高一数学正弦函数、余弦函数的性质1
正弦函数、余弦函数的性质(三课时)课件-2024-2025学年高一上学期数学人教A版必修第一册

上的函数
f
(x) 满足
f
x
f
x 2
,且
f
1 2
1 ,则
f
10.5
(
)
A.-1
B.-0.5
C.0.5
D.1
3.设函数 f (x) 的定义域为 R,满足 f (x 1) f (x) ,且当 x (0,1] 时 f (x) x(x 1) .
则当 x (2, 1] , f (x) 的最小值是( )
(
)
A. 7
B.1
C. 0
D. 1
6.已知奇函数 f (x) 满足 f (x 2) f (x),且当 x 0,1 时,
f
x
log2
x
,则
f
7 2
的值为_______
常见函数性质隐藏了周期性
对f(x)定义域内任一自变量的值x:
(1)若f(x+a)=-f(x),
(2)若f(x+a)= 1 ,.
变式2:求函数y sin( 1 x )的单调增区间
23
练习:(1)y cos(2x ) (2)y cos(-3x )
3
6
类型四:周期、奇偶性
1.下列函数中周期是 ,且为偶函数的是()
2
A.y sin 4x
B.y cos 1 x 4
C.y sin(4x )
2
D.y cos(1 x )
)
A.
x
π 6
B. x 0
C.
x
π 6
D.
x
π 2
2.设函数
y
sin( x
π 6
)(0
5)
图像的一条对称轴方程为
x
1.4.2正弦函数余弦函数的性质

讲授新课
例1. 求下列三角函数的周期:
练习1. 求下列三角函数的周期:
讲授新课 一般结论:
讲授新课
三个函数的周期是什么?
讲授新课 一般结论:
讲授新课 正弦、余弦函数的性质2——奇偶性
请同学们观察正、余弦函数的图形, 说出函数图象有怎样的对称性?其特点 是什么?
y=sinx
y=cosx
讲授新课 正弦、余弦函数的性质2——奇偶性
讲授新课
例4.不通过求值,指出下列各式大于 0还是小于0.
例5、求函数y=sin(
1 2
x
3
),
x
2
,
2
的单调递增区间。
课堂小结
1. 正弦函数、余弦函数的周期性; 2.正弦函数、余弦函数的奇偶性; 3. 正弦函数、余弦函数的单调性.
补充作业:
1.已知sin(x ) 1 ,求sin(5 x) sin2 ( x)的值.
前提:定义域关于原点对称
讲授新课
例2.判断下列函数的奇偶性
讲授新课 正弦、余弦函数的性质3——单调性
增函数
减函数
讲授新课 正弦、余弦函数的性质3——单调性
增函数 减函数
对称轴 y=sinx的对称轴为
y=cosx的思考. 教材P.46习题1.4第11题.
讲授新课
例3.下列函数有最大值、最小值吗?如果 有,请写出取最大值、最小值时的自变 量x的集合,并说出最大值、最小值分别 是什么.
(3) 这个规律由诱导公式sin(2k+x)=sinx 可以说明.
结论:象这样一种函数叫做周期函数.
讲授新课
周期函数定义:
对于函数f(x),如果存在一个非零 常数T,使得当x取定义域内的每一个 值时,都有:f (x+T)=f(x).那么函数 f(x)就叫做周期函数,非零常数T叫做 这个函数的周期.
高中数学 第一章 三角函数 1.4.2 正弦函数、余弦函数的性质(一)导学案 新人教A版必修4-新人

1.4.2 正弦函数、余弦函数的性质(一) 学习目标 1.了解周期函数、周期、最小正周期的定义.2.会求函数y =A sin(ωx +φ)及y =A cos(ωx +φ)的周期.3.掌握函数y =sin x ,y =cos x 的奇偶性,会判断简单三角函数的奇偶性.知识点一 函数的周期性思考1 如果函数f (x )满足f (x +3)=f (x ),那么3是f (x )的周期吗?答案 不一定.必须满足当x 取定义域内的每一个值时,都有f (x +3)=f (x ),才可以说3是f (x )的周期.思考2 所有的函数都具有周期性吗?答案 不是.只有同时符合周期函数定义中的两个条件的函数才具有周期性.思考3 周期函数都有最小正周期吗?答案 周期函数不一定存在最小正周期.例如,对于常数函数f (x )=c (c 为常数,x ∈R ),所有非零实数T 都是它的周期,而最小正周期是不存在的,所以常数函数没有最小正周期. 梳理 函数的周期性(1)对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有f (x +T )=f (x ),那么函数f (x )就叫做周期函数,非零常数T 叫做这个函数的周期.(2)如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数叫做f (x )的最小正周期.知识点二 正弦函数、余弦函数的周期性思考1 证明函数y =sin x 和y =cos x 都是周期函数.答案 ∵sin(x +2π)=sin x ,cos(x +2π)=cos x ,∴y =sin x 和y =cos x 都是周期函数,且2π就是它们的一个周期.思考2 证明函数f (x )=A sin(ωx +φ)(或f (x )=A cos(ωx +φ))(Aω≠0)是周期函数. 答案 由诱导公式一知,对任意x ∈R ,都有A sin[(ωx +φ)+2π]=A sin(ωx +φ),所以A sin[ω⎝ ⎛⎭⎪⎫x +2πω+φ]=A sin(ωx +φ), 即f ⎝ ⎛⎭⎪⎫x +2πω=f (x ),所以f (x )=A sin(ωx +φ)(ω≠0)是周期函数,2πω就是它的一个周期. 