初级数字信号处理仿真作业Computer Exercises
数字信号处理教程课后习题及答案

分析:已知边界条件,如果没有限定序列类型(例如因果序列、反因果序列等), 则递推求解必须向两个方向进行(n ≥ 0 及 n < 0)。
解 : (1) y1 (0) = 0 时, (a) 设 x1 (n) = δ (n) ,
按 y1 (n) = ay1 (n − 1) + x1 (n) i) 向 n > 0 处递推,
10
T [ax1(n)+ bx2 (n)] =
n
∑
[ax1
(n
)
+
bx2
(n
)]
m = −∞
T[ax1(n) + bx2(n)] = ay1(n) + by2(n)
∴ 系统是线性系统
解:(2) y(n) =
[x(n )] 2
y1(n)
= T [x1(n)] = [x1(n)] 2
y2 (n) = T [x2 (n)] = [x2 (n)] 2
β α
n +1
β α β =
n +1− N −n0
N−
N
α −β
y(n) = Nα n−n0 ,
(α = β )
, (α ≠ β )
如此题所示,因而要分段求解。
2 .已知线性移不变系统的输入为 x( n ) ,系统的单位抽样响应
为 h( n ) ,试求系统的输出 y( n ) ,并画图。
(1)x(n) = δ (n)
当n ≤ −1时 当n > −1时
∑ y(n) = n a −m = a −n
m=−∞
1− a
∑ y(n) =
−1
a−m =
(完整word版)数字信号处理模拟试卷答案

《数字信号处理》A 卷参考答案一大题:判断下列各题的结论是否正确,你认为正确就在括号中画“√”,否则画“X ”(共5小题,每小题3分,共15分) 1、“√”2、“X ”3、“√”4、“X ”5、“X ” 二大题:(共2小题,每小题10分,共20分)1、设系统由下面差分方程描述:)1(21)()1(21)(-++-=n x n x n y n y 设系统是因果的,利用递推法求系统的单位取样响应。
解:令)()(n n x δ=,)1(21)()1(21)(-++-=n x n x n y n y 221)2(21)3(,321)1(21)2(,212121)0(21)1()0(21)1(,11)1(21)0()1(21)0(,0⎪⎭⎫⎝⎛======++=++===-++-==h h n h h n h h n h h n δδδδ 归纳起来,结果为)()1(21)(1n n u n h n δ+-⎪⎭⎫⎝⎛=-2、求21,411311)(21>--=--z z z z X 的反变换。
解:(1)部分分式法112222116521161)(21652161)21)(21(314131)(4131)(--++-=++-=+--=--=--=z z z X z z z z z z z z z X z z z X)(]21652161[)(n u n X nn ⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛=(2)长除法⎪⎭⎫⎝⎛--= ,161,121,41,31,1)(n x 三大题:证明(共2小题,每小题10分,共20分) 1、设线形时不变系统函数H(z)为:(1)在z 平面上用几何法证明该系统是全通网络,即: (2)参数a 如何取值,才能使系统因果稳定?解、(1)a z a z az z a z H --=--=----111111)( 极点:a,零点:1-a 设取6.0=a ,零、极点分布如右下图。
aa a a a aa a a aAC ABa e a e az az e H j j e z j j 1cos 21cos 21cos 211cos 2)(22121211=+-+-=+-+-==--=--=----=-ωωωωωωωω故)(z H 是一个全通系统。
西安电子科技大学数字信号处理上机作业

数字信号处理MATLAB上机作业M 2.21.题目The square wave and the sawtooth wave are two periodic sequences as sketched in figure ing the function stem. The input data specified by the user are: desired length L of the sequence, peak value A, and the period N. For the square wave sequence an additional user-specified parameter is the duty cycle, which is the percent of the period for which the signal is positive. Using this program generate the first 100 samples of each of the above sequences with a sampling rate of 20 kHz ,a peak value of 7, a period of 13 ,and a duty cycle of 60% for the square wave.2.程序% 用户定义各项参数参数A = input('The peak value =');L = input('Length of sequence =');N = input('The period of sequence =');FT = input('The desired sampling frequency =');DC = input('The square wave duty cycle = ');% 产生所需要的信号t = 0:L-1;T = 1/FT;x = A*sawtooth(2*pi*t/N);y = A*square(2*pi*(t/N),DC);% Plotsubplot(2,1,1)stem(t,x);ylabel('幅度');xlabel('n');subplot(2,1,2)stem(t,y);ylabel('幅度');xlabel('n');3.