准晶-孪晶-五重对称

合集下载

五重旋转对称和二十面体准晶体的发现

五重旋转对称和二十面体准晶体的发现

金属研究所建成60周年纪念专集五重旋转对称和二十面体准晶体的发现郭可信我早年曾在欧洲从事过近十年的合金钢中的碳化物及合金相研究,除了X 射线衍射外,还使用过当时还算比较新颖的电子显微镜。

在1953年曾在Acta metallurgica发表了3篇有关η-M6C,η2-(Ti,Ta)4Ni2C, Laves相和Sigma相的论文。

这些合金相的晶体结构中都有众多稍微畸变了的二十面体原子团簇(正二十面体是由20个正三角形围成的凸正多面体,每5个正三角形围出一个正五重顶,通过每一对相对着的五重顶有一个五重旋转对称轴。

通过每一对相对着的三角形中心有一个三重旋转轴;通过每一对相对着的棱的中点有一个二重旋转轴。

二十面体点群的符号是235,而立方晶体系中四面体点群的符号是23。

)1956年春天,我在海牙读到周总理“向科学进军”的号召,深受感动,在五一节前回到北京,随后分配到金属研究所工作,直到1987年才转到北京电子显微镜开放实验室工作。

前后在沈阳工作三十一年,时间不算短,以正值壮年,本应有所作为,但是生不逢时,前后赶上大跃进和文化大革命两次大动荡,我的基础研究一直没能在祖国大地扎根。

幸好在打倒四人帮后迎来了科学的第二个春天,我才得以在1983年60岁时才又开始合金相的电子显微镜研究。

我与叶恒强、李斗星合作在镍基和铁基合金中发现了一系列的与Sigma相和Laves相有关的四面体密堆合金相。

在我们的指导下,我的研究生王大能在1984年夏发现了五重旋转对称,张泽在1985年春发现了Ti-Ni 二十面体准晶,我们五人共同在1987年获得了国家自然科学一等奖。