同理,函数f (x )=A cos(ωx +φ)(ω≠0)也是周期函数.梳理 由sin(x +2k π)=sin x ,cos(x +2k π)=cos x (k ∈Z )知,y =sin x 与y =cos x 都是周期函数,2k π (k ∈Z 且k ≠0)都是它们的周期,且它们的最小正周期都是2π. 知识点三 正弦函数、余弦函数的奇偶性思考 对于x ∈R ,sin(-x )=-sin x ,cos(-x )=cos x ,这说明正弦函数、余弦函数具备怎样的性质?答案 奇偶性.梳理 (1)对于y =sin x ,x ∈R 恒有sin(-x )=-sin x ,所以正弦函数y =sin x 是奇函数,正弦曲线关于原点对称.(2)对于y =cos x ,x ∈R 恒有cos(-x )=cos x ,所以余弦函数y =cos x 是偶函数,余弦曲线关于y 轴对称.类型一 三角函数的周期性例1 求下列函数的最小正周期.(1)y =sin(2x +π3)(x ∈R ); (2)y =|sin x |(x ∈R ).解 (1)方法一 令z =2x +π3,因为x ∈R ,所以z ∈R . 函数f (x )=sin z 的最小正周期是2π,即变量z 只要且至少要增加到z +2π,函数f (x )=sin z (z ∈R )的值才能重复取得.而z +2π=2x +π3+2π=2(x +π)+π3,所以自变量x 只要且至少要增加到x +π,函数值才能重复取得,所以函数f (x )=sin ⎝⎛⎭⎪⎫2x +π3(x ∈R )的最小正周期是π. 方法二 f (x )=sin ⎝⎛⎭⎪⎫2x +π3的最小正周期为2π2=π. (2)因为y =|sin x |=⎩⎪⎨⎪⎧ sin x (2k π≤x ≤2k π+π),-sin x (2k π+π<x ≤2k π+2π)(k ∈Z ).其图象如图所示,所以该函数的最小正周期为π.反思与感悟 对于形如函数y =A sin(ωx +φ),Aω≠0时的最小正周期的求法常直接利用T =2π|ω|来求解,对于y =|A sin ωx |的周期情况常结合图象法来求解. 跟踪训练1 求下列函数的周期.(1)y =sin ⎝ ⎛⎭⎪⎫-12x +π3;(2)y =|cos 2x |. 解 (1)T =2π|-12|=4π. (2)T =π2. 类型二 三角函数的奇偶性例2 判断下列函数的奇偶性.(1)f (x )=sin ⎝ ⎛⎭⎪⎫-12x +π2; (2)f (x )=lg(1-sin x )-lg(1+sin x );(3)f (x )=1+sin x -cos 2x 1+sin x. 解 (1)显然x ∈R ,f (x )=cos 12x , ∵f (-x )=cos ⎝ ⎛⎭⎪⎫-12x =cos 12x =f (x ), ∴f (x )是偶函数.(2)由⎩⎪⎨⎪⎧ 1-sin x >0,1+sin x >0,得-1<sin x <1.解得定义域为{x |x ∈R 且x ≠k π+π2,k ∈Z }. ∴f (x )的定义域关于原点对称.又∵f (x )=lg(1-sin x )-lg(1+sin x ),∴f (-x )=lg[1-sin(-x )]-lg[1+sin(-x )]=lg(1+sin x )-lg(1-sin x )=-f (x ).∴f (x )为奇函数.(3)∵1+sin x ≠0,∴sin x ≠-1,∴x ∈R 且x ≠2k π-π2,k ∈Z . ∵定义域不关于原点对称,∴该函数是非奇非偶函数.反思与感悟 判断函数奇偶性应把握好两个关键点:关键点一:看函数的定义域是否关于原点对称;关键点二:看f (x )与f (-x )的关系.对于三角函数奇偶性的判断,有时可根据诱导公式先将函数式化简后再判断.跟踪训练2 判断下列函数的奇偶性.(1)f (x )=cos ⎝ ⎛⎭⎪⎫32π+2x +x 2sin x ; (2)f (x )=1-2cos x +2cos x -1.解 (1)f (x )=sin 2x +x 2sin x ,∵x ∈R ,f (-x )=sin(-2x )+(-x )2sin(-x )=-sin 2x -x 2sin x =-f (x ),∴f (x )是奇函数.(2)由⎩⎪⎨⎪⎧ 1-2cos x ≥0,2cos x -1≥0,得cos x =12. ∴f (x )=0,x =2k π±π3,k ∈Z . ∴f (x )既是奇函数又是偶函数.类型三 三角函数的奇偶性与周期性的综合应用例3 定义在R 上的函数f (x )既是偶函数又是周期函数,若f (x )的最小正周期是π,且当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )=sin x ,求f ⎝ ⎛⎭⎪⎫5π3的值. 解 ∵f (x )的最小正周期是π,∴f ⎝ ⎛⎭⎪⎫5π3=f ⎝ ⎛⎭⎪⎫5π3-2π=f ⎝ ⎛⎭⎪⎫-π3. ∵f (x )是R 上的偶函数,∴f ⎝ ⎛⎭⎪⎫-π3=f ⎝ ⎛⎭⎪⎫π3=sin π3=32. ∴f ⎝ ⎛⎭⎪⎫5π3=32. 反思与感悟 解决此类问题的关键是运用函数的周期性和奇偶性,把自变量x 的值转化到可求值区间内.跟踪训练3 若f (x )是以π2为周期的奇函数,且f ⎝ ⎛⎭⎪⎫π3=1,求f ⎝ ⎛⎭⎪⎫-5π6的值. 解 因为f (x )是以π2为周期的奇函数,所以f ⎝ ⎛⎭⎪⎫-5π6=f ⎝ ⎛⎭⎪⎫-5π6+π2=f ⎝ ⎛⎭⎪⎫-π3=-f ⎝ ⎛⎭⎪⎫π3=-1.