结果4.结果分析M 2.41.题目(a)Write a matlab program to generate a sinusoidal sequence x[n]= Acos(ω0 n+Ф) and plot thesequence using the stem function. The input data specified by the user are the desired length L, amplitude A, the angular frequency ω0 , and the phase Фwhere 0<ω0 <pi and 0<=Ф<=2pi. Using this program generate the sinusoidal sequences shown in figure 2.15. (b)Generate sinusoidal sequences with the angular frequencies given in Problem 2.22.Determine the period of each sequence from the plot and verify the result theoretically. 2.程序%用户定义的参数L = input('Desired length = ');A = input('Amplitude = ');omega = input('Angular frequency = ');phi = input('Phase = ');%信号产生n = 0:L-1;x = A*cos(omega*n + phi);stem(n,x);xlabel('n');ylabel('幅度');title(['\omega_{o} = ',num2str(omega)]);3.结果(a)ω0=0ω0=0.1πω0=0.8πω0=1.2π(b)ω0=0.14πω0=0.24πω0=0.34πω0=0.68πω0=0.75π4.结果分析M 2.51.题目Generate the sequences of problem 2.21(b) to 2.21(e) using matlab.2.程序(b)n = 0 : 99;x=sin(0.6*pi*n+0.6*pi);stem(n,x);xlabel('n');ylabel('幅度');(c)n = 0 : 99;x=2*cos(1.1*pi*n-0.5*pi)+2*sin(0.7*pi*n);stem(n,x);xlabel('n');ylabel('幅度');(d)n = 0 : 99;x=3*sin(1.3*pi*n-4*cos(0.3*pi*n+0.45*pi));stem(n,x);xlabel('n');ylabel('幅度');(e)n = 0 : 99;x=5*sin(1.2*pi*n+0.65*pi)+4*sin(0.8*pi*n)-cos(0.8*pi*n);stem(n,x);xlabel('n');ylabel('幅度');(f)n = 0 : 99;x=mod(n,6);stem(n,x);xlabel('n');ylabel('幅度');3.结果(b)(c)(d)(e)(f)4.结果分析M 2.61.题目Write a matlab program to plot a continuous-time sinusoidal signal and its sampled version and verify figure 2.19. You need to use the hold function to keep both plots.2.程序%用户定义的参数fo = input('Frequency of sinusoid in Hz = ');FT = input('Samplig frequency in Hz = ');%产生信号t = 0:0.001:1;g1 = cos(2*pi*fo*t);plot(t,g1,'-')xlabel('时间t');ylabel('幅度')holdn = 0:1:FT;gs = cos(2*pi*fo*n/FT);plot(n/FT,gs,'o');hold off3.结果4.结果分析M 3.11.题目Using program 3_1 determine and plot the real and imaginary parts and the magnitude and phase spectra of the following DTFT for various values of r and θ:G(e jω)=1, 0<r<1.1−2r(cosθ)e−jω+r2e−2jω2.