我总算在过了花甲之年后才做出一点成绩,以谢国人,也有了一些值得回忆的事。

大约是在1980年的一天,王元明同志从北京回来对我说,他从科学院进口装备处了解到院里准备引进一两台电子显微镜。

我随即去北京活动,向郁文秘书长立下军令状,保证在电镜安装后三年内做出出色成绩,就这样决定为金属研究所订购一台当时分辨率最高的JEM200CX电子显微镜。

晶多晶非晶微晶无定形准晶的区别

晶多晶非晶微晶无定形准晶的区别

要理解这几个概念,首先要理解晶体概念,以及晶粒概念.我想学固体物理地或者金属材料地都会对这些概念很清楚!自然界中物质地存在状态有三种:气态、液态、固态固体又可分为两种存在形式:晶体和非晶体晶体是经过结晶过程而形成地具有规则地几何外形地固体;晶体中原子或分子在空间按一定规律周期性重复地排列.晶体共同特点:均匀性:晶体内部各个部分地宏观性质是相同地.各向异性:晶体种不同地方向上具有不同地物理性质.固定熔点:晶体具有周期性结构,熔化时,各部分需要同样地温度.规则外形:理想环境中生长地晶体应为凸多边形.对称性:晶体地理想外形和晶体内部结构都具有特定地对称性.对晶体地研究,固体物理学家从成健角度分为:离子晶体原子晶体分子晶体金属晶体显微学则从空间几何上来分,有七大晶系,十四种布拉菲点阵,种空间群,用拓扑学,群论知识去研究理解.可参考《晶体学中地对称群》一书(郭可信,王仁卉著).与晶体对应地,原子或分子无规则排列,无周期性无对称性地固体叫非晶,如玻璃,非晶碳.一般,无定型就是非晶英语叫,也有人叫(玻璃态).晶粒是另外一个概念,搞材料地人对这个最熟了.首先提出这个概念地是凝固理论.从液态转变为固态地过程首先要成核,然后生长,这个过程叫晶粒地成核长大.晶粒内分子、原子都是有规则地排列地,所以一个晶粒就是单晶.多个晶粒,每个晶粒地大小和形状不同,而且取向也是凌乱地,没有明显地外形,也不表现各向异性,是多晶.英文晶粒用表示,注意与是有区别地.有了晶粒,那么晶粒大小(晶粒度),均匀程度,各个晶粒地取向关系都是很重要地组织(组织简单说就是指固体微观形貌特征)参数.对于大多数地金属材料,晶粒越细,材料性能(力学性能)越好,好比面团,颗粒粗地面团肯定不好成型,容易断裂.所以很多冶金学家材料科学家一直在开发晶粒细化技术.科学总是喜欢极端,看得越远地镜子叫望远镜;看得越细地镜子叫显微镜.晶粒度也是这样地,很小地晶粒度我们喜欢,很大地我们也喜欢.最初,显微镜倍数还不是很高地时候,能看到微米级地时候,觉得晶粒小地微米数量是非常小地了,而且这个时候材料地力学性能特别好.人们习惯把这种小尺度晶粒叫微晶.然而科学总是发展地,有一天人们发现如果晶粒度在小呢,材料性能变得不可思议了,什么量子效应,隧道效应,超延展性等等很多小尺寸效应都出来了,这就是现在很热地,热得不得了地纳米,晶粒度在之间地晶粒我们叫纳米晶.个人收集整理勿做商业用途再说说非晶,非晶是无规则排列,无周期无对称特征,原子排列无序,没有一定地晶格常数,描叙结构特点地只有径向分布函数,这是个统计地量.我们不知道具体确定地晶格常数,我们总可以知道面间距地统计分布情况吧.非晶有很多诱人地特性,所以也有一帮子人在成天做非晶,尤其是作大块地金属非晶.因为它地应力应变曲线很特别.前面说了,从液态到到固态有个成核长大地过程,我不让他成核呢,直接到固态,得到非晶,这需要很快地冷却速度.