类型四 函数周期性的综合应用例4 已知函数f (x )=cos π3x ,求f (1)+f (2)+f (3)+…+f (2 020)的值. 解 ∵f (1)=cos π3=12,f (2)=cos 2π3=-12,f (3)=cos π=-1,f (4)=cos 4π3=-12,f (5)=cos 5π3=12,f (6)=cos 2π=1, ∴f (1)+f (2)+f (3)+f (4)+f (5)+f (6)=0.同理,可得每连续六项的和均为0.∴f (1)+f (2)+f (3)+…+f (2 020)=f (2 017)+f (2 018)+f (2 019)+f (2 020)=cos 2 017π3+cos 2 018π3+cos 2 019π3+cos 2 020π3=cos π3+cos 2π3+cos π+cos 4π3=12+(-12)+(-1)+(-12)=-32. 反思与感悟 当函数值的出现具有一定的周期性时,可以首先研究它在一个周期内的函数值的变化情况,再给予推广求值.跟踪训练4 设函数f (x )=sin π3x ,则f (1)+f (2)+f (3)+…+f (2 015)= .解析 ∵f (x )=sin π3x 的周期T =2ππ3=6, ∴f (1)+f (2)+f (3)+…+f (2 015)=335[f (1)+f (2)+f (3)+f (4)+f (5)+f (6)]+f (2 011)+f (2 012)+f (2 013)+f (2 014)+f (2 015)=335⎝ ⎛⎭⎪⎫sin π3+sin 23π+sin π+sin 43π+sin 53π+sin 2π +f (335×6+1)+f (335×6+2)+f (335×6+3)+f (335×6+4)+f (335×6+5)=335×0+f (1)+f (2)+f (3)+f (4)+f (5)=sin π3+sin 23π+sin π+sin 43π+sin 53π=0.1.函数f (x )=3sin ⎝ ⎛⎭⎪⎫x 2-π4,x ∈R 的最小正周期为( ) A.π2B.πC.2πD.4π 答案 D2.下列函数中最小正周期为π的偶函数是( )A.y =sin x 2B.y =cos x2 C.y =cos xD.y =cos 2x 答案 D3.设函数f (x )=sin ⎝⎛⎭⎪⎫2x -π2,x ∈R ,则f (x )是( ) A.最小正周期为π的奇函数B.最小正周期为π的偶函数C.最小正周期为π2的奇函数 D.最小正周期为π2的偶函数解析 ∵sin ⎝ ⎛⎭⎪⎫2x -π2=-sin ⎝ ⎛⎭⎪⎫π2-2x =-cos 2x , ∴f (x )=-cos 2x .又f (-x )=-cos(-2x )=-cos 2x =f (x ),∴f (x )是最小正周期为π的偶函数.4.函数y =sin(ωx +π4)的最小正周期为2,则ω的值为 . 答案 ±π解析 ∵T =2π|ω|=2,∴|ω|=π,∴ω=±π. 5.若函数f (x )的定义域为R ,最小正周期为3π2,且满足 f (x )=⎩⎪⎨⎪⎧ cos x ,-π2≤x <0,sin x ,0≤x <π,则f ⎝⎛⎭⎪⎫-15π4= . 答案 22 解析 f ⎝ ⎛⎭⎪⎫-154π=f ⎝ ⎛⎭⎪⎫-15π4+3π2×3 =f ⎝ ⎛⎭⎪⎫3π4=sin 3π4=22.1.求函数的最小正周期的常用方法:(1)定义法,即观察出周期,再用定义来验证;也可由函数所具有的某些性质推出使f (x +T )=f (x )成立的T .(2)图象法,即作出y =f (x )的图象,观察图象可求出T ,如y =|sin x |.(3)结论法,一般地,函数y =A sin(ωx +φ)(其中A 、ω、φ为常数,A ≠0,ω>0,x ∈R )的周期T =2πω. 2.判断函数的奇偶性,必须坚持“定义域优先”的原则,准确求函数定义域和将式子合理变形是解决此类问题的关键.如果定义域关于原点对称,再看f (-x )与f (x )的关系,从而判断奇偶性.课时作业一、选择题1.下列函数中,周期为π2的是( ) A.y =sin x 2B.y =sin 2xC.y =cos x 4D.y =cos(-4x ) 答案 D解析 T =2π|-4|=π2. 2.函数f (x )=sin ⎝⎛⎭⎪⎫ωx +π6的最小正周期为π5,其中ω>0,则ω等于( ) A.5 B.10 C.15 D.20答案 B3.已知a ∈R ,函数f (x )=sin x -|a |(x ∈R )为奇函数,则a 等于( )A.0B.1C.-1D.±1答案 A解析 因为f (x )为奇函数,所以f (-x )=sin(-x )-|a |=-f (x )=-sin x +|a |,所以|a |=0,从而a =0,故选A.4.下列函数中是奇函数,且最小正周期是π的函数是( )A.y =cos|2x |B.y =|sin x |C.y =sin ⎝ ⎛⎭⎪⎫π2+2x D.y =cos ⎝ ⎛⎭⎪⎫3π2-2x 答案 D 解析 y =cos|2x |是偶函数,y =|sin x |是偶函数,y =sin ⎝ ⎛⎭⎪⎫π2+2x =cos 2x 是偶函数,y =cos ⎝ ⎛⎭⎪⎫3π2-2x =-sin 2x 是奇函数,根据公式求得其最小正周期T =π. 5.