =12(a +b +c )r ”,拓展到空间,类比上述结论,“若四面体ABCD 的四个面的面积分别为S 1,S 2,S 3,S 4,内切球的半径为r ,则四面体的体积为__________________________【变式4】在正三角形中,设它的内切圆的半径为r ,容易求得正三角形的周长面积,发现,这是平面几何中的一个重要发现。

数学复习检测:第十一章第讲合情推理与演绎推理

数学复习检测:第十一章第讲合情推理与演绎推理

第3讲合情推理与演绎推理,[学生用书P208])1.推理(1)定义:是根据一个或几个已知的判断来确定一个新的判断的思维过程.(2)分类:推理错误!2.合情推理归纳推理类比推理定义由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理特点由部分到整体、由个别到一般的推理由特殊到特殊的推理3.演绎推理(1)定义:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.(2)特点:演绎推理是由一般到特殊的推理.(3)模式:三段论错误!1.辨明两个易误点(1)演绎推理是由一般到特殊的证明,它常用来证明和推理数学问题,注意推理过程的严密性,书写格式的规范性.(2)合情推理中运用猜想时不能凭空想象,要有猜想或拓展依据.2.把握合情推理与演绎推理的三个特点(1)合情推理包括归纳推理和类比推理,所得到的结论都不一定正确,其结论的正确性是需要证明的.(2)在进行类比推理时,要尽量从本质上去类比,不要被表面现象所迷惑;否则只抓住一点表面现象甚至假象就去类比,就会犯机械类比的错误.(3)应用三段论解决问题时,应首先明确什么是大前提,什么是小前提,如果大前提与推理形式是正确的,结论必定是正确的.如果大前提错误,尽管推理形式是正确的,所得结论也是错误的.1.数列2,5,11,20,x,47,…中的x等于( )A.28 B.32C.33 D.27B [解析] 由5-2=3,11-5=6,20-11=9,则x-20=12,因此x=32。

2.推理“①矩形是平行四边形,②三角形不是平行四边形,③三角形不是矩形”中的小前提是()A.①B.②C.③D.①和②B [解析]由演绎推理三段论可知,①是大前提,②是小前提,③是结论.3。

错误!观察下列不等式:1+错误!<错误!,1+错误!+错误!<错误!,1+错误!+错误!+错误!<错误!,…照此规律,第五个不等式为________________.[解析] 左边的式子的通项是1+错误!+错误!+…+错误!,右边的分母依次增加1,分子依次增加2,还可以发现右边分母与左边最后一项分母的关系,所以第五个不等式为1+错误!+错误!+错误!+错误!+错误!〈错误!.[答案] 1+错误!+错误!+错误!+错误!+错误!<错误!4。

近年届高考数学一轮复习第十一章复数、算法、推理与证明第三节合情推理与演绎推理夯基提能作业本文(20

近年届高考数学一轮复习第十一章复数、算法、推理与证明第三节合情推理与演绎推理夯基提能作业本文(20

2019届高考数学一轮复习第十一章复数、算法、推理与证明第三节合情推理与演绎推理夯基提能作业本文编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019届高考数学一轮复习第十一章复数、算法、推理与证明第三节合情推理与演绎推理夯基提能作业本文)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019届高考数学一轮复习第十一章复数、算法、推理与证明第三节合情推理与演绎推理夯基提能作业本文的全部内容。

第三节合情推理与演绎推理A组基础题组1.观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10=()A。

121 B.123 C。

231 D。

2112。

观察(x2)'=2x,(x4)’=4x3,(cos x)’=—sin x,由归纳推理可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(—x)=( )A。

f(x) B.-f(x) C。

g(x) D。

-g(x)3.某种树的分枝生长规律如图所示,第1年到第5年的分枝数分别为1,1,2,3,5,则预计第10年树的分枝数为()A。

21 B。

34 C。

52 D.554。

设△ABC的三边长分别为a、b、c,△ABC的面积为S,内切圆半径为r,则r=,类比这个结论可知:四面体S—ABC的四个面的面积分别为S1、S2、S3、S4,内切球的半径为R,四面体S—ABC的体积为V,则R=()A。