所以各路人马一方面在拼命提高冷却速度,一方面在不断寻找新地合金配方,因为不同地合金配方有不同地非晶形成能力,通常有参数表征,叫玻璃化温度.非晶没有晶粒,也就没有晶界一说.也有人曾跟我说过非晶可以看成有晶界组成. 那么另一方面,我让他成核,不让他长大呢,不就成了纳米晶.人们都说,强扭地瓜不甜,既然都是抑制成核长大,那么从热力学上看,很多非晶,纳米晶应该不是稳态相.所以你作出非晶、纳米晶了,人们自然会问你热稳定性如何.后来,又有一个牛人叫卢柯,本来他是搞非晶地,读研究生地时候他还一直想把非晶地结构搞清楚呢(牛人就是牛人,选题这么牛,非晶地结构现在人们还不是很清楚).他想既然我把非晶做出来了,为什么我不可以把非晶直接晶化成纳米晶呢,纳米晶热啊,耶,这也是一种方法,叫非晶晶化法.既然晶界是一种缺陷,缺陷当然会影响材料性能,好坏先不管他,但是总不好控制.如果我把整个一个材料做成一个晶粒,也就是单晶,会是什么样子呢,人们发现单晶确实会有多晶非晶不同地性能,各向异性,谁都知道啊.当然还有其他地特性.所以很多人也在天天捣鼓着,弄些单晶来.现在不得不说准晶.准晶体地发现,是世纪年代晶体学研究中地一次突破.这是我们做电镜地人地功劳.年底,等人宣布,他们在急冷凝固地合金中发现了具有五重旋转对称但并无无平移周期性地合金相,在晶体学及相关地学术界引起了很大地震动.不久,这种无平移同期性但有位置序地晶体就被称为准晶体.后来,郭先生一看,哇,我们这里有很多这种东西啊,抓紧分析,马上写文章,那段金属固体原子像地多地不得了,基本上是这方面地内容.准晶因此也被称为“中国像”.个人收集整理勿做商业用途再说说孪晶,孪晶地英文叫,孪晶其实是金属塑性变形里地一个重要概念.孪生与滑移是两种基本地形变机制.从微观上看,晶体原子排列沿某一特定面镜像对称.那个面叫栾晶面.很多教科书有介绍.一般面心立方结构地金属材料,滑移系多,已发生滑移,但是特定条件下也有孪生.加上面心立方结构层错能高,不容易出现孪晶,曾经一段能够在面心立方里发现孪晶也可以发很好地文章.前两年,马恩就因为在铝里面发现了孪晶,发了篇呢.卢柯去年也因为在纳米铜里做出了很多孪晶,既提高了铜地强度,又保持了铜良好导电性(通常这是一对矛盾),也发了个.这年头很值钱啊.像一个穷山沟,出了个清华大学生一样.现在,从显微学上来看单晶,多晶,微晶,非晶,准晶,纳米晶,加上孪晶.单晶与多晶,一个晶粒就是单晶,多个晶粒就是多晶,没有晶粒就是非晶.单晶只有一套衍射斑点;多晶地话,取向不同会表现几套斑点,标定地时候,一套一套来,当然有可能有地斑点重合,通过多晶衍射地标定可以知道晶粒或者两相之间取向关系.如果晶粒太小,可能会出现多晶衍射环.非晶衍射是非晶衍射环,这个环均匀连续,与多晶衍射环有区别.纳米晶,微晶是从晶粒度大小角度来说地,在大一点地晶粒,叫粗晶地.在从衍射上看,一般很难作纳米晶地单晶衍射,因为最小物镜光栏选区还是太大.有做地么,不知道这个可不可以.孪晶在衍射上地表现是很值得我们学习研究地,也最见标定衍射谱地功力,大家可以参照郭可信,叶恒强编地那本《电子衍射在材料科学中应用》第六章.准晶,一般晶体不会有五次对称,只有,,,,次旋转对称(这个证明经常作为博士生入学考试题,呵呵).所以看到衍射斑点是五次对称地,对称地啊,其他什么地,可能就是准晶.个人收集整理勿做商业用途。