函数y =cos ⎝ ⎛⎭⎪⎫k 4x +π3(k >0)的最小正周期不大于2,则正整数k 的最小值应是( ) A.10 B.11 C.12 D.13答案 D解析 ∵T =2πk 4≤2,即k ≥4π, ∴正整数k 的最小值是13.6.函数y =|sin x |(1-sin x )1-sin x的奇偶性为( ) A.奇函数B.既是奇函数也是偶函数C.偶函数D.非奇非偶函数答案 D解析 由题意知,当1-sin x ≠0,即sin x ≠1时,y =|sin x |(1-sin x )1-sin x=|sin x |, 所以函数的定义域为{x |x ≠2k π+π2,k ∈Z }, 由于定义域不关于原点对称,所以该函数是非奇非偶函数.7.函数f (x )=3sin(23x +15π2)是( ) A.周期为3π的偶函数B.周期为2π的偶函数C.周期为3π的奇函数D.周期为4π3的偶函数 答案 A二、填空题8.若0<α<π2,g (x )=sin(2x +π4+α)是偶函数,则α的值为 . 答案 π4解析 要使g (x )=sin(2x +π4+α)为偶函数, 则需π4+α=k π+π2,k ∈Z ,∴α=k π+π4,k ∈Z . ∵0<α<π2,∴α=π4. 9.函数f (x )=2sin ⎝⎛⎭⎪⎫5π2+2x +1的图象关于 对称.(填“原点”或“y 轴”) 答案 y 轴解析 f (x )=2sin ⎝ ⎛⎭⎪⎫5π2+2x +1=2cos 2x +1, ∵f (-x )=f (x ),∴f (x )是偶函数.∵偶函数的图象关于y 轴对称,∴f (x )的图象关于y 轴对称.10.关于x 的函数f (x )=sin (x +φ)有以下说法: ①对任意的φ,f (x )都是非奇非偶函数; ②存在φ,使f (x )是偶函数;③存在φ,使f (x )是奇函数;④对任意的φ,f (x )都不是偶函数.其中错误的是 .(填序号)答案 ①④解析 当φ=0时,f (x )=sin x 是奇函数.当φ=π2时,f (x )=cos x 是偶函数. 三、解答题11.判断下列函数的奇偶性.(1)f (x )=cos(π2+2x )cos(π+x ); (2)f (x )=1+sin x +1-sin x ;(3)f (x )=e sin x +e -sin x e sin x -e-sin x . 解 (1)∵x ∈R ,f (x )=cos(π2+2x )cos(π+x ) =-sin 2x ·(-cos x )=sin 2x cos x .∴f (-x )=sin(-2x )cos(-x )=-sin 2x cos x=-f (x ),∴y =f (x )是奇函数.(2)∵对任意x ∈R ,-1≤sin x ≤1,∴1+sin x ≥0,1-sin x ≥0,∴f (x )=1+sin x +1-sin x 的定义域是R .又∵f (-x )=1+sin (-x )+1-sin (-x ), =1-sin x +1+sin x =f (x ),∴y =f (x )是偶函数.(3)∵e sin x -e -sin x ≠0,∴sin x ≠0,∴x ∈R 且x ≠k π,k ∈Z .∴定义域关于原点对称.又∵f (-x )=e sin (-x )+e -sin (-x)e sin (-x )-e-sin (-x ) =e -sin x +e sin x e -sin x -esin x =-f (x ),∴y =f (x )是奇函数. 12.已知f (x )是以π为周期的偶函数,且当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )=1-sin x ,求当x ∈⎣⎢⎡⎦⎥⎤52π,3π时,f (x )的解析式. 解 当x ∈⎣⎢⎡⎦⎥⎤52π,3π时,3π-x ∈⎣⎢⎡⎦⎥⎤0,π2, ∵当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )=1-sin x , ∴f (3π-x )=1-sin(3π-x )=1-sin x .又∵f (x )是以π为周期的偶函数,∴f (3π-x )=f (-x )=f (x ), ∴f (x )的解析式为f (x )=1-sin x ,x ∈⎣⎢⎡⎦⎥⎤52π,3π. 13.已知函数f (x )满足f (x +2)=-1f (x ),求证:f (x )是周期函数,并求出它的一个周期. 证明 ∵f (x +4)=f (x +2+2)=-1f (x +2)=f (x ),∴f (x )是周期函数,且4是它的一个周期.四、探究与拓展14.若函数f (x )=2cos ⎝⎛⎭⎪⎫ωx +π3的最小正周期为T ,且T ∈(1,4),则正整数ω的最大值为 .答案 6解析 ∵T =2πω,1<2πω<4,则π2<ω<2π. ∴ω的最大值是6.15.欲使函数y =A sin ωx (A >0,ω>0)在闭区间[0,1]上至少出现50个最小值,求ω的最小值.解 函数y =A sin ωx 的最小正周期为2πω,因为在每一个周期内,函数y =A sin ωx (A >0,ω>0)都只有一个最小值,要使函数y =A sin ωx 在闭区间[0,1]上至少出现50个最小值,则y 在区间[0,1]内至少含4934个周期,即⎩⎪⎨⎪⎧ T =2πω,4934T ≤1,解得ω≥199π2,所以ω的最小值为199π2.。
5.3.1正弦函数余弦函数的图象与性质(第1课时)课件高一上学期数学

π
的图象向右平移 个单位长度,得到
2
g(x)的图象.