程序%program 3_1%discrete-time fourier transform computatition%k=input('Number of frequency points = ');num=input('Numerator coefficients= ');den=input('Denominator coefficients= ');%computer the frequency responsew=0:pi/k:pi;h=freqz(num,den,w);%plot the frequency responsesubplot(221)plot(w/pi,real(h));gridtitle('real part')xlabel('\omega/\pi');ylabel('Amplitude') subplot(222)plot(w/pi,imag(h));gridtitle('imaginary part')xlabel('\omega/\pi');ylabel('Amplitude') subplot(223)plot(w/pi,abs(h));gridtitle('magnitude spectrum')xlabel('\omega/\pi');ylabel('magnitude') subplot(224)plot(w/pi,angle(h));gridtitle('phase spectrum')xlabel('\omega/\pi');ylabel('phase,radians')3.结果(a)r=0.8 θ=π/6(b)r=0.6 θ=π/34.结果分析M 3.41.题目Using matlab verify the following general properties of the DTFT as listed in Table 3.2:(a) Linearity, (b) time-shifting, (c) frequency-shifting, (d) differentiation-in-frequency, (e) convolution, (f) modulation, and (g) Parseval’s relation. Since all data in matlab have to be finite-length vectors, the sequences to be used to verify the properties are thus restricted to be of finite length.2.程序%先定义两个信号N = input('The length of the sequence = ');k = 0:N-1;%g为正弦信号g = 2*sin(2*pi*k/(N/2));%h为余弦信号h = 3*cos(2*pi*k/(N/2));[G,w] = freqz(g,1);[H,w] = freqz(h,1);%*************************************************************************%% 线性性质alpha = 0.5;beta = 0.25;y = alpha*g+beta*h;[Y,w] = freqz(y,1);figure(1);subplot(211),plot(w/pi,abs(Y));xlabel('\omega/\pi');ylabel('|Y(e^j^\omega)|');title('线性叠加后的频率特性');grid;% 画出Y 的频率特性subplot(212),plot(w/pi,alpha*abs(G)+beta*abs(H));xlabel('\omega/\pi');ylabel('\alpha|G(e^j^\omega)|+\beta|H(e^j^\omega)|');title('线性叠加前的频率特性');grid;% 画出alpha*G+beta*H 的频率特性%*************************************************************************% % 时移性质n0 = 10;%时移10个的单位y2 = [zeros([1,n0]) g];[Y2,w] = freqz(y2,1);G0 = exp(-j*w*n0).*G;figure(2);subplot(211),plot(w/pi,abs(G0));xlabel('\omega/\pi');ylabel('|G0(e^j^\omega)|');title('G0的频率特性');grid;% 画出G0的频率特性subplot(212),plot(w/pi,abs(Y2));xlabel('\omega/\pi');ylabel('|Y2(e^j^\omega)|');title('Y2的频率特性');grid;% 画出Y2 的频率特性%*************************************************************************% % 频移特性w0 = pi/2; % 频移pi/2r=256; %the value of w0 in terms of number of samplesk = 0:N-1;y3 = g.*exp(j*w0*k);[Y3,w] = freqz(y3,1);% 对采样的512个点分别进行减少pi/2,从而生成G(exp(w-w0))k = 0:511;w = -w0+pi*k/512;G1 = freqz(g,1,w);figure(3);subplot(211),plot(w/pi,abs(Y3));xlabel('\omega/\pi');ylabel('|Y3(e^j^\omega)|');title('Y3的频率特性');grid;% 画出Y3的频率特性subplot(212),plot(w/pi,abs(G1));xlabel('\omega/\pi');ylabel('|G1(e^j^\omega)|');title('G1的频率特性');grid;% 画出G1 的频率特性%*************************************************************************% % 频域微分k = 0:N-1;y4 = k.