SPC过程控制
SPC的基本原理和过程控制

SPC的基本原理和过程控制概述SPC(统计过程控制)是一种常用于质量管理的统计方法,用于监控过程中的变异性,并及时采取控制措施来保持过程的稳定性和稳定品质。
本文将介绍SPC的基本原理和过程控制。
1. SPC的基本原理SPC的基本原理是基于统计学原理和质量管理理论。
其核心思想是通过收集和分析过程中的数据,以了解过程的变异性,并根据统计指标来判断过程是否处于控制状态。
基本原理包括:1.1 过程稳态与过程能力过程稳态是指过程在一个稳定区域内运行,并且其变异性是可控制的。
稳态下,过程的输出值会在一定的范围内波动,但是变异性是在可控范围内,不会出现特殊原因引起的异常波动。
过程能力是评估过程稳态的指标,通常使用过程能力指数(Cp)和过程能力指数(Cpk)来衡量。
Cp表示过程在规范要求的容差范围内的能力,而Cpk则考虑了过程的位置偏离能力。
1.2 变异性的来源过程中的变异性可以分为两种来源:常因和特因。
常因变异性是过程内在的、长期固定的,通常由一系列可以量化和测量的系统性因素引起。
这种变异性可以通过改善操作方法、调整设备或改善材料来减小。
特因变异性是由特殊原因引起的,通常是偶然事件,属于非系统的因素。
特因变异性无法通过常因改进来消除,应及时进行纠正。
1.3 统计过程控制图SPC使用控制图来监控过程的变异性。
控制图是一种统计图表,可以帮助鉴别过程中的常因和特因变异,以判断过程是否处于控制状态。
常用的控制图包括平均图(X-图),范围图(R-图),以及带有管制限的控制图(带A、B、C及D控制限的图表)。
控制图上的管制限是根据统计原理确定的,当过程数据落在管制限之外时,意味着过程出现特殊原因变异,需要采取措施进行纠正。
2. 过程控制方法SPC的过程控制方法包括以下几个步骤:2.1 数据收集首先,需要确定要收集的数据类型和采样方法。
数据类型通常是定量的,可以是尺寸、重量、时间等。
采样方法应该能够反映出过程的变异性,并且要求数据具有代表性。
统计过程控制(SPC)

11
控制图的选择
控制图的选定
计量值 数据性质
计数值
平均值
“n”=10~25 “n”是否较大
n≧1 样本大小 n≧2
Cl的性质
中位数 “n”=2~5
“n”=1
不良数
缺陷数
不良数或
缺陷数
不一定
一定
“n”是否一定
单位大小 是否一定 不一定 一定
X-s 图
X-R 图
X-R
X-Rm “p”
图
图图
“np” “c”
数据类别: 计数值数据:只以缺陷数和个数表示,不能连续取值的数据 计量值数据:以产品本身的特性来表示,可以连续取值的数据
2
两种变异
普通性(特定性)变异:不易避免的原因(普通 原因)造成的变异,如操作人员的熟练程度的 差异、设备精度与保养好坏的差异、同批原材 料本身的差异
特殊性(偶尔性)变异:可以避免也必须避免 的原因(特殊原因)造成的变异,如不同原材料 之间的差异、设备故障
“u”
图图
图
12
案例1(控制图的选择)
质量特性 长度 重量 乙醇比重 电灯亮/不亮 每一百平方米的 脏点
样本数 5 10 1
100 100平方米
选用什么图
13
答案1
质量特性 长度 重量 乙醇比重 电灯亮/不亮 每一百平方米的 脏点
样本数 5 10 1
100 100平方米
选用控制图 均值极差控制图
通常用来消除变差的普通原因 几乎总是要求管理措施,以便纠正 大约可纠正85%的过程问题
8
控制图的目的
控制图和一般的统计图不同,因其不仅能 将数值以曲线表示出来,以观其变异之趋 势,且能显示变异系属于机遇性或非机遇 性,以指示某种现象是否正常,而采取适 当之措施。
SPC-统计过程控制介绍

4
SPC常用术语解释
名称 平均值 (X) 一组测量值的均值 一个子组、样本或总体中最大与最小值之差 用于代表标准差的希腊字母 过程输出的分布宽度或从过程中统计抽样值(例如:子组均值)的分布宽度的 量度,用希腊字母σ或字母s(用于样本标准差)表示。 造成变差的一个原因,它影响被研究过程输出的所有单值;在控制图分析中, 它表现为随机过程变差的一部分。 一种间断性的,不可预计的,不稳定的变差根源。有时被称为可查明原因,它 存在的信号是:存在超过控制限的点或存在在控制限之内的链或其它非随机性 的图形。 解释
6
福特(Ford)马自达(Mazda)案例
Mazda
Ford
7
生产检验与控制的演化
最终产品检验 公差控制: 过程控制: 规范控制(Specification Control) 统计控制 (Statistical Control)
8
质量管理的基本原則
INPUT
PROCESS
OUTPUT
针对过程的重要控制 参数和原材料所做的 才是SPC 原料 PROCESS 測量 結果
针对产品所做的 仍只是在做SQC
12
预防或容忍?