单晶多晶非晶微晶纳米晶准晶孪晶概念剖析[整理版]

单晶多晶非晶微晶纳米晶准晶孪晶概念剖析[整理版]

要理解这几个概念,首先要理解晶体概念,以及晶粒概念。

我想学固体物理的或者金属材料的都会对这些概念很清楚。

自然界中物质的存在状态有三种:气态、液态、固态(此处指一般物质,未包括“第四态”等离子体——成锡注)。

固体又可分为两种存在形式:晶体和非晶体。

晶体是经过结晶过程而形成的具有规则的几何外形的固体;晶体中原子或分子在空间按一定规律周期性重复的排列。

晶体共同特点:均匀性:晶体内部各个部分的宏观性质是相同的。

各向异性:晶体中不同的方向上具有不同的物理性质。

固定熔点:晶体具有周期性结构,熔化时,各部分需要同样的温度。

规则外形:理想环境中生长的晶体应为凸多边形。

对称性:晶体的理想外形和晶体内部结构都具有特定的对称性。

对晶体的研究,固体物理学家从成健角度分为:离子晶体原子晶体分子晶体金属晶体显微学则从空间几何上来分,有七大晶系,十四种布拉菲点阵,230种空间群,用拓扑学,群论知识去研究理解。

可参考《晶体学中的对称群》一书(郭可信,王仁卉著)。

与晶体对应的,原子或分子无规则排列,无周期性无对称性的固体叫非晶,如玻璃,非晶碳。

一般,无定型就是非晶,英语叫amorphous,也有人叫glass(玻璃态)。

晶粒是另外一个概念,搞材料的人对这个最熟了。

首先提出这个概念的是凝固理论。

从液态转变为固态的过程首先要成核,然后生长,这个过程叫晶粒的成核长大。

晶粒内分子、原子都是有规则地排列的,所以一个晶粒就是单晶。

多个晶粒,每个晶粒的大小和形状不同,而且取向也是凌乱的,没有明显的外形,也不表现各向异性,是多晶。

英文晶粒用Grain表示,注意与Particle是有区别的。

有了晶粒,那么晶粒大小(晶粒度),均匀程度,各个晶粒的取向关系都是很重要的组织(组织简单说就是指固体微观形貌特征)参数。

对于大多数的金属材料,晶粒越细,材料性能(力学性能)越好,好比面团,颗粒粗的面团肯定不好成型,容易断裂,所以很多冶金学家材料科学家一直在开发晶粒细化技术。

准晶体

准晶体


中国人与诺贝尔化学奖擦肩而过
在Shechtman的工作尚未发表也不为世人所知的1983年,郭可信及其合作者在用于喷气发动机叶片的Ni基和Fe基高温合金 中加入强化元素所生成的合金相的研究中,发现了许多新的与Sigma相和Laves相有关的四面体密堆合金相。
1984年夏,他在这些合金相的纳米畴中发现五次对称。
1984年以来,郭可信及其合作者围绕着准晶体的发现与研究,在国际权威学术刊物上发表了140多篇论文。其中13篇到 2000年10月已被同行引用1200多次,单篇被引用最高达180 次。
可惜的是:郭可信先生于2006年12月13日因病逝世,享胞周 期性排列为特征的程平移序和满足晶体学 点群为标志的最长邻价健长程指向序。 非晶体:组成物质的分子(或原子、离子) 不呈空间有规则周期性排列的固体。
1985年春发现Ti-V-Ni 二十面体准晶。 1985年和1988年诺贝尔化学奖得主L· 鲍林接连发表文章认为准晶学说是荒谬的,并论证了五重、十重、二十重孪晶的衍 射也能产生出 “准晶”的衍射现象。在这场争论中,郭可信的依据实验有力地支持了准晶学说。 郭可信等还通过对AlCu-Co十次准晶与A1-Cu-Co晶体的细致结构分析证实在晶体中实际上存在着类似于准晶的赝五次对称亚结构单元。 1993年获第三世界科学院物理奖。这些成果与荣誉标志着我国学者在20世纪80年代突破传统晶体学的重大发现中在国际 上占有重要位置。
可见,准晶体是介于晶体和非晶体之间的 固体。
定义
如右准晶结构图, 由锐角分别为36°和 72°的菱形四边形构造 的彭罗斯图案(penrose) 图案拼砌。该结构任意结 构单位平移之后并不能拼 成整个平面,所以并不具 有晶体的平移对称性。
准晶没有平移周期性,但具有准周期性,准周期性是质点的排列 具有长程有序,但不体现周期重复。 根据在三维物理空间中材料呈现准周期性的维数,可以把准晶分 为三维准晶、二维准晶和一维准晶。 三维准晶:有二十面体准晶和立方准晶两大类。 二维准晶:有十次准晶、十二次准晶、八次准晶和五次准晶四类。 一维准晶:原子在二维上是周期分布的,另外一维是准周期分布 的。 根据准晶在热力学上的稳定性,可将其分为稳定准晶和亚稳定准 晶两大类。至今发现的近200种准晶中,有七十多种是热力学稳定的。

固体物理学—课程介绍

固体物理学—课程介绍
12
商业网站
网易公开课 搜狐课堂 / 新浪公开课 / 优酷公开课 /open
13
其他学习资源
() (维基英文版) 科学网论坛 小木虫论坛
complex forms of matter, in particular to liquid
crystals and polymers".
“founding father of soft matter”27
固体与晶体
橡胶
石蜡
➢ A crystal or crystalline solid is a solid material whose constituent atoms, molecules, or ions are arranged in an ordered pattern extending in all three spatial dimensions. ➢ In addition to their microscopic structure, large crystals are usually identifiable by their macroscopic geometrical shape, consisting of flat faces with specific, characteristic orientations.
31
晶体的外形与微观结构
32
单晶冰糖和多晶冰糖
/AMuseum/crystal/index.html 33
身边的多晶体
硬币
alloy
瓷器
高岭土
石头
螺钉
上釉
1200℃
陶器
粘土
石头
800-1000℃ /AMuseum/crystal/index.html

单晶多晶非晶微晶无定形准晶的区别要理解这几个概念首先要理解...