B。

C. D.5。

学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好"。

2019年高考数学一轮复习 第十一章 复数、算法、推理与证明 第三节 合情推理与演绎推理夯基提能作业

2019年高考数学一轮复习 第十一章 复数、算法、推理与证明 第三节 合情推理与演绎推理夯基提能作业

2019年高考数学一轮复习第十一章复数、算法、推理与证明第三节合情推理与演绎推理夯基提能作业本文1.观察下列各式:55=3 125,56=15 625,57=78 125,……,则52 017的末四位数字为( )A.3 125B.5 625C.0 625D.8 1252.观察(x2)'=2x,(x4)'=4x3,(cos x)'=-sin x,由归纳推理可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)=( )A.f(x)B.-f(x)C.g(x)D.-g(x)3.观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,……,则a10+b10=( )A.28B.76C.123D.1994.给出以下数对序列:(1,1)(1,2)(2,1)(1,3)(2,2)(3,1)(1,4)(2,3)(3,2)(4,1)……记第i行的第j个数对为a ij,如a43=(3,2),则a nm=( )A.(m,n-m+1)B.(m-1,n-m)C.(m-1,n-m+1)D.(m,n-m)5.(xx北京,8,5分)某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段.下表为10名学生的预赛成绩,其中有三个数据模糊.学生序号 1 2 3 4 5 6 7 8 9 10立定跳远(单位:米) 1.96 1.92 1.82 1.80 1.78 1.76 1.74 1.72 1.68 1.60 30秒跳绳(单位:次) 63 a 75 60 63 72 70 a-1 b 65A.2号学生进入30秒跳绳决赛B.5号学生进入30秒跳绳决赛C.8号学生进入30秒跳绳决赛D.9号学生进入30秒跳绳决赛6.蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形,下图为一组蜂巢的截面图.其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,……,按此规律,以f(n)表示第n个图的蜂巢总数.则f(4)= , f(n)= .7.(xx北京朝阳一模)甲乙两人做游戏,游戏的规则如下:两人轮流从1(1必须报)开始连续报数,每人一次最少要报一个数,最多可以连续报7个数(如,一个人先报数“1,2”,则下一个人可以有“3”,“3,4”,…,“3,4,5,6,7,8,9”等七种报数方法),谁抢先报到“100”则谁获胜.如果从甲开始,则甲要想获胜,第一次报的数应该是.8.(xx北京东城一模)已知甲、乙、丙三人组成考察小组,每个组员最多可以携带供本人在沙漠中生存36天的水和食物,且计划每天向沙漠深处走30千米,每个人都可以在沙漠中将部分水和食物交给其他人,然后独自返回.若组员甲与其他两个人合作,且要求三个人都能够安全返回,则甲最远能深入沙漠千米.B组提升题组9.(xx北京朝阳期中)5个黑球和4个白球从左到右任意排成一排,下列说法正确的是( )A.总存在一个黑球,它右侧的白球和黑球一样多B.总存在一个白球,它右侧的白球和黑球一样多C.总存在一个黑球,它右侧的白球比黑球少一个D.总存在一个白球,它右侧的白球比黑球少一个10.(xx北京海淀一模)如图,在公路MN(图中粗线)两侧分别有A1,A2,…,A7七个工厂,各工厂与公路MN之间有小公路连接.现在需要在公路MN上设置一个车站,选择站址的标准是“使各工厂到车站的距离之和越小越好”,则下面结论中正确的是( )①车站的位置设在C点好于B点;②车站的位置设在B点与C点之间任意一点效果一样;③车站位置的设置与各段小公路的长短无关.A.①B.②C.①③D.②③11.(xx北京海淀一模)某生产基地有五台机器设备,现有五项工作待完成,每台机器完成每项工作获得的效益值如下表所示.若每台机器只完成一项工作,且完成五项工作后获得的效益值总和最大,则下列描述正确的是( )工作机器效益值一二三四五甲15 17 14 17 15乙22 23 21 20 20丙9 13 14 12 10丁7 9 11 9 11戊13 15 14 15 11A.甲只能承担第四项工作B.乙不能承担第二项工作C.丙可以不承担第三项工作D.获得的效益值总和为7812.(xx北京丰台一模)某校举行了以“重温时代经典,唱响回声嘹亮”为主题的歌咏比赛.该校高一年级有1,2,3,4四个班参加了比赛,其中有两个班获奖.比赛结果揭晓之前,甲同学说:“两个获奖班级在2班、3班、4班中”,乙同学说:“2班没有获奖,3班获奖了”,丙同学说:“1班、4班中有且只有一个班获奖”,丁同学说:“乙说得对”.已知这四人中有且只有两人的说法是正确的,则这两人是( )A.乙,丁B.甲,丙C.甲,丁D.乙,丙13.(xx北京朝阳二模)“现代五项”是由现代奥林匹克之父顾拜旦先生创立的运动项目,包含射击、击剑、游泳、马术和越野跑五项运动.已知甲、乙、丙共三人参加“现代五项”,规定每一项运动的前三名得分分别为a,b,c(a>b>c且a,b,c∈N*),选手最终得分为各项得分之和.已知甲最终得22分,乙和丙最终各得9分,且乙获得了马术比赛的第一名,则游泳比赛的第三名是( )A.甲B.乙C.丙D.乙和丙都有可能14.(xx北京朝阳一模)如图,A,B,C三个开关控制着1,2,3,4号四盏灯.若开关A控制着2,3,4号灯(即按一下开关A,2,3,4号灯亮,再按一下开关A,2,3,4号灯熄灭),同样,开关B控制着1,3,4号灯,开关C控制着1,2,4号灯,开始时,四盏灯都亮着,那么下列说法正确的是( )A.只需要按开关A,C可以将四盏灯全部熄灭B.只需要按开关B,C可以将四盏灯全部熄灭C.按开关A,B,C可以将四盏灯全部熄灭D.按开关A,B,C无法将四盏灯全部熄灭15.