*g;[Y4,w] = freqz(y4,1);%在频域进行微分y0 = ((-1).^k).*g;G2 = [G(2:512)' sum(y0)]';delG = (G2-G)*512/pi;figure(4);subplot(211),plot(w/pi,abs(Y4));xlabel('\omega/\pi');ylabel('|Y4(e^j^\omega)|');title('Y4的频率特性');grid;% 画出Y4的频率特性subplot(212),plot(w/pi,abs(delG));xlabel('\omega/\pi');ylabel('|delG(e^j^\omega)|');title('delG的频率特性');grid;% 画出delG的频率特性%*************************************************************************% % 相乘性质y5 = conv(g,h);%时域卷积[Y5,w] = freqz(y5,1);figure(5);subplot(211),plot(w/pi,abs(Y5));xlabel('\omega/\pi');ylabel('|Y5(e^j^\omega)|');title('Y5的频率特性');grid;% 画出Y5的频率特性subplot(212),plot(w/pi,abs(G.*H));%频域乘积xlabel('\omega/\pi');ylabel('|G.*H(e^j^\omega)|');title('G.*H的频率特性');grid;% 画出G.*H的频率特性%*************************************************************************% % 帕斯瓦尔定理y6 = g.*h;%对于freqz函数,在0到2pi直接取样[Y6,w] = freqz(y6,1,512,'whole');[G0,w] = freqz(g,1,512,'whole');[H0,w] = freqz(h,1,512,'whole');% Evaluate the sample value at w = pi/2% and verify with Y6 at pi/2H1 = [fliplr(H0(1:129)') fliplr(H0(130:512)')]';val = 1/(512)*sum(G0.*H1);% Compare val with Y6(129) i.e sample at pi/2 % Can extend this to other points similarly% Parsevals theoremval1 = sum(g.*conj(h));val2 = sum(G0.*conj(H0))/512;% Comapre val1 with val23.结果(a)(b)(c)(d)(e)4.结果分析M 3.81.题目Using matlab compute the N-point DFTs of the length-N sequences of Problem 3.12 for N=3, 5, 7, and 10. Compare your results with that obtained by evaluating the DTFTs computed in Problem 3.12 at ω= 2pik/N, k=0, 1,……N-1.2.程序%用户定义N的长度N = input('The value of N = ');k = -N:N;y1 = ones([1,2*N+1]);w = 0:2*pi/255:2*pi;Y1 = freqz(y1, 1, w);%对y1做傅里叶变换Y1dft = fft(y1);k = 0:1:2*N;plot(w/pi,abs(Y1),k*2/(2*N+1),abs(Y1dft),'o');grid;xlabel('归一化频率');ylabel('幅度');(a)clf;N = input('The value of N = ');k = -N:N;y1 = ones([1,2*N+1]);w = 0:2*pi/255:2*pi;Y1 = freqz(y1, 1, w);Y1dft = fft(y1);k = 0:1:2*N;plot(w/pi,abs(Y1),k*2/(2*N+1),abs(Y1dft),'o');xlabel('Normalized frequency');ylabel('Amplitude');(b)%用户定义N的长度N = input('The value of N = ');k = -N:N;y1 = ones([1,2*N+1]);y2 = y1 - abs(k)/N;w = 0:2*pi/255:2*pi;Y2 = freqz(y2, 1, w);%对y1做傅里叶变换Y2dft = fft(y2);k = 0:1:2*N;plot(w/pi,abs(Y2),k*2/(2*N+1),abs(Y2dft),'o');grid;xlabel('归一化频率');ylabel('幅度');(c)%用户定义N的长度N = input('The value of N = ');k = -N:N;y3 =cos(pi*k/(2*N));w = 0:2*pi/255:2*pi;Y3 = freqz(y3, 1, w);%对y1做傅里叶变换Y3dft = fft(y3);k = 0:1:2*N;plot(w/pi,abs(Y3),k*2/(2*N+1),abs(Y3dft),'o');grid;xlabel('归一化频率');ylabel('幅度');3.