全差分CMOS运算放大器的设计毕业设计

合集下载

一种高增益CMOS全差分运算放大器的设计

一种高增益CMOS全差分运算放大器的设计

邮局订阅号:82-946360元/年技术创新电子设计《PLC 技术应用200例》您的论文得到两院院士关注一种高增益CMOS 全差分运算放大器的设计Design of a High-gain CMOS Fully Differential Operational Amplifier(江南大学)李杨先顾晓峰浦寿杰LI Yang-xian GU Xiao-feng PU Shou-jie摘要:设计了一种用在高精度音频Σ-ΔA/D 转换器中的高增益CMOS 全差分运算放大器。

该运算放大器采用了套筒式共源共栅结构和开关电容共模反馈电路。

通过分析和优化电路性能参数,实现了高增益和低功耗。

采用SMIC 0.35μm CMOS 工艺,经Spectre 仿真验证,电路在3.3V 电源电压和2.6pF 负载电容条件下,单位增益带宽为110MHz,开环直流电压增益达76dB,功耗为1.4mW 。

关键词:运算放大器;套筒式共源共栅;高增益;A/D 转换器中图分类号:TN402文献标识码:AAbstract:A high -gain CMOS fully differential operational amplifier has been designed for the application to high -resolution audio Σ-ΔA/D converters.The telescopic cascade structure and the switched capacitor common -mode feedback circuit were adopted in this operational amplifier.High gain and low power dissipation were achieved by analyzing and optimizing the circuit parameters.The Spectre simulation using SMIC 0.35μm CMOS process shows that,with 3.3V power voltage and 2.6pF capacitor load,the circuit has a unity-gain bandwidth of 110MHz,an open-loop gain of 76dB and a power dissipation of 1.4mW.Key words:Operational amplifier;Telescopic cascade;High-gain;A/D converter文章编号:1008-0570(2009)10-2-0207-031引言运算放大器作为模拟系统和混合信号系统中的一个重要电路单元,广泛应用于数/模与模/数转换器、有源滤波器、波形发生器和视频放大器等各种电路中。

全差分运算放大器设计

全差分运算放大器设计

全差分运算放大器设计岳生生(200403020126)一、设计指标以上华0.6um CMOS 工艺设计一个全差分运算放大器,设计指标如下:✧直流增益:>80dB✧单位增益带宽:>50MHz✧负载电容:=5pF✧相位裕量:>60度✧增益裕量:>12dB✧差分压摆率:>200V/us✧共模电压:2.5V (VDD=5V)✧差分输入摆幅:>±4V二、运放结构选择运算放大器的结构重要有三种:(a )简单两级运放,two-stage 。

如图2所示;(b )折叠共源共栅,folded-cascode 。

如图3所示;(c )共源共栅,telescopic 。

如图1的前级所示。

本次设计的运算放大器的设计指标要求差分输出幅度为±4V ,即输出端的所有NMOS 管的,DSAT NV之和小于0.5V ,输出端的所有PMOS管的,DSAT PV之和也必须小于0.5V 。

对于单级的折叠共源共栅和直接共源共栅两种结构,都比较难达到该要求,因此我们采用两级运算放大器结构。

另外,简单的两级运放的直流增益比较小,因此我们采用共源共栅的输入级结构。

考虑到折叠共源共栅输入级结构的功耗比较大,故我们选择直接共源共栅的输入级,最后选择如图1所示的运放结构。

两级运算放大器设计必须保证运放的稳定性,我们用Miller 补偿或Cascode 补偿技术来进行零极点补偿。

三、性能指标分析1、 差分直流增益 (Adm>80db)该运算放大器存在两级:(1)、Cascode 级增大直流增益(M1-M8);(2)、共源放大器(M9-M12) 第一级增益1351113571135135753()m m m o o o o o m m m m o o o o m m g g gg gg G A R r rr r g g r r r r=-=-=-+第二级增益92291129911()m o o o m m o o gg G AR r rgg=-=-=-+整个运算放大器的增益:4135912135753911(80)10m m m m overallo o o o m m o o dB g g g gAA A g g g gr r r r ==≥++2、 差分压摆率 (>200V/us )转换速率(slew rate )是大信号输入时,电流输出的最大驱动能力。

全差分运算放大器设计

全差分运算放大器设计

全差分运算放大器设计岳生生(0126)一、设计指标以上华CMOS 工艺设计一个全差分运算放大器,设计指标如下:直流增益:>80dB单位增益带宽:>50MHz负载电容:=5pF相位裕量:>60度增益裕量:>12dB差分压摆率:>200V/us共模电压:(VDD=5V)差分输入摆幅:>±4V运放结构选择运算放大器的结构重要有三种:(a )简单两级运放,two-stage 。