3.函数y=1-sin x,x∈[0,2π]的大致图象是( B )
1 2 3 4 5 6 7 8 9 10
解析 当 x=0 时,y=1;当
当
3π
x= 时,y=2;当
2
π
x=2 时,y=0;当
x=π 时,y=1;
x=2π 时,y=1.结合选项中的图象可知 B 正确.故选 B.
π
3
2
2π
0
1
1
2
3
规律方法
用“五点法”画函数y=Asin x+b(A≠0)或y=Acos x+b(A≠0)在[0,2π]
上的简图的步骤.
(1)列表:
x
0
sin x(或cos x) 0(或1)
y
π
2
1(或0)
b(或A+b) A+b(或b)
π
3π
2
2π
0(或-1)
-1(或0)
0(或1)
b(或-A+b)
解 将 y= 1-cos 2 化为 y=|sin x|,
即 y=
sin(2π ≤ ≤ π + 2π,∈Z),
-sin(π + 2π < < 2π + 2π,∈Z).
因此首先作出函数y=sin x的图象,然后将图象在x轴下方的部分翻折到上
方即可得到函数y=|sin x|的图象,其图象如图所示.
x的取值集合为
解析 当
π
2
,m),则m=
2π
4π
{x∣ 3 +2kπ<x< 3 +2kπ,k∈Z}
正弦、余弦函数的性质(一)

3
) 的最小正周期为 T,且 T 1,3 ,则正整数 的最大值为
【课堂小结】结合学习目标,总结我的收获!
1、知识方面: 2、方法方面:
【课下作业】
预习正弦、余弦函数的奇偶性、单调性。
【课后反思】 1、思想方面 2、方法方面
4
3
)
2) y cos 2 x
3) y 3 sin
x 2 5
(2)若 0 ,如:① y 3cos( x) ; ② y sin(2 x) ; ③ y 2sin(
x R .则这三个函数的周期又是什么?
①
1 x ), 2 6
②
③
一般结论:函数 y A sin( x ) 及函数 y A cos( x ) , x R 的周期为 探究三:求函数的周期: y sin x
6
2 2 ) sin ,能若函数 f ( x) 的周期为 T ,则 kT , k Z 也是 f ( x) 的周期吗?为什么?
【合作探究】
探究一:求下列三角函数的周期: ①y
思想火花
② y cos 4 x (3) y sin( x
2
3 2
2
0
2
3 2
2
sin x
y – 1
5
2
2
O 1 –
2
2
5
x
规律: 1正弦函数的图象是有规律不断重复出现的; 2规律是:每隔 2重复出现一次(或者说每隔 2k,kZ 重复出现) 3这个规律由诱导公式 sin(2k+x)=sinx 可以说明 结论:象这样一种函数叫做周期函数。 文字语言:正弦函数值按照一定的规律不断重复地取得; 符号语言:当 x 增加 2k ( k Z )时,总有 ___________________________________________________. 3.余弦函数是否也具有同样的性质?请用符号语言叙述。
高中数学必修4三角函数常考题型:正弦函数、余弦函数的性质(一)

正弦函数、余弦函数的性质(一)【知识梳理】1.函数的周期性(1)对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有f (x +T )=f (x ),那么函数f (x )就叫周期函数,非零常数T 叫做这个函数的周期.(2)如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数叫做f (x )的最小正周期.2.正弦、余弦函数的周期性正弦函数y =sin x (x ∈R )和余弦函数y =cos x (x ∈R )都是周期函数,2k π(k ∈Z ,且k ≠0)都是它们的周期.最小正周期为2π.3.正弦、余弦函数的奇偶性 正弦函数是奇函数,余弦函数是偶函数.【常考题型】题型一、函数的周期【例1】 求下列三角函数的周期:(1)y =3sin x ,x ∈R ;(2)y =cos 2x ,x ∈R ;(3)y =sin ⎝⎛⎭⎫13x -π4,x ∈R ;(4)y =|cos x |,x ∈R .[解] (1)因为3sin(x +2π)=3sin x ,由周期函数的定义知,y =3sin x 的周期为2π.(2)因为cos 2(x +π)=cos(2x +2π)=cos 2x ,由周期函数的定义知,y =cos 2x 的周期为π.(3)因为sin ⎣⎡⎦⎤13(x +6π)-π4=sin ⎝⎛⎭⎫13x +2π-π4 =sin ⎝⎛⎭⎫13x -π4,由周期函数的定义知,y =sin ⎝⎛⎭⎫13x -π4的周期为6π.(4)y =|cos x |的图像如图(实线部分)所示,由图像可知,y =|cos x |的周期为π.【类题通法】求函数最小正周期的常用方法求三角函数的周期,一般有两种方法:(1)公式法,即将函数化为y =A sin(ωx +φ)+B 或y=A cos(ωx +φ)+B 的形式,再利用T =2π|ω|求得;(2)图像法,利用变换的方法或作出函数的图像,通过观察得到最小正周期.【对点训练】求下列函数的最小正周期:(1)y =3sin ⎝⎛⎭⎫πx 2+3;(2)y =cos|x |.