结果(a)N=3N=5 N=7N=10 (b)N=3N=5 N=7N=10 (c)N=3N=5 N=7N=104.结果分析M 3.191.题目Using Program 3_10 determine the z-transform as a ratio of two polynomials in z-1 from each of the partial-fraction expansions listed below:(a)X1(z)=−2+104+z−1−82+z−1,|z|>0.5,(b)X2(z)=3.5−21−0.5z−1−3+z−11−0.25z−2,|z|>0.5,(c)X3(z)=5(3+2z−1)2−43+2z−1+31+0.81z−2,|z|>0.9,(d)X4(z)=4+105+2z−1+z−16+5z−1+z−2,|z|>0.5.2.程序% Program 3_10% Partical-Fraction Expansion to rational z-Transform %r = input('Type in the residues = ');p = input('Type in the poles = ');k = input('Type in the constants = ');[num, den] = residuez(r,p,k);disp('Numberator polynominal coefficients');disp(num) disp('Denominator polynomial coefficients'); disp(den)4.结果分析M 4.61.题目Plot the magnitude and phase responses of the causal IIR digital transfer functionH(z)=0.0534(1+z−1)(1−1.0166z−1+z−2) (1−0.683z−1)(1−1.4461z−1+0.7957z−2).What type of filter does this transfer function represent? Determine the difference equation representation of the above transfer function.2.程序b=[0.0534 -0.00088644 -0.00088644 0.0534];a=[1 -2.1291 1.7833863 -0.5434631];figure(1)freqz(b,a);figure(2)[H,w]=freqz(b,a);plot(w/pi,abs(H)),grid;xlabel('Normalized Frequency (\times\pi rad/sample)'),ylabel('Magnitude');幅度化成真值之后:4.结果分析H(z)=0.0534−0.00088644z−1−0.00088644z−2+0.0534z−31−2.1291z−1+1.7833863z−2−0.5434631z−3M 4.71.题目Plot the magnitude and phase responses of the causal IIR digital transfer functionH(z)=(1−z−1)4(1−1.499z−1+0.8482z−2)(1−1.5548z−1+0.6493z−2).2.程序b=[1 -4 6 -4 1];a=[1 -3.0538 3.8227 -2.2837 0.5472]; figure(1)freqz(b,a);figure(2)[H,w]=freqz(b,a);plot(w/pi,abs(H)),grid;xlabel('Normalized Frequency (\times\pi rad/sample)'), ylabel('Magnitude');3.结果4.结果分析。
数字信号处理练习

数字信号处理练习题一、填空题1、一个线性时不变因果系统的系统函数为()11111-----=azz a z H ,若系统稳定则a 的取值范围为 。
2、输入()()n n x 0c o s ω=中仅包含频率为0ω的信号,输出()()n x n y 2=中包含的频率为 。
3、DFT 与DFS 有密切关系,因为有限长序列可以看成周期序列的 ,而周期序列可以看成有限长序列的 。
4、对长度为N 的序列()n x 圆周移位m 位得到的序列用()n x m 表示,其数学表达式为()n x m = ,它是 序列。
5、对按时间抽取的基2—FFT 流图进行转置,即 便得到按频率抽取的基2—FFT 流图。
6、FIR 数字滤波器满足线性相位条件()()0,≠-=βτωβωθ时,()n h 满足关系式 。
7、序列傅立叶变换与其Z 变换的关系为 。
8、已知()113--=z z z X ,顺序列()n x = 。
9、()()1-z H z H 的零、极点分布关于单位圆 。
10、序列()n R 4的Z 变换为 ,其收敛域为 ;已知左边序列()n x 的Z 变换是()()()2110--=z z z z X ,那么其收敛域为 。
11、使用DFT 分析模拟信号的频谱时,可能出现的问题有 、栅栏效应和 。
12、无限长单位冲激响应滤波器的基本结构有直接型, 和 三种。
13、如果通用计算机的速度为平均每次复数乘需要s μ5,每次复数加需要s μ1,则在此计算机上计算210点的基2FFT 需要 级蝶形运算,总的运算时间是 s μ。
14、线性系统实际上包含了 和 两个性质。
15、求z 反变换通常有围线积分法、 和 等方法。
16、有限长序列()()()()()342312-+-+-+=n n n n n x δδδδ,则圆周移位()()()n R n x N N 2+= 。