单晶多晶非晶微晶无定形准晶的区别要理解这几个概念首先要理解...
晶体共同特点:
均匀性:晶体内部各个部分的宏观性质是相同的。
各向异性:晶体种不同的方向上具有不同的物理性质。
固定熔点:晶体具有周期性结构,熔化时,各部分需要同样的温度。
规则外形:理想环境中生长的晶体应为凸多边形。
对称性:晶体的理想外形和晶体内部结构都具有特定的对称性。
对晶体的研究,固体物理学家从成健角度分为
既然晶界是一种缺陷,缺陷当然会影响材料性能,好坏先不管他,但是总不好控制。如果我把整个一个材料做成一个晶粒,也就是单晶,会是什么样子呢,人们发现单晶确实会有多晶非晶不同的性能,各向异性,谁都知道啊。当然还有其他的特性。所以很多人也在天天捣鼓着,弄些单晶来。
现在不得不说准晶。准晶体的发现,是20世纪80年代晶体学研究中的一次突破。这是我们做电镜的人的功劳。1984年底,D.Shechtman等人宣布,他们在急冷凝固的Al Mn合金中发现了具有五重旋转对称但并无无平移周期性的合金相,在晶体学及相关的学术界引起了很大的震动。不久,这种无平移同期性但有位置序的晶体就被称为准晶体。后来,郭先生一看,哇,我们这里有很多这种东西啊,抓紧分析,马上写文章,那段金属固体原子像的APL,PRL多的不得了,基本上是这方面的内容。准晶因此也被D.Shechtman称为“中国像”。
离子晶体
原子晶体
分子晶体
金属晶体
显微学则从空间几何上来分,有七大晶系,十四种布拉菲点阵,230种空间群,用拓扑学,群论知识去研究理解。可参考《晶体学中的对称群》一书(郭可信,王仁卉著)。
与晶体对应的,原子或分子无规则排列,无周期性无对称性的固体叫非晶,如玻璃,非晶碳。一般,无定型就是非晶英语叫amorphous,也有人叫glass(玻璃态).
现在,从显微学上来看单晶,多晶,微晶,非晶,准晶,纳米晶,加上孪晶。单晶与多晶,一个晶粒就是单晶,多个晶粒就是多晶,没有晶粒就是非晶。单晶只有一套衍射斑点;多晶的话,取向不同会表现几套斑点,标定的时候,一套一套来,当然有可能有的斑点重合,通过多晶衍射的标定可以知道晶粒或者两相之间取向关系。如果晶粒太小,可能会出现多晶衍射环。非晶衍射是非晶衍射环,这个环均匀连续,与多晶衍射环有区别。

准晶态材料

2.4.3 准晶态材料• 准晶体(quasicrystal) • ---准周期晶体(quasiperiodic crystal)的简称准晶体是1984年科学家发现的一种新的物质聚集形态。

一种 介于晶体和非晶体之间的固体。

准晶体具有完全有序的结构, 然而又不具有晶体所应有的平移对称性,因而可以具有晶体 所不允许的宏观对称性。

例如五次对称轴等。

5重旋转轴准晶体的发现,破除了几百年来关于晶体必须 具有周期性,因而不可能存在五重旋转对称的信条, 对于晶体学工作者解放思想,重新审视自己的观察 结果,推动晶体学向更深入、更精确的方向发展, 起了重要作用。