人
机 法
环 测量 测量
好 結果
原料
PROCESS
不好
不要等产品做出来后再去看它好不好 而是在制造的时候就要把它制造好
13
SPC的作用
确保制程持续稳定、可预测。 提高产品质量、生产能力、降低成本。 为制程分析提供依据。 区分变差的特殊原因和普通原因,作为采取局部措施或对系 统采取措施的指南。
UCL CL LCL
3 σ 3 σ
33
控制图的使用
控制图的判读 使用控制图注意事项
统计过程控制(SPC)

(三) x R 控制图的操作步骤
1. 确定控制对象(统计量) 2. 收集k组预备数据(一般K=25;每组数
据个数n ≥ 2;遵循合理子组原则) 3. 计算每一个样本的均值 X i 与极差 Ri 。 4. 计算 X与R 5. 计算R图控制限并作图 6. 用各样本点绘在图中,判断状态。
分析过程若失控或异常,找出原因, 进行纠正,防止再发生。
7. 计算 X 图控制限并作图,判断状态。 8. 计算过程能力指数验证是否符合要求 9. 延长控制限,作控制用控制图,进行日
常管理
四、 X S 图(掌握) 五、X-Rs图(了解)
六、Me-R图(了解)
七、P控制图
(一)P控制图的控制状态
P 常数
n
n
ˆp p di / ni
i1 i1
(二)P控制图的统计基础为二项分布,其
内容 (1)利用控制图分析过程的稳定性,对
过程存在的异常原因进行预警;
(2)计算过程能力指数分析稳定的过程 能力满足技术要求的程度,对过程质量进行 评价。
三、统计过程控制的特点 是一种预防性的方法 贯彻预防原则是现代质量管理的核心 强调全员参与
SPC的涵义
为了贯彻预防原则,应用统计技术对 过程各阶段评估和监控,建立并保持过程 处于可接受的并且稳定的水平从而保证产 品与服务符合规定的要求的一种质量管理 技术。
过程能力指数 过程性能指数
CP
TU TL 6ˆ ST
PP
TU TL 6ˆ LT
其中 ˆ St —— 短期波动的标准差估计,在稳态
下计算
ˆ St
R d2
或
S C4
ˆ Lt —— 长期波动的标准差估计,在实
际情况下计算 ˆ Lt S
SPC统计过程控制程序

SPC统计过程控制程序SPC (Statistical Process Control,统计过程控制)是一种通过收集和分析数据来监控和控制过程稳定性和性能的统计方法。
SPC可以帮助企业了解和改进生产过程,并减少产品不合格率和废品,提高产品质量和客户满意度。
SPC的基本思想是:通过收集连续生产过程中的样本数据,分析这些数据,并与事先设定的控制界限进行比较,以判断过程是否处于控制状态。
如果过程处于控制状态,那么产品的质量将是稳定的、可预测的。
如果过程处于失控状态,就需要采取措施来确定并消除原因,以使过程回到控制状态。
SPC的目标是通过减少过程变异来提高产品质量,并确保过程处于可控状态。
它可以用于任何类型的生产过程,不论是制造业还是服务业。
SPC的主要工具包括:控制图、过程能力分析和统计分析等。
控制图是SPC最常用的工具之一,用于监控过程的稳定性。
控制图可以显示在连续生产过程中所收集的样本数据的变异性,并与控制界限进行比较。
常用的控制图有X-bar图、R图、P图和C图等。
X-bar图用于监控过程的平均值,R图用于监控过程的离散程度,P图和C图用于监控过程的不良品率。
通过比较样本数据的统计指标与控制界限,可以判断过程是否处于控制状态。
过程能力分析可以衡量过程的性能,并确定过程是否具备满足客户要求的能力。
过程能力分析可以通过计算过程的Cp、Cpk、Pp和Ppk等指标来完成。