17、直接计算L N 2=(L 为整数)点DFT 与相应的基-2 FFT 算法所需要的复数乘法次数分别为 和 。
数字电子技术基础数字信号处理习题解析

数字电子技术基础数字信号处理习题解析数字信号处理(Digital Signal Processing,DSP)作为数字电子技术的一个重要分支,广泛应用于通信、音频、视频、图像等领域。
为了帮助读者更好地理解数字信号处理的相关概念和技术,在本文中,我们将解析一些数字信号处理的习题,并深入探讨其原理和应用。
1. 习题一:给定一个离散时间信号序列x(n) = {1, 2, 3, 4},请计算其累加序列y(n)。
解析:累加序列y(n)即为输入信号x(n)的前缀和。
根据定义,y(n) = x(0) + x(1) + ... + x(n)。
对于给定的序列x(n) = {1, 2, 3, 4},计算得到累加序列y(n) = {1, 3, 6, 10}。
2. 习题二:对于一个单位脉冲序列x(n) = δ(n-2),请计算其平移2个单位时间后的序列y(n)。
解析:单位脉冲序列即在n=0时取值为1,其它时刻取值为0的离散时间序列。
平移操作即将信号向左或向右移动若干个单位时间。
对于给定的单位脉冲序列x(n) = δ(n-2),平移2个单位时间后得到序列y(n) = δ(n)。
3. 习题三:给定一个离散时间信号序列x(n) = {2, -3, 4, -1},请计算其反序列y(n)。
解析:反序操作即将输入信号的元素按逆序排列。
对于给定的序列x(n) = {2, -3, 4, -1},计算得到反序列y(n) = {-1, 4, -3, 2}。
4. 习题四:给定两个离散时间信号序列x(n) = {1, 2, 3, 4}和h(n) = {1, -1},请计算它们的线性卷积y(n)。
解析:线性卷积操作是两个序列的每个元素相乘再求和的过程。
对于给定的序列x(n) = {1, 2, 3, 4}和h(n) = {1, -1},计算得到线性卷积序列y(n) = {1, 1, 1, 1}。
5. 习题五:给定一个离散时间信号序列x(n) = {1, 2, -1, 3},请计算其离散傅里叶变换(Discrete Fourier Transform,DFT)结果X(k)。
数字信号处理基础练习题

数字信号处理基础练习题数字信号处理是一门涉及众多领域的重要学科,它在通信、音频处理、图像处理等方面都有着广泛的应用。
为了帮助大家更好地掌握数字信号处理的基础知识,下面为大家准备了一些练习题。
一、离散时间信号与系统1、已知一个离散时间信号$xn = 2^n un$,其中$un$ 是单位阶跃序列,求其前 10 个样本值。
2、给定系统的差分方程为$yn 05yn 1 = xn$,求系统的单位脉冲响应$hn$。
3、判断下列系统是否线性、时不变:(1)$yn = 2xn + 1$(2)$yn = xn 2$二、Z 变换1、求信号$xn =(05)^n un$ 的 Z 变换$X(z)$及其收敛域。
2、已知$X(z) =\frac{1}{1 05z^{-1}}$,求其逆 Z 变换$xn$。
3、利用 Z 变换求解差分方程$yn 05yn 1 = xn$,已知输入$xn = un$,初始条件$y-1 = 0$。
三、离散傅里叶变换(DFT)1、对序列$xn =\{1, 2, 3, 4\}$进行 DFT 变换,计算其频谱。
2、已知一个长度为 8 的序列$xn$ 的 DFT 为$Xk =\{1, 0, -1, 0, 1, 0, -1, 0\}$,求原序列$xn$。
3、利用快速傅里叶变换(FFT)算法计算长度为 16 的序列的 DFT。
四、数字滤波器设计1、设计一个巴特沃斯低通滤波器,截止频率为$\omega_c =04\pi$,阶数为 4。
2、给定数字滤波器的系统函数$H(z) =\frac{1 + z^{-1}}{1 05z^{-1}}$,判断其是 IIR 还是 FIR 滤波器,并画出其零极点图。
3、用窗函数法设计一个线性相位 FIR 高通滤波器,截止频率为$\omega_c = 06\pi$,窗函数选择汉宁窗。
五、信号的采样与重构1、已知模拟信号$x(t) = 5\sin(10\pi t)$,以采样频率$f_s =20Hz$ 对其进行采样,求采样后的离散时间信号。
数字信号处理习题集及答案
6. 长为N的有限长序列, 分别为 的圆周共轭偶部及奇部,也即
证明:
证
7.若
证: (1)
(2)
由(2) ,将 互换,则有
(这应该是反变换公式)
(用 ,且求和取主值区)
与(1)比较所以
8.若 ,求证 。
证:
而
( 为整数)
0
所以
于是
9.令 表示N点序列 的N点DFT,试证明:
(a)如果 满足关系式 ,则 。
答:错。受采样频率、有限字长效应的约束,与模拟信号处理系统完全等效的数字系统未必一定能找到。因此数字信号处理系统的分析方法是先对抽样信号及系统进行分析,再考虑幅度量化及实现过程中有限字长所造成的影响。故离散时间信号和系统理论是数字信号处理的理论基础。
第二章离散时间信号与系统分析基础
一、离散时间信号与系统频域分析
(b)当N为偶数时,如果 ,则 。
证:
(a)
N为偶数:
N为奇数:
而 中间的一项应当满足:
因此必然有
这就是说,当N为奇数时,也有 。
(b)当N为偶数:
当N为偶数时, 为奇数,故 ;又由于 故有
10.设 ,求证 。
【解】因为
根据题意
因为
所以
11.证明:若 为实偶对称,即 ,则 也为实偶对称。
【解】根据题意
计算题:
7.设 是长度为M的有限长序列,其Z变换为
今欲求 在单位圆上N个等距离点上的采样值 ,其中 解答下列问题(用一个N点的FFT来算出全部的值)
(1)当 时,写出用一个N点FFT分别算出 的过程;
(2)若求 的IDFT,说明哪一个结果和 等效,为什么?