晶体学研究有300多年历史 经典晶体学1912年X射线晶体衍射 现代晶体学 1984年准晶的发现,新对称理论(2)冰的结构 常见结构型式:冰-Ih (冰、雪、霜)常压,0°C,六方晶系,空间群D64h−P63 mmc∠OOO非常接近109.5° O—H…O 和 O…H—O 两种方式的无序情况冰-Ic 真空,133-153KO位于金刚石 中C的位置H无序分布新华社伦敦3月9日(2009年)电 英国《自然·材料》发现冰在纳米尺度上的平面结构为五边形,而非通常的六边形。

来自英国伦敦纳米研究中心和德国弗里茨·哈贝尔研究所等机构的研究人员说,他们在光滑的铜表面对冰用扫描隧道显 微镜进行观测,并进行了大量计算,最终确定冰在纳米尺度上 有五边形的平面结构。

论文第一作者哈维尔·卡拉斯科说,了解冰的纳米结构尤 其冰黏附在固体表面时的纳米结构具有重要意义,因为这可以 帮助研究人员了解冰晶如何形成,而之所以要了解冰晶的结构, 是因为它在人工造云、降雨中发挥重要作用。

研究人员指出,这项发现带来的启发是,人们在寻找用于 人工造云、降雨的新冰核物质时,并非一定要集中在六边形外 观的材料上,五边形等其他结构外观的材料也可能同样适用。

High resolution X-ray emission spectroscopy of liquid water: The observation of two structural motifsT. Tokushima, Y. Harada, O. Takahashi, Y. Senba, H. Ohashi, L.G.M. Pettersson, A. Nilsson, S. ShinChemical Physics Letters Volume 460, Issues 4-6, 30 July 2008, Pages 387-400从美国斯坦福直线加速器中心 (SLAC)、日本SPring—8同步 加速器和广岛大学以及瑞典斯德 哥尔摩大学收集的新实验证据表 明,现有液态水结构理论是错误 的。

单晶多晶非晶微晶无定形准晶的区别

单晶多晶非晶微晶无定形准晶的区别单晶,多晶,非晶,微晶,无定形,准晶的区别要理解这几个概念,首先要理解晶体概念,以及晶粒概念。

我想学固体物理的或者金属材料的都会对这些概念很清楚~自然界中物质的存在状态有三种:气态、液态、固态固体又可分为两种存在形式:晶体和非晶体晶体是经过结晶过程而形成的具有规则的几何外形的固体;晶体中原子或分子在空间按一定规律周期性重复的排列。

晶体共同特点:均匀性: 晶体内部各个部分的宏观性质是相同的。

各向异性: 晶体种不同的方向上具有不同的物理性质。

固定熔点: 晶体具有周期性结构,熔化时,各部分需要同样的温度。

规则外形: 理想环境中生长的晶体应为凸多边形。

对称性: 晶体的理想外形和晶体内部结构都具有特定的对称性。

对晶体的研究,固体物理学家从成健角度分为离子晶体原子晶体分子晶体金属晶体显微学则从空间几何上来分,有七大晶系,十四种布拉维点阵,230种空间群,用拓扑学,群论知识去研究理解。