解:(1)由T =2ππ2=4,可得函数的最小正周期为4. (2)由于函数y =cos x 为偶函数,所以y =cos|x |=cos x ,从而函数y =cos|x |与y =cos x 的图像一样,因此最小正周期相同,为2π.题型二、三角函数的奇偶性【例2】 (1)函数f (x )=2sin 2x 的奇偶性为( )A .奇函数B .偶函数C .既是奇函数又是偶函数D .非奇非偶函数(2)判断函数f (x )=sin ⎝⎛⎭⎫34x +3π2的奇偶性.(1)[解析] ∵f (x )的定义域是R .且f (-x )=2sin 2(-x )=-2sin 2x =-f (x ),∴函数为奇函数.[答案] A(2)[解] ∵f (x )=sin ⎝⎛⎭⎫34x +3π2=-cos 34x , ∴f (-x )=-cos ⎝⎛⎭⎫-34x =-cos 34x , ∴函数f (x )=sin ⎝⎛⎭⎫34x +3π2为偶函数.【类题通法】与三角函数奇偶性有关的结论(1)要使y =A sin(ωx +φ)(Aω≠0)为奇函数,则φ=k π(k ∈Z );(2)要使y =A sin(ωx +φ)(Aω≠0)为偶函数,则φ=k π+π2(k ∈Z ); (3)要使y =A cos(ωx +φ)(Aω≠0)为奇函数,则φ=k π+π2(k ∈Z ); (4)要使y =A cos(ωx +φ)(Aω≠0)为偶函数,则φ=k π(k ∈Z ).【对点训练】若函数y =sin(x +φ)(0≤φ≤π)是R 上的偶函数,则φ等于( )A .0B.π4C.π2 D .π解析:选C 法一:由于y =sin ⎝⎛⎭⎫x +π2=cos x ,而y =cos x 是R 上的偶函数,所以φ=π2. 法二:因为y =sin x 的图像的对称轴为x =π2+k π,k ∈Z ,所以函数y =sin(x +φ)的图像的对称轴应满足x +φ=π2+k π.又y =sin(x +φ)是偶函数,所以x =0是函数图像的一条对称轴,所以φ=π2+k π,k ∈Z ,当k =0时,φ=π2. 题型三、三角函数的奇偶性与周期性的应用【例3】 若函数f (x )是以π2为周期的偶函数,且f ⎝⎛⎭⎫π3=1,求f ⎝⎛⎭⎫-17π6的值. [解] ∵f (x )的周期为π2,且为偶函数, ∴f ⎝⎛⎭⎫-17π6=f ⎝⎛⎭⎫-3π+π6=f ⎝⎛⎭⎫-6×π2+π6 =f ⎝⎛⎭⎫π6.而f ⎝⎛⎭⎫π6=f ⎝⎛⎭⎫π2-π3=f ⎝⎛⎭⎫-π3=f ⎝⎛⎭⎫π3=1,∴f ⎝⎛⎭⎫-17π6=1. 【类题通法】解决三角函数的奇偶性与周期性综合问题的方法利用函数的周期性,可以把x +nT (n ∈Z )的函数值转化为x 的函数值.利用奇偶性,可以找到-x 与x 的函数值的关系,从而可解决求值问题.【对点训练】若f (x )是奇函数,且f (x +1)=-f (x ),当x ∈(-1,0)时,f (x )=2x +1,求f ⎝⎛⎭⎫92的值.解:∵f (x +1)=-f (x ),∴f (x +2)=-f (x +1).∴f (x +2)=f (x ),即T =2.∴f ⎝⎛⎭⎫92=f ⎝⎛⎭⎫92-4=f ⎝⎛⎭⎫12.又∵f (x )为奇函数,且x ∈(-1,0)时,f (x )=2x +1,∴f ⎝⎛⎭⎫12=-f ⎝⎛⎭⎫-12 =-⎣⎡⎦⎤2×⎝⎛⎭⎫-12+1=0,故f ⎝⎛⎭⎫92=0. 【练习反馈】1.函数f (x )=sin(-x )的奇偶性是( )A .奇函数B .偶函数C .既是奇函数又是偶函数D .非奇非偶函数解析:选A 由于x ∈R ,且f (-x )=sin x =-sin(-x )=-f (x ),所以f (x )为奇函数.2.函数f (x )=2sin ⎝⎛⎭⎫π2-x 是( )A .最小正周期为2π的奇函数B .最小正周期为2π的偶函数C .最小正周期为π的奇函数D .最小正周期为π的偶函数解析:选B 由于f (x )=2sin ⎝⎛⎭⎫π2-x =2cos x ,其最小正周期为2π,且为偶函数.3.f (x )=sin x cos x 是________(填“奇”或“偶”)函数.解析:x ∈R 时,f (-x )=sin(-x )cos(-x )=-sin x cos x =-f (x ),即f (x )是奇函数. 答案:奇4.函数y =cos (1-x )π2的最小正周期是________. 解析:∵y =cos ⎝⎛⎭⎫-π2x +π2,∴T =2ππ2=2π×2π=4. 答案:45.定义在R 上的函数f (x )既是奇函数又是周期函数,若f (x )的最小正周期为π,且当x ∈⎣⎡⎭⎫-π2,0时,f (x )=sin x ,求f ⎝⎛⎭⎫-5π3的值. 解:∵当x ∈⎣⎡⎭⎫-π2,0时,f (x )=sin x ,且最小正周期为π, ∴f ⎝⎛⎭⎫-5π3=f ⎝⎛⎭⎫π3-2π=f ⎝⎛⎭⎫π3=-f ⎝⎛⎭⎫-π3= -sin ⎝⎛⎭⎫-π3=sin π3=32.。
5.4.2正弦余弦函数的性质课件(1)高一上学期数学人教A版

6
变式训练:求下列函数的最小正周期:
+
(1)y=sin
(x∈R);
+
(2)y=3cos -
(x∈R);
(3)y=|cos x|(x∈R).