解:(1) ,对序列 末尾补零至N个点得序列 ,计算 的N点FFT即可得到 。
数字信号处理原理与算法实现课后练习题含答案
数字信号处理原理与算法实现课后练习题含答案题目一给定一个分别由两个信号串A和B组成的长度为4的信号的数组arr:arr = np.array([[1,2,1,1],[2,3,1,1]])请问如何使用FFT算法计算每个信号串的频域表达式?答案一使用FFT算法进行频域转换后,每个信号串的频域表达式如下:A_freq = np.fft.fft(arr[0])B_freq = np.fft.fft(arr[1])题目二设有如下的离散时间信号:x = np.sin(2*np.pi*100*np.linspace(0,1,256)) + np.sin(2*np.pi*2000*np.lins pace(0,1,256)) + np.random.randn(256)请问如何对该信号进行时域显示和频域显示?答案二使用Matplotlib库可以对离散时间信号进行时域显示:import matplotlib.pyplot as pltplt.plot(x)plt.show()使用FFT算法并结合Matplotlib库可以对离散时间信号进行频域显示:from scipy.fftpack import fftx_freq = fft(x)plt.plot(np.abs(x_freq))plt.show()题目三对于一个长度为16的实数序列x,要求其DFT的结果为奇对称,即X[k] =-X[N-k]其中 k 和 N 均为整数。
请问该序列有哪些数值?答案三由于X[k] = -X[N-k],因此对于k = 0,有X[0] = 0。
同时由于这是一个实数序列,因此N-k = N-0 = N,表示X[N]为实数。
对X[N/2]进行分析,因为N为偶数,所以N/2为整数。
因此X[N/2] =-X[N/2]说明X[N/2]为零或为纯虚数。
现在考虑对k进行分析。
由于X[k] = -X[N-k],因此在考虑k时,也要同时考虑N-k的情况。
(好)数字信号处理_习题+答案
20kHz ,整个系统的截止频率为
fc
1 1250 Hz 16T
二、离散时间信号与系统频域分析
计算题: 1.设序列 (1)
x(n) 的傅氏变换为 X (e j ) ,试求下列序列的傅里叶变换。
(2)
x(2n)
x * (n) (共轭)
解: (1) x(2n) 由序列傅氏变换公式
j ) DTFT [ x(n)] X (e
所以 h(n) 得截止频率
c 8 对应于模拟信号的角频率 c 为
cT
8
因此
fc
c 1 625Hz 2 16T
T
,因此对
由于最后一级的低通滤波器的截止频率为 (b)采用同样的方法求得 1 T
8T
没有影响,故整个系统的截止频率由 H (e
j
) 决定,是 625Hz。
(3)
1 X (e jw ) X (e jw ) 2
1 n 2
j X ( e ) d x(n)e j ( w ) n n
n
x 2 (n)e jwn
1 X (e j ) X (e j ( w ) )d 2 1 X (e j ) X (e jw ) 2
第二章 离散时间信号与系统分析基础
一、连续时间信号取样与取样定理
计算题: 1.过滤限带的模拟数据时,常采用数字滤波器,如图所示,图中T表示采样周期(假设T足够小,足以防止混迭效应) ,把从 的整个系统等效为一个模拟滤波器。 (a) (b) 如果 对于
x(t )到y(t )
h(n)截止于 8rad ,1 T 10kHz ,求整个系统的截止频率。
LCSE初级硬件基础模拟试题--扩充版
在BIOS中添加第3及 计算机硬 要想使用第3个串口,必须( )才能实 第4个串口,但只有这 件基础 现 么多 计算机硬 要使56kbps的调制解调器达到尽可能高 电话线路的质量 件基础 的传输速率,应在( )注意 计算机硬 要将几台机器进行无线网连接,可以仅 无线网卡 件基础 使用( )就可实现 计算机硬 要安装SCSI光驱,系统或使用者要做的 安装SCSI适配器的驱 件基础 事情是( ) 动程序 计算机硬 严格地讲,IDE与ATA是有区别的,主要 ATA是一种总线,IDE 件基础 表现在( ) 是一种接口 计算机硬 需要在Windows XP下使用USB键盘,必 BIOS支持USB键盘 件基础 须( ) 计算机硬 显示适配器的总线接口主要用于( ) 与CPU连接 件基础 计算机硬 显示器上像素的点距,决定( ) 图像显示的细腻程度 件基础 计算机硬 减轻显示器电源的负 显示器的维护有( )几个方面 件基础 担 计算机硬 显示器的亮度和对比度,对于( )更 显示的图像的清晰度 件基础 重要 计算机硬 显示器的尺寸代表的是( ) 显示器屏幕的大小 件基础 计算机硬 显示计算机处理的图 显示卡是用来( ) 件基础 像 计算机硬 下列中哪些是芯片组所具有的功能( 处理器接口 件基础 ) 计算机硬 下列中哪些不是芯片组的功能( ) 处理器接口 件基础 计算机硬 下列中,最大只支持到512MB内存的 810E 件基础 8xx系列芯片组有( ) 计算机硬 3.5寸硬盘上的电缆 下列说法正确的是( ) 件基础 操作中共有40根针 开放的体系结构,使 计算机硬 下列说法正确的是( ) IBM PC机成为今天应 件基础 用最为广泛的计算机 计算机硬 下列说法不正确的是( 件基础 计算机硬 件基础 计算机硬 件基础 计算机硬 件基础 ) Intel 4004是世界上第 一片微处理器 连接处理器总线 UL