可参考《晶体学中的对称群》一书 (郭可信,王仁卉著)。

与晶体对应的,原子或分子无规则排列,无周期性无对称性的固体叫非晶,如玻璃,非晶碳。

一般,无定型就是非晶英语叫amorphous,也有人叫glass(玻璃态).晶粒是另外一个概念,搞材料的人对这个最熟了。

首先提出这个概念的是凝固理论。

从液态转变为固态的过程首先要成核,然后生长,这个过程叫晶粒的成核长大。

晶粒内分子、原子都是有规则地排列的,所以一个晶粒就是单晶。

多个晶粒,每个晶粒的大小和形状不同,而且取向也是凌乱的,没有明显的外形,也不表现各向异性,是多晶。

英文晶粒用Grain表示,注意与Particle是有区别的。

有了晶粒,那么晶粒大小(晶粒度),均匀程度,各个晶粒的取向关系都是很重要的组织(组织简单说就是指固体微观形貌特征)参数。

对于大多数的金属材料,晶粒越细,材料性能(力学性能)越好,好比面团,颗粒粗的面团肯定不好成型,容易断裂。

所以很多冶金学家材料科学家一直在开发晶粒细化技术。

单晶,多晶,微晶,非晶,准晶,纳米晶,孪晶


什么样的物质能够制造成非晶呢?从理论上说,任何物质只要它的液体冷却足够快,原子来不及整齐排列就凝固,那么原子在液态时的混乱排列被迅速冻结,就可以形成非晶(联想非晶薄膜的形成)。
但是,不同的物质形成非晶所需要的冷却速度大不相同。例如,普通的玻璃只要慢慢冷却下来,得到的玻璃就是非晶态的。而单一的金属则需要每秒高达一亿度以上的冷却速度才能形成非晶态。由于目前工艺水平的限制,实际生产中难以达到如此高的冷却速度,也就是说,普通的单一的金属难以从生产上制成非晶。
晶体共同特点:
均 匀 性: 晶体内部各个部分的宏观性质是相同的。
各向异性:晶体中不同的方向上具有不同的物理性质。
固定熔点:晶体具有周期性结构,熔化时,各部分需要同样的温度。
规则外形:理想环境中生长的晶体应为凸多边形。
对 称 性: 晶体的理想外形和晶体内部结构都具有特定的对称性。
对晶体的研究,固体物理学家从成健角度分为:
单晶衍射仪的作用主要是测单晶样品的结构,对于已知结构可以进行精修,对于未知结构可以鉴定结构。
多晶衍射用于物相鉴定的原理与单晶衍射仪不同,它主要依据的是一个称为PDF文件的物相数据库,通过查找这个库中与样品衍射谱相同的物相来鉴定某个物相是否存在,因此,鉴定的必须是已知物相。这个库的来源主要通过单晶衍射来鉴定结构,如果没有这个数据库,多晶衍射一般就不能进行物相的鉴定。当然也可以进行指标化,但困难多了。
其他问题
请教:多晶衍射仪与单晶衍射仪
一般大家讲的衍射仪就是多晶衍射仪,需要的样品是多晶体。主要用于鉴定多相样品中的物相,以及定量相分析应力以及晶粒大小,有些多晶衍射仪上还配一些附件如织构仪,用于测量织构,高/低温台,用于测量样品在不同温度下的物相变化,这是一种原位测量。也有小角散射台,应力附件,微区分析等。