这些指标可以反映过程的长期稳定性和短期稳定性,进而评估过程的能力。
统计分析是SPC的基础,通过对收集到的数据进行概率分布拟合、假设检验等统计分析方法,可以确定控制界限的设置和过程能力的评估。
统计分析能够为决策提供科学的依据。
SPC的应用可以帮助企业实现以下几个方面的目标:1.提高产品质量:SPC可以监控和控制生产过程中的变异性,降低产品缺陷和废品率,提高产品质量和一致性。
2.降低成本:通过减少废品和不良品的产生,可以降低生产成本。
3.提高生产效率:SPC可以帮助发现和解决生产过程中的问题,提升生产效率和产能。
SPC控制过程原理

SPC控制过程原理什么是SPC?SPC〔Statistical Process Control,统计过程控制〕是一种通过统计方法监测和控制过程的质量的方法。
它采用统计技术对过程中的数据进行分析,以了解过程的变化,并通过改变和调整过程的输入变量来控制过程的输出变量。
SPC最早是由日本质量专家石田纯一于20世纪20年代提出并开展起来的。
它是一种基于统计学的方法,可应用于各种不同的行业和过程,如制造业、效劳业、医疗保健,甚至是金融领域。
SPC的控制过程原理SPC的控制过程原理基于以下几个关键概念:SPC的目标是确保过程的稳定性。
过程的稳定性意味着过程的输出变量在长期运行中保持在一定的范围内,不受特殊因素的影响。
稳定的过程是可控的,其输出变量可以预测和控制。
2. 随机变异和特殊因素在SPC中,过程的变化通常分为两种类型:随机变异和特殊因素。
随机变异是由于正常的随机因素导致的,这种变异是过程的天然特性。
特殊因素是指突发的、非正常的因素,如设备故障、操作错误等。
SPC的目标是通过控制过程的输入变量来减少特殊因素的影响,从而将过程的变异控制在合理范围内。
SPC使用过程控制图来监控过程的稳定性和变异性。
过程控制图是基于统计学原理的图表,可以显示过程的变异范围和趋势。
常用的过程控制图包括均值控制图、范围控制图、方差控制图等。
均值控制图用于监控过程的中心位置是否稳定。
它通过绘制样本均值的变化情况来判断过程的稳定性。
范围控制图用于监控过程的变异范围是否稳定。
它通过绘制样本范围的变化情况来判断过程的稳定性。
方差控制图用于监控过程的变异程度是否稳定。
它通过绘制样本方差的变化情况来判断过程的稳定性。
4. 稳定过程与过程改良通过SPC可以判断过程的稳定性,如果过程是稳定的,即随机变异占主导地位,那么可以维持现有的过程状况。
如果过程是不稳定的,即特殊因素占主导地位,那么需要进行过程改良来减少特殊因素的影响。
过程改良可以通过各种方法来实现,如六西格玛〔Six Sigma〕、质量管理体系〔QMS〕等。
SPC统计过程控制

SPC统计过程控制SPC(Statistical Process Control,统计过程控制)是一种基于统计原理和数据分析方法的质量管理工具,用于监控和控制生产过程中的变异性,以确保产品或服务的质量。
SPC是由质量概念的先驱沃尔特·A·谢温(Walter A. Shewhart)在20世纪20年代初首次引入的。
它的目的是通过使用统计技术来分析生产过程中的数据,从而减少产品或服务的变异性,提高整体质量水平。
SPC的基本原理是通过统计分析来了解生产过程中的变异性,以便及时采取措施来纠正和调整生产过程。
它主要包括以下步骤:1.确定控制指标:选择适当的指标来监控生产过程的变异性。
常用的指标包括尺寸、重量、硬度等。
2.收集数据:根据预定的采样计划和频率,定期收集生产过程中的数据。