解:(1)令 y=f(x)=sin
+ +
因为 sin
所以 sin ( + ) +
+
,
=sin
+
,
=sin
+
,
即 f(x+π)=f(x).
所以函数 f(x)=sin
问题提出
问题二:图象具有周期性,函数的横、纵坐标有何特点?
2
2
32
2
A1
·
·
1 B
1
y
y
x
O
1
由正弦函数的诱导公式:
2
sin(x+2kπ) = sinx
可得:sin(2π+x)=sinx
2
·
·
B2
பைடு நூலகம்
3
2
A2
2x+2π5
2
5
sin sin
sin(2 )
=-f -
=-sin -
=sin =
.
• 反思感悟
•
解决三角函数的奇偶性与周期性综合问题的
方法:利用函数的周期性,可以把x+nT(n∈Z)的
函数值转化为x的函数值.利用奇偶性,可以找到x与x的函数值的关系,从而解决求值问题.
目标检测
1.(多选题)下列是定义在R上的四个函数图象的
一部分,其中是周期函数的是(
正弦函数、余弦函数的性质(全)

当且仅当 x 2k, ( k Z) 时 , (cos x)min 1.
y
1
-4 -3
-2
- o
-1
2
3
4
5 6 x
ycox(sxR)
例题
求使函数
y3cos2x( )
取得最大值、最小值的
2
自变量的集合,并写出最大值、最小值。
y
1
3 5 2
而在每个闭区间[ 2k , 3 2k ](k Z )上都是
2
2
减函数,其值从1减小到-1。
探究:余弦函数的单调性 y
1
3 5 2
2 3
2
2
O 3 2 5 3 x
2
2
2
1
当x在区间 [3 , 2 ]、[,0]、[,2 ][3 , 4 ] 上时,
4
5 6 x
y=cosx (xR)
y
1
-4 -3
-2
- o
-1
2
3
4
5 6 x
一.周期性
对于函数f (x),如果存在一个非零常数T,使得 当x取定义域内的每一个值时,都有 f (x+T)=f (x)
那么函数f (x)就叫做周期函数,非零常数T叫做这个 函数的周期。
注:1正、T弦要是函非数零常是数周期函数,2k(kZ且 k0),最小
其值从 1减至-1
五、余弦函数的单调性
y
1
-3 5 -2 3
2
2
o - 2
2
-1
x - … …
2
cosx -1
0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 2
O
y
2
2
y=cosx
2
2
2
x
2
-1
2
余弦函数在每一个闭区间 [ 2 k 2 k
上都是增函数; 在每一个闭区间 [2 k 2 k 上都是减函数.
2
2
2 2
上都是增函数;
正弦曲线关于点(kπ ,0)对称.
p 正弦曲线关于直线 x = k p + (k ? Z ) 对称. 2
新知探究
根据余弦函数的图象,你能说出它们具有 哪些性质?
2
2
2 2
1 2
O
y
2
2
y=cosx
2
2
2
x
2
-1
2
探求新知
余弦函数的定义域为R.
余弦函数的值域为 [-1 , 1].
当且仅当
x 2 k , k Z
ymax 1
当且仅当 x 2 k , k Z ymin 1
余弦函数是偶函数. 余弦函数是周期函数.
2
2
2 2
正弦函数是奇函数.
复习巩固
一般地,函数y = A sin( wx + j )
(A ? 0, w 0) 的最小正周期是多少?