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
xn a1xn 1 a2xn 2 vn where the sample vn is drawn from a white-noise process of zero mean and
are
determined
by
yourselves.
Then
generate
a
white
noise
with
the
variance
2 v
.
The
received
signal
is
xn sn vn
with a variable SNR. Put the received the signength of
Computer Exercises
1. Generate a stationary process AR(2) denoted by sn. Suppose that
sn a1sn 1 a2sn 2 n
Here,
the
parameters
of
a1,
a2
,
2
denoted by w1n and w2 n; the dependence of these tap weights on the number
of iterations, n, emphasizes the transient condition of the predictor. The AR
② Study on the relationship between the cost function and length of the filter, provided the SNR is given.
③.When one-step prediction is done, how about the cost function varies with the SNR and length of the Wiener-filter.
determined by the desired eigenvalue spread R. For specified values of a1 and
the filter is N. And the output is denoted by yn.
① Study on the relationship between the cost function and SNR of the signal, provided the length of the Wiener-filter is given.
2. Examine the transient behavior of the steepest-descent algorithm applied to a predictor that operates on a real-valued autoregressive (AR) process. Fig. P2 shows the structure of the predictor, assumed to contain two tap weights that
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线0生高不产中仅工资22艺料22高试可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料22荷试,下卷而高总且中体可资配保料置障试时23卷,23调需各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看2工且55作尽22下可2都能护1可地关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编5试求写、卷技重电保术要气护交设设装底备备4置。高调、动管中试电作线资高气,敷料中课并3设试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
variance
2 v
.
The
AR
parameters
a1
and
a2
are chosen so that the roots of the
characteristic equation
1 a1z 1 a2 z 2 0
are complex; that is, a12 4a2 . The particular values assigned to a1 and a2 are