数据可以通过各种手段收集,如直接测量、抽样检验等。
3.绘制控制图:使用统计方法将收集到的数据绘制成控制图。
控制图是一种图表,它显示了一个或多个过程指标的变化情况,以及上下限范围。
通过观察控制图,人们可以判断生产过程是否处于控制状态,是否存在异常情况。
4.分析控制图:根据控制图上的变化趋势和模式,进行统计分析,以确定生产过程的绩效。
常用的统计分析方法包括均值、标准差、极差等。
5.制定改进措施:根据分析的结果,确定需要改进的方面,并制定相应的措施。
改进措施可以包括修改生产过程参数、调整设备、培训员工等。
6.监控和调整:持续监控生产过程,并根据需要进行调整,以确保控制图保持在预定的限制范围内。
SPC的优势在于它能够提供实时和持续的监控生产过程的能力。
通过采集数据和绘制控制图,生产者可以及时发现生产过程中的变异,并采取措施进行纠正。
这样可以防止不良品的产生,并提高产品或服务的一致性和质量。
此外,SPC还具有以下几点优势:1.提高生产效率:通过控制和减少生产过程中的变异性,SPC可以提高生产效率。
它能够帮助生产者发现并消除生产过程中的浪费和不必要的变动,从而提高生产效率和资源利用率。
SPC统计过程控制技术

SPC统计过程控制技术SPC是指统计过程控制(Statistical Process Control)技术,它是一种采用统计方法来监控和控制生产过程的质量管理工具。
SPC技术通过对过程数据进行统计分析,能够帮助企业发现生产过程中的特殊因素,及时采取措施以避免或减少产品质量问题的发生。
本文将介绍SPC技术的原理、方法和应用。
SPC技术的原理是建立在统计学基础上的。
它利用统计学中的均值、标准差、概率分布等概念和方法,对生产过程中的各种因素进行统计分析,从而了解过程的变异情况。
通过对过程数据的采集和分析,SPC技术可以判断过程稳定性,确定过程能否满足质量要求,并通过控制图等图表形式展示分析结果,帮助生产人员进行决策和改进。
SPC技术主要包括过程能力分析、控制图分析和统计抽样等方法。
过程能力分析是通过统计计算和分析得到的数值指标,评估生产过程是否具备满足产品质量要求的能力。
常用的指标包括过程能力指数(Cp、Cpk)和过程潜力指数(Pp、Ppk)等。
控制图分析是通过绘制控制图来监控过程的稳定性和变异情况,包括过程平均水平的控制图(X̄图)、过程离散程度的控制图(R图、S图)和过程离散程度和平均水平的同时控制图(X̄-R图、X̄-S图)等。
统计抽样是根据统计学原理和抽样方法,通过对样本数据的分析来判断整个过程的质量水平,包括构造抽样方案、抽样样本量的确定和样本数据的分析等。
SPC技术的应用范围广泛。
它适用于各类生产过程中的质量控制和改进,无论是制造业还是服务业。
在制造业中,SPC技术可以应用于各种工艺过程的控制,如冶金、电子、化工等。
在服务业中,SPC技术可以应用于流程控制和质量改进,如银行、保险、医疗等。
此外,SPC技术还可以应用于产品设计阶段的质量控制和改进,通过对设计方案的统计模拟和优化,提高产品的质量性能。
SPC技术的应用有助于提高产品的质量水平和生产的经济效益。
首先,SPC技术可以帮助企业监控生产过程的稳定性,及时发现并消除影响产品质量的变异因素,提高产品的合格率和一致性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.统计过程控制SPC即统计过程控制。
是利用统计方法对过程中的各个阶段进行控制,从而达到改进与保证质量的目的。
SPC强调以全过程的预防为主。