T
2
探究新知
在每一个闭区间 [ 2k 2k 2
上都是减函数
正弦函数在每一个闭区间 [ 2k 2k 2
世上还是好人多,我的阿爹阿妈收养了我,供我吃穿供我上学,教育我怎么做人。虽然日子过得很清苦,但是我毕竟有 了一个温暖的家,阿爹的疼阿妈的爱滋润着我的心田„„你们知道吗?我家姊妹多,在那样的年代,只靠阿爹阿妈两个 人地里来地里去是养不活全家的,所以大狙二狙还有年仅十五岁的三狙相继缀学去了深山的煤矿拉煤„„曾记得阿爹生 病的时候,为了给阿爹治病,我偷偷地跟五妮子和六丫头去了煤矿。只干了几个小时的活,手上就磨起了泡,满脸乌黑, 我这才知道一个女孩子家拉煤是什么滋味„„后来被阿爹知道了,狠狠地把五妮子和六丫头训了一顿儿,说我和他们不 同,细皮嫩肉的不能去干那粗活儿,他让我安心地读书,长大了去大的城市生活„„我拉着阿爹的手哭了,你们知道我 的阿爹是多么的疼我多么的爱我吗?!„„ 阿爹走了,我的眼泪哭干了。我真后悔阿爹临终前告诉了我的身世„„我对你们的态度彻底改变了。 六叔,试问你能与我的阿爹能相比吗?痛定思痛,无论我的亲生父母是谁,以前如何待我,我毕竟是吃过六婶儿的奶, 我是不会忘记的。 往事难追,这里毕竟有养育了我的阿妈和我的兄弟狙妹,我已离不开这片土地和这群爱我的孩子们了。 六叔六婶儿,我已经长大了,至于我究竟姓什么对我来说已经不重要了„„因为这儿的天是蓝的土是黄的,这儿有我的 事业,我要把青春献给那些失去母爱的孩子们„„ 远方的女儿:荷花执笔于中秋之夜。 “荷花不记恨我们,她原谅我们了„„她终于承认她是我们的女儿了„„”妻子 流着泪兴奋地叫了起来。 列车在缓缓行驶,透过车窗回首瞭望,太阳升起来了,温暖的阳光洒满了远处的千山万壑。 我仿佛听到荷花的声音:爸——爸——我的眼睛湿润了„„我忘不了,在这群山之间有一座朴实的爱心小学。 祝福你,我的女儿荷花„„有一天,村里来了个放大照片的人,说是专门为老年人上门服务。我的母亲把这人领到家中, 拿出侄儿的全家福把它放大了,用相框装好挂在显眼的地方,静静地看上几眼。 若是来了客人,母亲就向他们炫耀着说:“这是我的娘家侄儿,我的重侄女长得多俊俏,就像我家的小荷„„” 没有外人时,时常念叨着:“多好的一家人啊,我的孙女真有福气„„唉!苦就苦了我家的荷花„„” 听了母亲的话,我终于说出了我的心愿:“爹„„娘„„我想去趟山西„„把荷花领回家„„”
与横轴的交点是对称中心
理论迁移
例 1. 求下列函数的最大值和最小值, 并写出取最大值、最小值时自变量x的集 合;再求其对称轴与对称中心. (1) y=cosx+1,x∈R;
(2)y=-3sin2x,x∈R.
写出函数的单调区间
例2 比较下列各组数的大小: 化 化 (1) sin( )与 sin( ); 入 同 18 10 同 名 23 17 (2) cos( )与 cos( ). 一 5 单 (3) cos 与 sin 调 10 10 区 间
理论迁移
例3 求下列函数的单调递增区间. 1 (1) y sin( x ) 2 3 2 (2) y 2 sin( 3 x) 3 例4
x∈[-2π ,2π ]的单调递增区间.
1 x ) ) , 求函数 y sin( x 2 3 23
理论迁移
例1 求下列函数的周期: 例5. 已知定义在R上的函数f(x)满足 f(x+2)+f(x)=0,试判断f(x)是否为
周期函数?
ห้องสมุดไป่ตู้
例6. 已知定义在R上的函数f(x)满 足f(x+1)=f(x-1),且当x∈[0,2] 时,f(x)=x-2,求f(10)的值. 几个周期函数定义的等价式:
f ( x a) f ( x), f ( x a) f ( x a),a 0 1 1 f ( x a) , f ( x a) T 2a f ( x) f ( x)
1 2
O
y
2
2
y=cosx
2
2
2
x
2
-1
2
余弦曲线关于点
p (k p + , 0) 2
对称.
余弦曲线关于直线x=kπ 对称.
函数
sinx
cosx
对称轴 x k 2
对称中心
(k , 0)
( k , 0) 2
x k
波峰、波谷处为对称轴
课后作业
1.《学海》第9课时
课后作业
作业2:P46:A组3、4 补充:求下列函数的最大值和最小值,
及相应的自变量x的集合;再求其对称轴
与对称中心.最后求出其单调区间.
1 1 (1) y 1 cos x;(2) y 2sin( x ) 2 3 2 3
成都讨账公司 成都讨债公司 / 成都讨债公司 成都讨账公司
拓展延伸
例7. 定义在R上的函数f(x)既是 偶函数,又是周期函数,若f(x) 的最小正周期为 , 当x [0, 5 f(x)=sinx,求f( )的值. 3
2
]时,
拓展延伸
例8. 求下列函数的值域.
(1) y cos x 2 sin x 2;
2
2 cos x (2) y . 2 cos x
高一数学必修4第一章
1.4.2正弦函数、余弦函数的性质
(第三课时)
复习巩固
正弦函数的性质:1
-6π -4π -5π -3π -1 -2π -π
O
π
2
3 2
3π 2π 4π
5π 6π
x
正弦函数的定义域为R. 正弦函数的值域为 [-1 , 1].
复习巩固
当且仅当 x 2 k , k Z ymax 1 , k Z ymin 1 当且仅当x 2 k