(xx北京西城二模)在某中学的“校园微电影节”活动中,学校将从微电影的“点播量”和“专家评分”两个角度来进行评优.若A电影的“点播量”和“专家评分”中至少有一项高于B电影,则称A电影不亚于B电影.已知共有5部微电影参展,如果某部电影不亚于其他4部,那么就称此部电影为优秀影片.那么在这5部微电影中,最多可能有部优秀影片.答案精解精析A组基础题组1.A 55=3 125,56=15 625,57=78 125,58=390 625,59=1 953 125,510=9 765 625,……,可得59与55,510与56的末四位数字相同,……,由此可归纳出5m+4k与5m(k∈N*,m=5,6,7,8)的末四位数字相同,又xx=4×503+5,所以52 017与55的末四位数字相同,故52 017的末四位数字为3 125,故选A.2.D 由已知归纳得,偶函数的导函数为奇函数,又由题意知f(x)是偶函数,所以其导函数应为奇函数,故g(-x)=-g(x).选D.3.C 解法一:由a+b=1,a2+b2=3得ab=-1,则a10+b10=(a5+b5)2-2a5b5=123,故选C.解法二:令a n=a n+b n,则a1=1,a2=3,a3=4,a4=7,a5=11,……,得a n+2=a n+a n+1,从而a6=18,a7=29,a8=47,a9=76,a10=123,故选C.4.A 由前4行的特点,归纳可得:若a nm=(x,y),则x=m,y=n-m+1,∴a nm=(m,n-m+1).5.B 因为这10名学生中进入立定跳远决赛的有8人,故立定跳远成绩排名最后的9号和10号学生就被淘汰了.又因为同时进入立定跳远决赛和30秒跳绳决赛的有6人,则1~8号学生中必有2人被淘汰,因为a-1<a,其余数字最小的为60,故有以下几种情况:①若a-1≥63,此时淘汰的不止2人,故此种情况不可能;②若a-1<a<60,此时被淘汰的为2号和8号;③若60≤a-1<a≤63,此时被淘汰的为4号和8号.综上,8,9,10号学生一定会被淘汰,2号有可能会被淘汰,故选B.6.答案37;3n2-3n+1解析因为f(1)=1, f(2)=7=1+6, f(3)=19=1+6+12,所以f(4)=1+6+12+18=37,所以f(n)=1+6+12+18+…+6(n-1)=3n2-3n+1.7.答案1,2,3,4解析甲先报1,2,3,4,然后不管乙报几个数,甲只需要每次报数的个数与乙报数的个数和为8即可,因为100-4=96=8×12,故12轮过后,甲获胜.8.答案810解析设x天后,第一次有人返程,不妨设丙,则丙已经消耗了x天的水和食物,丙安全返程仍需x天的水和食物,所以丙剩余(36-2x)天的水和食物给甲和乙,甲乙二人各得(18-x)天的水和食物.若要甲能深入沙漠最远,则(18-x)+(36-x)=36,解得x=9.设又过了y天,乙也返程,乙安全返程需要(9+y)天的水和食物,所以乙能够留给甲[36-y-(9+y)]天的水和食物,要使甲能够深入沙漠最远,则[36-y-(9+y)]+(36-y)=36,解得y=9.设再过z天,甲返程,此时9+9+z=36-z,解得z=9.综上,甲最远能深入沙漠30×(9+9+9)=810千米.B组提升题组9.A 5为奇数,4为偶数,且5>4,故总存在一个黑球,它右侧的白球和黑球一样多,故选A.10.C 如图.∵A、D、E点各有一个工厂相连,B,C点各有两个工厂相连,把工厂看作“人”,可简化为“A、B、C、D、E处分别站着1,2,2,1,1个人,求一点,使所有人走到这一点的距离和最小”.把人尽量靠拢,显然把人聚到B,C最合适,靠拢完的结果变成B点有3人,C点有4人,显然移动3个人比移动4个人的路程少.所以车站设在C点好于B点,且与各段小公路的长度无关.故选C.11.B 甲与戊均可承担第二、四项工作,乙承担第一项工作,丙承担第三项工作,丁承担第五项工作,获得的效益值总和为79.12.B 由题意可知乙与丁的说法同时正确或者同时错误.若乙与丁的说法同时正确,根据乙的说法:“2班没有获奖,3班获奖了”知中奖情况有两种:1班和3班获奖或者4班和3班获奖,两种情况都说明丙同学的说法正确,这样就有丙,乙,丁三位同学的说法正确,所以不符合题意,故只能乙、丁两位同学的说法同时错误,从而知甲、丙两位同学的说法正确,故选B. 13.D 由题意可知,五项运动前三名得分总和为22+9×2=40分,故每项运动前三名得分总和为a+b+c=40÷5=8分(a>b>c且a,b,c∈N*).(1)当c≥2时,乙、丙的最低得分大于或等于2×5=10分,不符合题意,故c=1,b>1;(2)当b≥3时,a≤4,甲最高得分小于或等于4×5=20分,不符合题意,故b=2,于是可得a=5,b=2,c=1.由乙获得了马术比赛的第一名可知乙在该项运动得分为5分,又乙最终得分为9分,所以乙在其余四项运动中得分均为1分,即均为第三名.因为甲最终得22分,所以甲必须得四个第一名,一个第二名,此时,丙获得三个第二名,一个第三名.故游泳比赛的第三名可能是乙或丙.14.D 由题意易排除A,B.假设按a次A开关,b次B开关,c次C开关后四盏灯全部熄灭,则1号灯变化了(b+c)次,2号灯变化了(a+c)次,3号灯变化了(a+b)次,4号灯变化了(a+b+c)次.要想让4盏灯全部熄灭,每个灯都应变化奇数次,即b+c,a+c,a+b,a+b+c均为奇数,所以(a+b)+(b+c)+(a+c)+(a+b+c)=3(a+b+c)应为偶数,这与a+b+c为奇数矛盾,故选D.15.答案 5解析将这5部电影分别记为A、B、C、D、E.若点播量和专家评分(5分制)如下表,则优秀影片最多.A B C D E点播量 1 2 3 4 5专家评5 4 3 2 1分对于A电影,专家评分高于B、C、D、E,则A为优秀影片.对于B电影,点播量高于A,则B不亚于A;专家评分高于C、D、E,则B不亚于C、D、E,故B为优秀影片. 同理,C、D、E均为优秀影片. bh28929 7101 焁27505 6B71 歱 27143 6A07 樇833394 8272 色!25357 630D 挍P23933 5D7D 嵽35457 8A81 誁。