也是中国人民武装警察部队特种警察学院的简称,该学院又叫做武装特警学院.它是训练特种兵的学院,同时还是执行任务的机构.目录一、spc的基础知识1.关于控制、过程、统计2.特性及其分类3.统计学基础二、spc的基本原理4.过程的理解与过程控制5.波动及波动的原因6.局部措施和系统措施三、统计过程的控制思想1.正态分布简介2.统计控制状态及两种错误3.过程控制和过程能力4.过程改进循环四、控制图类型1.控制图应用说明2.控制图的定义和目的3.控制图解决问题思路4.控制图益处5.控制图分类6.控制图的选择五、建立计算型控制图的步骤和计算方法1.均值和极差图2.均值和标准差图3.中位数和极差图4.单值和移动极差图六、计数型控制图与过程能力指数1.过程能力解释前提2.过程能力的计算3.过程能力指数4.过程绩效指数七、过程判异准则以下是常用的八项判异准则:1、一点落在A区以外;2、连续9点落在中心线同一侧;3、连续6点递增或递减;4、连续14点相邻点上下交替;5、连续3点有2点落在中心线同一侧的B区以外;6、连续5点中有4点落在中心线同一侧的C区以外;7、连续15点在C区中心线上下;8、连续8点在中心线同侧。
SPC统计过程控制1、前言─SPC的由来、发展和基本要求2、识别关键控制点3、数据变异的衡量和分析· 直方图4、数据的动态变异· 控制图4.1、随机波动与异常波动4.2、ISO 8258:1991《休哈特控制图》(Control Chart)要点4.3、常规控制图的类型和实例s 控制图的结构和概念解释s 控制图类型和用途1) X平均与极差图(均值—极差控制图、均值—标准差控制图、中位数—极差控制图、单值—移动极差控制图)s 结构和应用流程s 举例2) I和MR控制图s 结构和应用流程s 举例3) 离散U、C、P、NP控制图s 结构和应用流程s 举例s 如何收集数据s 采样及数据收集s 设定和维持控制界限4.4、控制图制订和使用中的若干实际问题4.5、现代控制图技术案例5、过程能力与过程性能(Process Capability / Performance)分析以及相应的指数CPK、PPK的应用6、过程能力/性能的保证和提高---查找原因采取纠正/预防措施的逻辑推理工具s 5M1E要素s 分层法与排列图s 用于因果关系和逻辑关系分析的非数字资料方法工具: 因果图、系统图与“5Why分析表”、关联图、故障树分析(FTA)、过程决策程序图(PDPC)法7、如何实现有效的SPC现场控制s 受控的标准s 流程失控的表现s 失控的现场应对s 练习制作控制图进行失控分析s SPC实施中现场“看得见管理”应用的直观显示图表8、SPC的效果评估的方法s 显著性检验s 统计抽样检验9、回归分析s 一元线性回归分析s 曲线回归s 双列相关分析10、方差分析s 方差分析的基本概念及其应用s 方差分析在MSA(测量系统分析)中的应用s 多重比较:q检验11、试验设计(Design of Experiment, DOE) --介绍正交试验设计12、SPC项目的开展(SPC在QCC/QIT、6Sigma项目活动中的应用)如何创建SPC系统1、关键流程的确定2、稳定工艺过程3、过程能力的测定和分析4、确定控制标准5、选择和建立控制图6、制定反馈行动计划7、MSA测量系统分析8、SPC应用的有效性评估9、SPC应用的团队活动10、案例分析及实施疑难探讨SPC的有效实施一、原因分析目前我们国内许多企业也开始逐步认识和推广SPC,但并没有达到预期的效果,为什么呢?究其原因,主要可以分为以下几点:1、企业对SPC缺乏足够的全面了解2、企业对实施SPC的前期准备工作重视不够3、未能有效地总结和借鉴其他企业的经验二、改进对策针对以上原因,要保证SPC实施成功,企业应重视如下几方面的工作:1、领导的重视2、工程技术人员的认识和重视3、加强培训4、重视数据5、实施PDCA循环,达到持续改进SPC(质量管理与控制)统计工序控制即SPC(Statistical Process Control)。