准晶态与液晶态

向列相液晶的特例 分子分层排列,分子躺在层内,层与层平行 在每一层内,分子类似向列相,趋向平行排列 沿层的法线方向看,液晶基元的指向矢
连续转动形成螺旋 各层分子按周期性扭转
光学性质:圆偏振光的选择型反射 高旋光性
第24页/共36页
组成液晶的有机分子大都是棒状分子 摩尔质量:200~500 g/mol 长 度:几十个埃 长宽比:4~8
熔化f
分子有序:平动有序、转动有序、构象有序 构象无序晶体:保留了大部分位置有序
和取向有序,只是构象无序
小分子——环状烷(CH2)24 高分子——聚乙烯、聚四氟乙烯
第19页/共36页
塑 晶:位置有序,取向无序
大多数塑晶由球状分子组成,转动势能 << 点阵能 在受外应力作用时,有相当的柔软性,容易发生“塑性变形” 塑晶由一些形状十分类似的球形分子组成,N2, CO, 环乙醇等 液 晶:液晶材料熔化时,取向分子序被保留,有序的流体 小分子液晶:液晶的分子一般为棒状或盘状 高分子液晶:常具有棒状或盘状单元的 介晶基团,显示出较大的链刚性,通常 具有刚性链和半刚性链的特性
准晶态的结构:
长程取向有序,而长程周期性不存在;
取向有序具有晶体周期性点群所不允许的点群对称性,沿 取向序对称轴的方向具有准周期性,即原子的排布间距是 两个或两个以上不可公约的特征长度,并按特定序列排布
第9页/共36页
准晶态的种类
按准晶的成分来分:二元、三元、四元等多元合金
郭可信
张泽
Ti-Ni
Al-Fe-Cu
远远大于水晶 20o/mm 旋光性呈现鲜明的旋光色散,并在一个转化波长 0 范围内改变 符号,可以观察到圆偏振光的选择性反射
第28页/共36页
(2) 磁学和电学性质 液晶的抗磁磁化率具有明显的各向异性 向列相液晶在2000 Oe 以上磁场中,主方向会平行于磁场 胆甾相液晶在磁场中改变扭曲结构,发生旋光性与颜色的变化
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C60
3D 2D 0D
碳纳米管 1D
STM image of real tube
Growth and Characterization of Nanotubes
Carbon nanotube array
Nature 403, 403 (2000) Nature 394, 631 (1998) Science 274, 1701 (1996) Phys. Rev. Lett. 84, 2701 (2000) Phys. Rev. Lett. 91, 76801 (2003)
芬兰赫尔辛基自然博 物馆大门前的地砖图 案(1989)
八重旋转对称准晶(1987)的电子衍射 图
八重旋转对称,非周期分布
八重旋转对称地砖图案
日本筑波科技情报中心(1989)
1985年H. W. Kroto, R. F. Curl, 和R. E. Smalley发现C60 1996年获得诺贝尔化学奖
晶体,
准晶,
纳米晶
冰, 水精 石英,水晶 李白:却下水精帘 CRY STAL
郭可信 李方华 张殿琳 张泽
解思源 王恩哥 薛其坤 1 mm=106 nm
凡草木花皆五出,独雪花六出。
韩诗外传(汉初)
五重旋转对称
六重旋转对称
放射虫骨架
八面体
三角二十面体 五角十二面体
正多面体,柏拉图立体
33 (3,3) 火 34 (3,4) 空气 35 (3,5) 水 53 (5,3) 宇宙 44 (4,4) 土
Prof. Xie
Carbon Nano-cones
Science 300, 18 (2003)
王恩哥组 /chinese/kjdt/dt9.htm
Growth of Indentical In Nanodot Array on Si (111) Surface
六圆环只 能布满一 张平面, 球面有12 个五圆环
美国金属学会总部
五重、八重旋转对称与周期性不 相容晶体的旋 转对称2 3 Nhomakorabea4
6
不允许的 旋转对称
5
8
晶体的三维周期性
阿羽依(Haüy,1774): 晶体是平行六面体(垒积分 子)的三维周期堆砌
布拉维(Bravais,1850): 三维空间周期点阵
Al-Mn二十面体准晶(1984秋)
从Al-Mn急冷凝固合金中 电解分离出的二十面体花
60个菱面体的二 十面体对称分布
高温合金中的Ti2Ni二十面体准晶(1985)
高分辨电子显微像
Penrose非周期五重对称 图(1974), Mackay在 1982年绘
五重旋转对称Penrose图
德国慕尼黑德意 志博物馆的墙壁 装饰(1988)
开普勒(1595)
行星的多面体轨道
艺术家钟爱五重旋转对称
达.芬奇 (1509)
达利画像 (1904- 1984)
Escher 埃舍尔(1898 -1972 )
中国民间艺术
二十面体球状病毒(0.01-0.1微米)
A.Klug因发明病毒等 的电子显微像三维重构 技术获1982年诺贝尔 化学奖
穹顶建筑(10-100米)
Empty States at +1.5V Empty States at +0.6V
2 .7 nm
Phys. Rev. Lett. 88, 066101 (2002)
薛其坤工作 /chinese/kjdt/dt2.htm
相关文档
最新文档