高考数学大一轮复习配套课时训练:第十一篇 复数、算法、推理与证明 第3节 合情推理与演绎推理(含答案)

高考数学大一轮复习配套课时训练:第十一篇 复数、算法、推理与证明 第3节 合情推理与演绎推理(含答案)

第3节合情推理与演绎推理课时训练练题感提知能【选题明细表】A组一、选择题1.推理“①矩形是平行四边形;②三角形不是平行四边形;③三角形不是矩形”中的小前提是( B )(A)① (B)② (C)③ (D)①和②解析:由演绎推理三段论可知,①是大前提;②是小前提;③是结论.故选B.2.(2013河南焦作二模)给出下面类比推理命题(其中Q为有理数集,R 为实数集,C为复数集):①“若a,b∈R,则a-b=0⇒a=b”类比推出“若a,b∈C,则a-b=0⇒a=b”;②“若a,b,c,d∈R,则复数a+bi=c+di⇒a=c,b=d”类比推出“若a, b,c,d∈Q,则a+b=c+d⇒a=c,b=d”;③若“a,b∈R,则a-b>0⇒a>b”类比推出“若a,b∈C,则a-b>0⇒a>b”.其中类比结论正确的个数是( C )(A)0 (B)1 (C)2 (D)3解析:①②正确,③错误,因为两个复数如果不是实数,不能比较大小.故选C.3.(2013上海闸北二模)平面内有n条直线,最多可将平面分成f(n)个区域,则f(n)的表达式为( C )(A)n+1 (B)2n(C)(D)n2+n+1解析:1条直线将平面分成1+1个区域;2条直线最多可将平面分成1+(1+2)=4个区域;3条直线最多可将平面分成1+(1+2+3)=7个区域; ……;n条直线最多可将平面分成1+(1+2+3+…+n)=1+=个区域,选C.4.定义A*B,B*C,C*D,D*A的运算分别对应图中的(1)(2)(3)(4),那么如图中(a)(b)所对应的运算结果可能是( B )(A)B*D,A*D (B)B*D,A*C(C)B*C,A*D (D)C*D,A*D解析:观察图形及对应运算分析可知,基本元素为A→|,B→□,C→—,D→○,从而可知图(a)对应B*D,图(b)对应A*C.故选B.5.已知“整数对”按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第60个数对是( B )(A)(7,5) (B)(5,7) (C)(2,10) (D)(10,1)解析:依题意,由和相同的整数对分为一组不难得知,第n组整数对的和为n+1,且有n个整数对.这样前n组一共有个整数对.注意到<60<.因此第60个整数对处于第11组的第5个位置,可得为(5,7).故选B.6.对于a、b∈(0,+∞),a+b≥2(大前提),x+≥2(小前提),所以x+≥2(结论).以上推理过程中的错误为( A )(A)小前提(B)大前提(C)结论 (D)无错误解析:大前提是a,b∈(0,+∞),a+b≥2,要求a、b都是正数;x+≥2是小前提,没写出x的取值范围,因此本题中的小前提有错误.故选A.二、填空题7.(2013山东实验中学一模)以下是对命题“若两个正实数a1,a2满足+=1,则a≤”的证明过程:证明:构造函数f(x)=(x-a1)2+(x-a2)2=2x2-2(a1+a2)x+1,因为对一切实数x,恒有f(x)≥0,所以Δ≤0,从而得4(a1+a2)2-8≤0,所以a 1+a2≤.根据上述证明方法,若n个正实数满足++…+=1时,你能得到的结论为.(不必证明)解析:由题意可构造函数f(x)=(x-a1)2+(x-a2)2+…+(x-a n)2=nx2-2(a1+a2+…+a n)x+1,因为对一切实数x,恒有f(x)≥0,所以Δ=4(a1+a2+…+a n)2-4n≤0,即a 1+a2+…+a n≤.答案:a 1+a2+…+a n≤8.(2013茂名一模)已知21×1=2,22×1×3=3×4,23×1×3×5=4×5×6,24×1×3×5×7=5×6×7×8,…依此类推,第n个等式为.解析:由前4个等式可归纳得出第n个等式为2n×1×3×5×…×(2n-1)=(n+1)(n+2)…(n+n).答案:2n×1×3×5×…×(2n-1)=(n+1)(n+2)…(n+n)9.(2013江西师大附中模拟)若数轴上不同的两点A,B分别与实数x1,x2对应,则线段AB的中点M与实数对应,由此结论类比到平面得,若平面上不共线的三点A,B,C分别与二元实数对(x1,y1),(x2,y2), (x3,y3)对应,则△ABC的重心G与对应.解析:由类比推理得,若平面上不共线的三点A,B,C分别与二元实数对(x1,y1),(x2,y2),(x3,y3)对应,则△ABC的重心G与(,)对应.答案:(,)10.设等差数列{a n}的前n项和为S n,则S4,S8-S4,S12-S8,S16-S12成等差数列.类比以上结论有:设等比数列{b n}的前n项积为T n,则T4,, ,成等比数列.解析:对于等比数列,通过类比等差数列的差与等比数列的商,可得T4,,,成等比数列.答案:11.用黑白两种颜色的正方形地砖依照如图所示的规律拼成若干个图形,则按此规律,第100个图形中有白色地砖块;现将一粒豆子随机撒在第100个图中,则豆子落在白色地砖上的概率是.解析:按拼图的规律,第1个图有白色地砖3×3-1(块),第2个图有白色地砖3×5-2(块),第3个图有白色地砖3×7-3(块),…,则第100个图中有白色地砖3×201-100=503(块).第100个图中黑白地砖共有603块,则将一粒豆子随机撒在第100个图中,豆子落在白色地砖上的概率是.答案:503三、解答题12.在锐角三角形ABC中,求证:sin A+sin B+sin C>cos A+cos B+ cos C.证明:∵△ABC为锐角三角形,∴A+B>,∴A>-B,∵y=sin x在上是增函数,∴sin A>sin=cos B,同理可得sin B>cos C,sin C>cos A,∴sin A+sin B+sin C>cos A+cos B+cos C.B组13.在实数集R中定义一种运算“*”,对任意给定的a,b∈R,a*b为唯一确定的实数,且具有性质(1)对任意a,b∈R,a*b=b*a;(2)对任意a∈R,a*0=a;(3)对任意a,b∈R,(a*b)*c=c*(ab)+(a*c)+(c*b)-2c.关于函数f(x)=(3x)*的性质,有如下说法①函数f(x)的最小值为3;②函数f(x)为奇函数;③函数f(x)的单调递增区间为,.其中所有正确说法的个数为( B )(A)0 (B)1 (C)2 (D)3解析:f(x)=f(x)*0=*0=0*+[(3x)*0]+-2×0=3x×+3x+=3x++1.当x=-1时,f(x)<0,故①错误;因为f(-x)=-3x-+1≠-f(x),所以②错误;令f'(x)=3->0,得x>或x<-,因此函数f(x)的单调递增区间为,,③正确.故选B. 14.(2013中山市高三期末)如图,对大于或等于2的自然数m的n次幂进行如下方式的“分裂”:仿此,62的“分裂”中最大的数是;20133的“分裂”中最大的数是.解析:22的“分裂”中最大的数是3=2×2-1,32的“分裂”中最大的数是5=2×3-1,42的“分裂”中最大的数是7=2×4-1,…,由归纳推理可得62的“分裂”中最大的数是2×6-1=11;23的“分裂”中最大的数是5=22+1,33的“分裂”中最大的数是11=32+2,43的“分裂”中最大的数是19=42+3,…,由归纳推理可得20133的“分裂”中最大的数是20132+2012.答案:11 20132+201215.已知函数f(x)=,(1)分别求f(2)+f(),f(3)+f(),f(4)+f()的值;(2)归纳猜想一般性结论,并给出证明;(3)求值:f(1)+f(2)+f(3)+…+f(2013)+f()+f()+…+f().解:(1)∵f(x)=,∴f(2)+f()=+=+=1,同理可得f(3)+f()=1,f(4)+f()=1.(2)由(1)猜想f(x)+f()=1,证明:f(x)+f()=+=+=1.(3)f(1)+f(2)+f(3)+…+f(2013)+f()+f()+…+f() =f(1)+[f(2)+f()]+[f(3)+f()]+…+[f(2013)+f()]=+=+2012=.。