它是利用统计方法对过程中的各个阶段进行控制,从而达到改进与保证质量的目的。
SPC强调以全过程的预防为主。
编辑本段SPC能解决之问题1.经济性:有效的抽样管制,不用全数检验,不良率,得以控制成本。
使制程稳定,能掌握品质、成本与交期。
2.预警性:制程的异常趋势可即时对策,预防整批不良,以减少浪费。
3.分辨特殊原因:作为局部问题对策或管理阶层系统改进之参考。
4.善用机器设备:估计机器能力,可妥善安排适当机器生产适当零件。
5.改善的评估:制程能力可作为改善前後比较之指标。
利用管制图管制制程之程序1.绘制「制造流程图」,并用特性要因图找出每一工作道次的制造因素(条件)及品质特性质。
2.制订操作标准。
3.实施标准的教育与训练。
4.进行制程能力解析,确定管制界限。
5.制订「品质管制方案」,包括抽样间隔、样本大小及管制界限。
6.制订管制图的研判、界限的确定与修订等程序。
7.绘制制程管制用管制图。
8.判定制程是否在管制状态(正常)。
9.如有异常现象则找出不正常原因并加以消除。
10.必要时修改操作标准(甚至於规格或公差)。
分析用管制图主要用以分析下列二点:(1)所分析的制(过)程是否处於统计稳定。
(2)该制程的制程能力指数(Process Capability Index)是否满足要求。
-控制图的作用1.在质量诊断方面,可以用来度量过程的稳定性,即过程是否处于统计控制状态;2.在质量控制方面,可以用来确定什么时候需要对过程加以调整,而什么时候则需使过程保持相应的稳定状态;3.在质量改进方面,可以用来确认某过程是否得到了改进。
应用步骤如下:1.选择控制图拟控制的质量特性,如重量、不合格品数等;2.选用合适的控制图种类;3.确定样本容量和抽样间隔;4.收集并记录至少20~25个样本的数据,或使用以前所记录的数据;5.计算各个样本的统计量,如样本平均值、样本极差、样本标准差等;6.计算各统计量的控制界限;7.画控制图并标出各样本的统计量;8.研究在控制线以外的点子和在控制线内排列有缺陷的点子以及标明异常(特殊)原因的状态;9.决定下一步的行动。
应用控制图的常见错误:1.在5M1E因素未加控制、工序处于不稳定状态时就使用控制图管理工作;2.在工序能力不足时,即在CP<1的情况下,就使用控制图管理工作;3.用公差线代替控制线,或用压缩的公差线代替控制线;4.仅打“点”而不做分析判断,失去控制图的报警作用;5.不及时打“点”,因而不能及时发现工序异常;6.当“5M1E”发生变化时,未及时调整控制线;7.画法不规范或不完整;8.在研究分析控制图时,对已弄清有异常原因的异常点,在原因消除后,未剔除异常点数据。
分析用控制图应用控制图时,首先将非稳态的过程调整到稳态,用分析控制图判断是否达到稳态。
确定过程参数特点:1、分析过程是否为统计控制状态2、过程能力指数是否满足要求?控制用控制图等过程调整到稳态后,延长控制图的控制线作为控制用控制图。
应用过程参数判断编辑本段SPC的作用1、确保制程持续稳定、可预测。
2、提高产品质量、生产能力、降低成本。
3、为制程分析提供依据。
4、区分变差的特殊原因和普通原因,作为采取局部措施或对系统采取措施的指南。