2019版数学(理)培优增分一轮全国经典版培优讲义:第11章 第3讲合情推理与演绎推理 含答案

第3讲合情推理与演绎推理板块一知识梳理·自主学习[必备知识]考点1合情推理考点2演绎推理1.定义:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.2.特点:演绎推理是由一般到特殊的推理.3.模式:“三段论"是演绎推理的一般模式:1.合情推理的结论是猜想,不一定正确;演绎推理在大前提、小前提和推理形式都正确时,得到的结论一定正确.2.合情推理是发现结论的推理;演绎推理是证明结论的推理.[考点自测]1.判断下列结论的正误.(正确的打“√",错误的打“×”)(1)归纳推理得到的结论不一定正确,类比推理得到的结论一定正确.()(2)在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.()(3)在演绎推理中,只要符合演绎推理的形式,结论就一定正确.()(4)“所有3的倍数都是9的倍数,某数m是3的倍数,则m一定是9的倍数",这是三段论推理,但其结论是错误的.()答案(1)×(2)×(3)×(4)√2.[2018·长春模拟]设n∈N*,则=()答案A3.[课本改编]下面图形由小正方形组成,请观察图1至图4的规律,并依此规律,写出第n个图形中小正方形的个数是________.答案错误!解析由题图知第1个图形的小正方形个数为1,第2个图形的小正方形个数为1+2,第3个图形的小正方形个数为1+2+3,第4个图形的小正方形个数为1+2+3+4,…,则第n个图形的小正方形个数为1+2+3+…+n=错误!.4.[课本改编]在平面上,若两个正三角形的边长的比为1∶2,则它们的面积比为1∶4.类似地,在空间中,若两个正四面体的棱长的比为1∶2,则它们的体积比为________.答案1∶8解析因为两个正三角形是相似的三角形,所以它们的面积之比是相似比的平方.同理,两个正四面体是两个相似几何体,体积之比为相似比的立方.所以它们的体积比为1∶8.5.[2015·陕西高考]观察下列等式1-错误!=错误!1-错误!+错误!-错误!=错误!+错误!1-错误!+错误!-错误!+错误!-错误!=错误!+错误!+错误!…据此规律,第n个等式可为________.答案1-错误!+错误!-错误!+…+错误!-错误!=错误!+错误!+…+错误!解析观察所给等式的左右可以归纳出1-错误!+错误!-错误!+…+错误!-错误!=错误!+错误!+…+错误!.6.[2018·东北三省模拟]在某次数学考试中,甲、乙、丙三名同学中只有一个人得了优秀.当他们被问到谁得到了优秀时,丙说:“甲没有得优秀";乙说:“我得了优秀”;甲说:“丙说的是真话”.事实证明:在这三名同学中,只有一人说的是假话,那么得优秀的同学是________.答案丙解析分析题意只有一人说假话可知,甲与丙必定说的都是真话,故说假话的只有乙,即乙没有得优秀,甲也没有得优秀,得优秀的是丙.板块二典例探究·考向突破考向归纳推理命题角度1数字的归纳例1[2018·浙江模拟]“杨辉三角"是中国古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多年.如图是杨辉三角数阵,记a n为图中第n行各个数之和,则a5+a11的值为()A.528 B.1020C.1038 D.1040答案D解析第一行数字之和为a1=1=21-1,第二行数字之和为a2=2=22-1,第三行数字之和为a3=4=23-1,第四行数字之和为a4=8=24-1,……第n行数字之和为a n=2n-1,∴a5+a11=24+210=1040。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3讲合情推理与演绎推理板块一知识梳理·自主学习[必备知识]考点1合情推理考点2演绎推理1.定义:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.2.特点:演绎推理是由一般到特殊的推理.3.模式:“三段论”是演绎推理的一般模式:1.合情推理的结论是猜想,不一定正确;演绎推理在大前提、小前提和推理形式都正确时,得到的结论一定正确.2.合情推理是发现结论的推理;演绎推理是证明结论的推理.[考点自测]1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)归纳推理得到的结论不一定正确,类比推理得到的结论一定正确.()(2)在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.()(3)在演绎推理中,只要符合演绎推理的形式,结论就一定正确.()(4)“所有3的倍数都是9的倍数,某数m是3的倍数,则m一定是9的倍数”,这是三段论推理,但其结论是错误的.() 答案(1)×(2)×(3)×(4)√2.[2018·长春模拟]设n∈N*,则=()答案 A3.[课本改编]下面图形由小正方形组成,请观察图1至图4的规律,并依此规律,写出第n 个图形中小正方形的个数是________.答案 n (n +1)2解析 由题图知第1个图形的小正方形个数为1,第2个图形的小正方形个数为1+2,第3个图形的小正方形个数为1+2+3,第4个图形的小正方形个数为1+2+3+4,…,则第n 个图形的小正方形个数为1+2+3+…+n =n (n +1)2.4.[课本改编]在平面上,若两个正三角形的边长的比为1∶2,则它们的面积比为1∶4.类似地,在空间中,若两个正四面体的棱长的比为1∶2,则它们的体积比为________.答案 1∶8解析 因为两个正三角形是相似的三角形,所以它们的面积之比是相似比的平方.同理,两个正四面体是两个相似几何体,体积之比为相似比的立方.所以它们的体积比为1∶8.5.[2015·陕西高考]观察下列等式1-12=121-12+13-14=13+141-12+13-14+15-16=14+15+16…据此规律,第n 个等式可为________.答案 1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n 解析 观察所给等式的左右可以归纳出1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n . 6.[2018·东北三省模拟]在某次数学考试中,甲、乙、丙三名同学中只有一个人得了优秀.当他们被问到谁得到了优秀时,丙说:“甲没有得优秀”;乙说:“我得了优秀”;甲说:“丙说的是真话”.事实证明:在这三名同学中,只有一人说的是假话,那么得优秀的同学是________.答案 丙解析 分析题意只有一人说假话可知,甲与丙必定说的都是真话,故说假话的只有乙,即乙没有得优秀,甲也没有得优秀,得优秀的是丙.板块二 典例探究·考向突破考向归纳推理 命题角度1 数字的归纳例1 [2018·浙江模拟]“杨辉三角”是中国古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多年.如图是杨辉三角数阵,记a n为图中第n行各个数之和,则a5+a11的值为()A.528 B.1020C.1038 D.1040答案 D解析第一行数字之和为a1=1=21-1,第二行数字之和为a2=2=22-1,第三行数字之和为a3=4=23-1,第四行数字之和为a4=8=24-1,……第n行数字之和为a n=2n-1,∴a5+a11=24+210=1040.故选D.命题角度2式子的归纳例2设函数f(x)=xx+2(x>0),观察:f1(x)=f(x)=xx+2,f2(x)=f[f1(x)]=x3x+4,f3(x)=f[f2(x)]=x7x+8,f4(x)=f[f3(x)]=x15x+16,……根据以上事实,由归纳推理可得:当n∈N*且n≥2时,f n(x)=f[f n-1(x)]=________.答案x(2n-1)x+2n解析根据题意知,各式中分子都是x,分母中的常数项依次是2,4,8,16,…,可知f n(x)的分母中常数项为2n,分母中x的系数为2n-1,故f n(x)=f[f n-1(x)]=x(2n-1)x+2n.命题角度3图形的归纳例3如图,在平面直角坐标系的格点(横、纵坐标均为整数的点)处:点(1,0)处标b1,点(1,-1)处标b2,点(0,-1)处标b3,点(-1,-1)处标b4,点(-1,0)处标b5,点(-1,1)处标b6,点(0,1)处标b7,…,以此类推,则b963处的格点的坐标为________.答案(16,13)解析观察已知点(1,0)处标b1,即b1×1,点(2,1)处标b9,即b3×3,点(3,2)处标b25,即b5×5,…,由此推断点(n,n-1)处标b(2n-1)×(2n-1),因为961=31×31时,n=16,故b961处的格点的坐标为(16,15),从而b963处的格点的坐标为(16,13).触类旁通归纳推理问题的常见类型及解题策略(1)与数字有关的等式的推理.观察数字特点,找出等式左右两侧的规律及符号可解.(2)与式子有关的归纳推理①与不等式有关的推理.观察每个不等式的特点,注意是纵向看,找到规律后可解.②与数列有关的推理.通常是先求出几个特殊现象,采用不完全归纳法,找出数列的项与项数的关系,列出即可.(3)与图形变化有关的推理.合理利用特殊图形归纳推理得出结论,并用赋值检验法验证其真伪性.【变式训练1】 [2018·泉州模拟]已知如下等式:2+4=6;8+10+12=14+16;18+20+22+24=26+28+30;…以此类推,则2020会出现在第________个等式中( )A .30B .31C .32D .33答案 B解析 ①2+4=6;②8+10+12=14+16;③18+20+22+24=26+28+30,…其规律为:各等式首项分别为2×1,2(1+3),2(1+3+5),…, 所以第n 个等式的首项为2[1+3+…+(2n -1)]=2×n (1+2n -1)2=2n 2, 当n =31时,等式的首项为2×312=1922,当n =32时,等式的首项为2×322=2048,所以2020在第31个等式中.故选B.考向 类比推理 例 4 [2018·抚顺模拟]若数列{a n }是等差数列,则数列{b n }⎝ ⎛⎭⎪⎫b n =a 1+a 2+…+a n n 也为等差数列.类比这一性质可知,若正项数列{c n }是等比数列,且{d n }也是等比数列,则d n 的表达式应为( )A .d n =c 1+c 2+…+c n nB .d n =c 1·c 2·…·c n nC .d n =n c n 1+c n 2+…+c n n nD .d n =n c 1·c 2·…·c n答案 D解析 若{a n }是等差数列,则a 1+a 2+…+a n =na 1+n (n -1)2d ,所以b n =a 1+n -12d =d 2n +a 1-d 2,即{b n }为等差数列;若{c n }是等比数列,则c 1·c 2·…·c n =c n 1·q 1+2+…+(n -1)=c n 1·q n (n -1)2 ,所以d n =n c 1·c 2·…·c n =c 1·q n -12 ,即{d n }为等比数列.故选D.触类旁通类比推理的分类类比推理的应用一般为类比定义、类比性质和类比方法.(1)类比定义:在求解由某种熟悉的定义产生的类比推理型试题时,可以借助原定义来求解;(2)类比性质:从一个特殊式子的性质、一个特殊图形的性质入手,提出类比推理型问题,求解时要认真分析两者之间的联系与区别,深入思考两者的转化过程是求解的关键;(3)类比方法:有一些处理问题的方法具有类比性,我们可以把这种方法类比应用到其他问题的求解中,注意知识的迁移.【变式训练2】 如图所示,在平面上,用一条直线截正方形的一个角,截下的是一个直角三角形,有勾股定理c 2=a 2+b 2.空间中的正方体,用一平面去截正方体的一角,截下的是一个三条侧棱两两垂直的三棱锥,若这三个两两垂直的侧面的面积分别为S 1,S 2,S 3,截面面积为S ,类比平面的结论有________.答案 S 2=S 21+S 22+S 23解析 三角形类比空间中的三棱锥,线段的长度类比图形的面积,于是作出猜想:S 2=S 21+S 22+S 23.考向演绎推理 例 5 [2018·山东调研]数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2n S n (n ∈N *).证明:(1)数列⎩⎨⎧⎭⎬⎫S n n 是等比数列; (2)S n +1=4a n .证明 (1)∵a n +1=S n +1-S n ,a n +1=n +2n S n ,∴(n +2)S n =n (S n +1-S n ),即nS n +1=2(n +1)S n .∴S n +1n +1=2·S n n ,(小前提) 故⎩⎨⎧⎭⎬⎫S n n 是以2为公比,1为首项的等比数列.(结论) (大前提是等比数列的定义,这里省略了)(2)由(1)可知S n +1n +1=4·S n -1n -1(n ≥2), ∴S n +1=4(n +1)·S n -1n -1=4·n -1+2n -1·S n -1 =4a n (n ≥2),(小前提)又a 2=3S 1=3,S 2=a 1+a 2=1+3=4=4a 1,(小前提)∴对于任意正整数n,都有S n+1=4a n.(结论)(第(2)问的大前提是第(1)问的结论以及题中的已知条件)触类旁通演绎推理的结构特点(1)演绎推理是由一般到特殊的推理,其最常见的形式是三段论,它是由大前提、小前提、结论三部分组成的.三段论推理中包含三个判断:第一个判断称为大前提,它提供了一个一般的原理;第二个判断叫小前提,它指出了一个特殊情况.这两个判断联合起来,提示了一般原理和特殊情况的内在联系,从而产生了第三个判断:结论.