1. 贯彻预防原则是现代质量管理的核心与精髓。
2. 质量管理学科有一个非常重要的特点,即对于质量管理所提出的原则、方针、目标都要有科学措施与科学方法来保证它们的实现。
这体现了质量管理学科的科学性。
保证预防原则实现的科学方法就是:SPC (统计过程控制) 与SPD (统计过程诊断)。
SPC不是用来解决个别工序采用什么控制图的问题,SPC强调从整个过程、整个体系出发来解决问题。
SPC的重点就在于“P(Process,过程)”产品质量具有变异性“人、机、料、法、环” + “软(件)、辅(助材料)、(水、电、汽)公(用设施)” 变异具有统计规律性随机现象;统计规律随机现象:在一定条件下时间可能发生也可能不发生的现象。
管制和一般的统计图不同,因其不仅能将数值以曲线表示出来,以观其变异之趋势,且能显示变异系属于机遇性或非机遇性,以指示某种现象是否正常,而采取适当之措施。
解析用控制图ν决定方针用ν制程解析用ν制程能力研究用ν制程管制准备用管制用控制图ν追查不正常原因ν迅速消除此项原因ν并且研究采取防止此项原因重复发生之措施。
ν普通原因指的是造成随著时间推移具有稳定的且可重复的分布过程中的许多变差的原因,我们称之为:“处於统计控制状态”、“受统计控制”,或有时简称“受控”,普通原因表现为一个稳定系统的偶然原因。
只有变差的普通原因存在且不改变时,过程的输出才可以预测。
ν特殊原因:指的是造成不是始终作用于过程的变差的原因,即当它们出现时将造成(整个)过程的分布改变。
除非所有的特殊原因都被查找出来并且采取了措施,否则它们将继续用不可预测的方式来影响过程的输出。
如果系统内存在变差的特殊原因,随时间的推移,过程的输出将不稳定。
ν局部措施ν通常用来消除变差的特殊原因ν通常由与过程直接相关的人员实施ν大约可纠正15%的过程问题ν对系统采取措施ν通常用来消除变差的普通原因ν几乎总是要求管理措施,以便纠正ν大约可纠正85%的过程问题ν合理使用控制图能ν供正在进行过程控制的操作者使用ν有於过程在质量上和成本上能持续地,可预测地保持下去ν使过程达到ν更高的质量ν更低的单件成本ν更高的有效能力ν为讨论过程的性能提供共同的语言ν区分变差的特殊原因和普通原因,作为采取局部措施或对系统采取措施的指南。
SPC的作用:1、确保制程持续稳定、可预测。
2、提高产品质量、生产能力、降低成本。
3、为制程分析提供依据。
4、区分变差的特殊原因和普通原因,作为采取局部措施或对系统采取措施的指南。
编辑本段SPC的焦点──制程(Process)Quality,是指产品的品质。
换言之,它是著重买卖双方可共同评断与鉴定的一种「既成事实」. 而在SPC的想法上,则是希望将努力的方向更进一步的放在品质的源头──制程(Process)上.因为制程的起伏变化才是造成品质变异(Variation)的主要根源.1)异常变动过程中变动因素是不在统计管理状态下的非随机性原因,由于异常因素不是过程所固有,固不难除去,一般情况现场人员对异常因素的消除可以自行决定采取措施,而不必要请示更高级的管理人员,所以也称之为减少变动的局部措施。
2)偶然变动过程中的变动因素是统计管理的状态下,其产品的特性有固定的分布,即分布位置、分布及分布形状三种,由于偶然因素是过程所固有的,难于消除,要消除偶然因素必须涉及到人、机、料、法、环境等整个系统的改造问题,需要投入大量的资金,故不是现场人员所能决定的,而必须经过深入的调查研究和做出全面的可行性报告后,再经高层领导做最后的定夺,所以称之为减少变动的系统措施。