(2)演绎推理的前提和结论之间有着某种蕴含关系,解题时要找准正确的大前提.一般地,若大前提不明确时,一般可找一个使结论成立的充分条件作为大前提.【变式训练3】某市为了缓解交通压力,实行机动车辆限行政策,每辆机动车每周一到周五都要限行一天,周末(周六和周日)不限行.某公司有A,B,C,D,E五辆车,保证每天至少有四辆车可以上路行驶.已知E车周四限行,B车昨天限行,从今天算起,A,C 两车连续四天都能上路行驶,E车明天可以上路,由此可知下列推测一定正确的是()A.今天是周六B.今天是周四C.A车周三限行D.C车周五限行答案 B解析因为每天至少有四辆车可以上路行驶,E车明天可以上路,E车周四限行,所以今天不是周三;因为B车昨天限行,所以今天不是周一,也不是周日;因为A,C两车连续四天都能上路行驶,所以今天不是周五,周二和周六,所以今天是周四.选B.核心规律1.合情推理的过程概括为从具体问题出发―→观察、分析、比较、联想―→归纳、类比―→提出猜想2.演绎推理是从一般的原理出发,推出某个特殊情况的结论的推理方法,是由一般到特殊的推理,常用的一般模式是三段论.数学问题的证明主要通过演绎推理来进行.满分策略1.合情推理是从已知的结论推测未知的结论,发现与猜想的结论都要经过进一步严格证明.2.演绎推理是由一般到特殊的证明,它常用来证明和推理数学问题,注意推理过程的严密性,书写格式的规范性.3.合情推理中运用猜想不能凭空想象,要有猜想或拓展依据.板块三 启智培优·破译高考创新交汇系列11——演绎推理中的创新问题[2015·福建高考]一个二元码是由0和1组成的数字串x 1x 2…x n (n ∈N *),其中x k (k =1,2,…,n )称为第k 位码元.二元码是通信中常用的码,但在通信过程中有时会发生码元错误(即码元由0变为1,或者由1变为0).已知某种二元码x 1x 2…x 7的码元满足如下校验方程组:⎩⎪⎨⎪⎧ x 4⊕x 5⊕x 6⊕x 7=0,x 2⊕x 3⊕x 6⊕x 7=0,x 1⊕x 3⊕x 5⊕x 7=0,其中运算⊕定义为:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0.现已知一个这种二元码在通信过程中仅在第k 位发生码元错误后变成了1101101,那么利用上述校验方程组可判定k 等于________.解题视点 求解此类问题的关键是读懂新定义,在领会新定义的基础上,明晰新定义的内涵和外延,将其转化并运用到新情境中,进而判断参数k 的值.解析 因为x 4⊕x 5⊕x 6⊕x 7=1⊕1⊕0⊕1=0⊕0⊕1=0⊕1=1≠0,所以二元码1101101的前3位码元都是对的;因为x2⊕x3⊕x6⊕x7=1⊕0⊕0⊕1=1⊕0⊕1=1⊕1=0,所以二元码1101101的第6、7位码元也是对的;因为x1⊕x3⊕x5⊕x7=1⊕0⊕1⊕1=1⊕1⊕1=0⊕1=1≠0,所以二元码1101101的第5位码元是错误的,所以k=5.答案 5答题启示与演绎推理有关的新定义问题是高考命制创新型试题的一个热点,解决此类问题时,一定要读懂新定义的本质含义及符号语言,紧扣题目所给定义,结合题目的要求进行恰当的转化,注意推理过程的严密性.跟踪训练在平面直角坐标系中,若点P(x,y)的坐标x,y均为整数,则称点P为格点.若一个多边形的顶点全是格点,则称该多边形为格点多边形.格点多边形的面积记为S,其内部的格点数记为N,边界上的格点数记为L.例如图中的△ABC是格点三角形,对应的S=1,N=0,L=4.(1)图中格点四边形DEFG对应的S,N,L分别是________;(2)已知格点多边形的面积可表示为S=aN+bL+c,其中a,b,c为常数,若某格点多边形对应的N=71,L=18,则S=________(用数值作答).答案(1)3,1,6(2)79解析 (1)由定义知,四边形DEFG 由一个等腰直角三角形和一个平行四边形构成,其内部格点有1个,边界上格点有6个,四边形DEFG 的面积为3,所以S =3,N =1,L =6.(2)由待定系数法可得⎩⎨⎧ 12=a ·0+b ·3+c ,1=a ·0+b ·4+c ,3=a ·1+b ·6+c ⇒⎩⎨⎧ a =1,b =12,c =-1,当N =71,L =18时,S =1×71+12×18-1=79.板块四 模拟演练·提能增分[A 级 基础达标]1.(1)已知a 是三角形一边的长,h 是该边上的高,则三角形的面积是12ah ,如果把扇形的弧长l ,半径r 分别看成三角形的底边长和高,可得到扇形的面积为12lr ;(2)由1=12,1+3=22,1+3+5=32,可得到1+3+5+…+(2n -1)=n 2,则(1)(2)两个推理过程分别属于( )A .类比推理、归纳推理B .类比推理、演绎推理C .归纳推理、类比推理D .归纳推理、演绎推理答案 A解析 (1)由三角形的性质得到扇形的性质有相似之处,此种推理为类比推理;(2)由特殊到一般,此种推理为归纳推理.故选A.2.把1,3,6,10,15,21,…这些数叫做三角形数,这是因为这些数目的点可以排成一个正三角形(如下图),试求第七个三角形数是( )A .27B .28C .29D .30 答案 B解析 观察归纳可知第n 个三角形数为1+2+3+4+…+n =n (n +1)2,∴第七个三角形数为7×(7+1)2=28. 3.[2018·太原模拟]观察下列各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=( )A .121B .123C .231D .211 答案 B解析 令a n =a n +b n ,则a 1=1,a 2=3,a 3=4,a 4=7,…,得a n +2=a n +a n +1,从而a 6=18,a 7=29,a 8=47,a 9=76,a 10=123.4.[2018·临沂期末]已知n ≥2且n ∈N *,对n 2进行“分拆”:22→(1,3),32→(1,3,5),42→(1,3,5,7),…,那么289的“分拆”所得的中位数是( )A .29B .21C .19D .17答案 D解析 自然数n 2的分裂数中最大的数是2n -1.289分裂的数中最大的数是2×17-1=33,∴289的“分拆”所得的数的中位数是1+332=17.故选D.5.[2018·南昌模拟]已知13+23=⎝ ⎛⎭⎪⎫622,13+23+33=⎝ ⎛⎭⎪⎫1222,13+23+33+43=⎝ ⎛⎭⎪⎫2022,…,若13+23+33+43+…+n 3=3025,则n =( ) A .8B .9C .10D .11答案 C解析 ∵13+23=⎝ ⎛⎭⎪⎫622=⎝ ⎛⎭⎪⎫2×322, 13+23+33=⎝ ⎛⎭⎪⎫1222=⎝ ⎛⎭⎪⎫3×422, 13+23+33+43=⎝ ⎛⎭⎪⎫2022=⎝ ⎛⎭⎪⎫4×522, …∴13+23+33+…+n 3=⎣⎢⎡⎦⎥⎤n (n +1)22=n 2(n +1)24, ∵13+23+33+43+…+n 3=3025,∴n 2(n +1)24=3025, ∴n 2(n +1)2=(2×55)2,∴n (n +1)=110,解得n =10.6.若等差数列{a n }的公差为d ,前n 项的和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 为等差数列,公差为d 2.类似,若各项均为正数的等比数列{b n }的公比为q ,前n 项的积为T n ,则等比数列{n T n }的公比为( )A.q 2B .q 2 C.q D.n q答案 C解析 由题设有,T n =b 1·b 2·b 3·…·b n =b 1·b 1q ·b 1q 2·…·b 1q n -1=b n 1q 1+2+…+(n-1)=b n1q(n-1)n2.∴nT n=b1qn-12,∴等比数列{nT n}的公比为q.故选C.7.[2018·南通模拟]将自然数0,1,2,…按照如下形式进行摆列:根据以上规律判定,从2016到2018的箭头方向是()答案 A解析从所给的图形中观察得到规律:每隔四个单位,箭头的走向是一样的,比如说,0→1,箭头垂直指下,4→5,箭头也是垂直指下,8→9也是如此,而2016=4×504,所以2016→2017也是箭头垂直指下,之后2017→2018的箭头是水平向右.故选A.8.中国有个名句“运筹帷幄之中,决胜千里之外.”其中的“筹”原意是指《孙子算经》中记载的算筹,古代是用算筹来进行计算,算筹是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放有纵横两种形式,如下表:表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位、百位、万位数用纵式表示,十位、千位、十万位用横式表示,以此类推,例如6613用算筹表示就是,则5288用算筹可表示为________.答案解析 根据题意知,5288用算筹表示,从左到右依次是横式的5,纵式的2,横式的8,纵式的8,即.9.[2018·常州模拟]36的所有正约数之和可按如下方法得到:因为36=22×32,所以36的所有正约数之和为(1+3+32)+(2+2×3+2×32)+(22+22×3+22×32)=(1+2+22)(1+3+32)=91,参照上述方法,可求得200的所有正约数之和为________.答案 465解析 类比求36的所有正约数之和的方法,200的所有正约数之和可按如下方法求得:因为200=23×52,所以200的所有正约数之和为(1+2+22+23)(1+5+52)=465.10.如果函数f (x )在区间D 上是凸函数,那么对于区间D 内的任意x 1,x 2,…,x n ,都有f (x 1)+f (x 2)+…+f (x n )n≤ f ⎝ ⎛⎭⎪⎫x 1+x 2+…+x n n .若y =sin x 在区间(0,π)上是凸函数,那么在△ABC 中,sin A +sin B +sin C 的最大值是________.答案 332解析 由题意知,凸函数满足f (x 1)+f (x 2)+…+f (x n )n ≤f ⎝ ⎛⎭⎪⎫x 1+x 2+…+x n n ,又y =sin x 在区间(0,π)上是凸函数,则sin A +sin B +sin C ≤3sin A +B +C 3=3sin π3=332.[B 级 知能提升]1.[2018·徐州模拟]观察下列事实:|x |+|y |=1的不同整数解(x ,y )的个数为4,|x |+|y |=2的不同整数解(x ,y )的个数为8,|x |+|y |=3的不同整数解(x ,y )的个数为12,…,则|x |+|y |=20的不同整数解(x ,y )的个数为( )A .76B .80C.86 D.92答案 B解析由|x|+|y|=1的不同整数解的个数为4,|x|+|y|=2的不同整数解的个数为8,|x|+|y|=3的不同整数解的个数为12,归纳推理得|x|+|y|=n的不同整数解的个数为4n,故|x|+|y|=20的不同整数解的个数为80.故选B.2.[2018·中山模拟]古希腊人常用小石子在沙滩上摆成各种形状来研究数.比如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16,…,这样的数为正方形数.下列数中既是三角形数又是正方形数的是() A.289 B.1024C.1225 D.1378答案 C解析观察三角形数:1,3,6,10,…,记该数列为{a n},则a1=1,a2=a1+2,a3=a2+3,…a n=a n-1+n.∴a 1+a 2+…+a n =(a 1+a 2+…+a n -1)+(1+2+3+…+n ),∴a n =1+2+3+…+n =n (n +1)2,观察正方形数:1,4,9,16,…,记该数列为{b n },则b n =n 2.把四个选项的数字,分别代入上述两个通项公式,可知使得n 都为正整数的只有1225.3.[2018·洛阳期末]设x >0,由不等式x +1x ≥2,x +4x 2≥3,x +27x 3≥4,…,推广到x +a x n ≥n +1,则a =( )A .2nB .2nC .n 2D .n n答案 D解析 设x >0,由不等式x +1x ≥2,x +4x 2≥3,x +27x 3≥4,…,推广到x +a x n ≥n +1,所以a =n n .故选D.4.在锐角三角形ABC 中,求证:sin A +sin B +sin C >cos A +cos B +cos C .证明 ∵△ABC 为锐角三角形,∴A +B >π2,∴A >π2-B ,∵y =sin x 在⎝ ⎛⎭⎪⎫0,π2上是增函数, ∴sin A >sin ⎝ ⎛⎭⎪⎫π2-B =cos B , 同理可得sin B >cos C ,sin C >cos A ,∴sin A +sin B +sin C >cos A +cos B +cos C .5.在Rt △ABC 中,AB ⊥AC ,AD ⊥BC 于D ,求证:1AD 2=1AB 2+1AC 2,那么在四面体A -BCD 中,类比上述结论,你能得到怎样的猜想,并说明理由.解如图,由射影定理得AD2=BD·DC,AB2=BD·BC,AC2=DC·BC,故1AB2+1AC2=1BD·BC+1DC·BC=DC+BDBD·DC·BC=1BD·DC=1AD2.在四面体A-BCD中,AB,AC,AD两两垂直,AH⊥底面BCD,垂足为H.则1AH2=1AB2+1AC2+1AD2.证明:连接BH并延长交CD于E,连接AE. ∵AB,AC,AD两两垂直,∴AB⊥平面ACD,又∵AE⊂平面ACD,∴AB⊥AE,在Rt△ABE中,1 AH2=1AB2+1AE2①又易证CD⊥AE,故在Rt△ACD中,1AE2=1AC2+1AD2②把②式代入①式,得1AH2=1AB2+1AC2+1AD2.。

相关文档
最新文档