如图2所示;(b )折叠共源共栅,folded-cascode 。

如图3所示;(c )共源共栅,telescopic 。

如图1的前级所示。

本次设计的运算放大器的设计指标要求差分输出幅度为±4V ,即输出端的所有NMOS 管的,DSAT NV之和小于,输出端的所有PMOS 管的,DSAT PV之和也必须小于。

对于单级的折叠共源共栅和直接共源共栅两种结构,都比较难达到该要求,因此我们采用两级运算放大器结构。

另外,简单的两级运放的直流增益比较小,因此我们采用共源共栅的输入级结构。

考虑到折叠共源共栅输入级结构的功耗比较大,故我们选择直接共源共栅的输入级,最后选择如图1所示的运放结构。

两级运算放大器设计必须保证运放的稳定性,我们用Miller 补偿或Cascode 补偿技术来进行零极点补偿。

性能指标分析差分直流增益 (Adm>80db)该运算放大器存在两级:(1)、Cascode 级增大直流增益(M1-M8);(2)、共源放大器(M9-M12)第一级增益 1351113571135135753()m m m o o o o o m m m m o o o o m m g g g g g g G A R r r r r g g r r r r=-=-=-+P第二级增益92291129911()m o o o m m o o g g G A R r r g g=-=-=-+P 整个运算放大器的增益:4135912135753911(80)10m m m m overallo o o o m m o o dB g g g gAA A g g g gr r r r ==≥++差分压摆率 (>200V/us )转换速率(slew rate )是大信号输入时,电流输出的最大驱动能力。

cmos运算放大器设计

cmos运算放大器设计
西南大学本科毕业论文(设计)


摘要 ................................................................... 3 Abstract ................................................................ 4 0 文献综述 ............................................................ 5 0.1 0.2 0.3 0.4 0.5 0.6 1 集成电路概述 ................................................... 5 集成电路的发展 ................................................. 5 集成电路应用领域 ............................................... 6 CMOS 集成电路................................................ 9 运算放大器 ..................................................... 9 CMOS 运算放大器............................................. 10
4
CMOS 运算放大器版图设计 .......................................... 25 4.1 版图设计流程 ................................................... 25 4.2 工艺设计规则 ................................................... 26 4.3 单元器件的绘制——图元 ......................................... 27 4.4 4.5 CMOS 放大器的版图设计........................................ 31 T-Spice 仿真 ................................................... 34

一种高增益宽带CMOS全差分运算放大器

一种高增益宽带CMOS全差分运算放大器

conlbming the s仃uctllre Offolded cascode、two d洎奄rential-pa趣CMFB aIld gain-
boos锄g technique.The operational amplifier is desi弘ed i11 TSMC 0.25叫l 2P5P
CMOS process and simulated wim cadence spec仃e llIlder the condition of 2.5V sin百e
cMOS全差分运算放大器。基于TSMc O.25岫2P5M cMOS工艺,利用cadence
spec仃e仿真工具分别对所设计的运放电路进行了仿真分析。结果表明,在2.5V的 单电源电压下,运算放大器的直流开环增益为104dB,单位增益带宽为385MHz, 达到并超出了最初提出的增益和带宽的要求。论文还分析了一种电荷定标的D缓 转换器以及带自举开关的采样保持器原理,利用本文设计的全差分运算放大器作 为口核分别应用于一个8位的D/A转换器和50MsPS的采样保持器中,并取得了
叩erational锄plifier、common mode fcedback a11d gain.boosting technique,and desi印
a cMOS fhlly di船rential operational锄plmer with hi幽gaill and wide band、Ⅳidth by
并基于TsMc 0.25岫cMOs工艺的sⅡ讧3V3模型,利用Cadence spec仃e工具对所设
计的电路进彳亍了仿真分析,其结果己满足并超出所设计的要求。 本文的结构就是按照作者在论文完成中的工作顺序进行安排的。 第二章,主要介绍了几种常用的CMOs全差分运算放大器结构以及共模反馈

CMOS运算放大器版图设计毕业论文

CMOS运算放大器版图设计毕业论文

CMOS运算放大器版图设计毕业论文目录前言 (5)第1章绪论 (6)1.1 课题背景 (6)1.1.1 研究背景 (6)1.1.2研究容 (7)1.2 电路设计流程 (8)1.3 主要工作以及任务分配 (10)1.3.1主要工作 (10)1.3.2 任务分配 (10)第2章版图基础知识 (11)2.1 版图的设计简介 (11)2.1.1 版图的概念 (11)2.1.2 版图中层的意义 (11)2.2 CMOS工艺技术 (14)2.2.1概述 (14)2.2.2 CMOS工艺的一些主要步骤 (15)2.2.3 CMOS制造工艺的基本流程 (16)2.3 设计规则 (18)2.4 MOS集成运放的版图设计 (22)第3章 CMOS运算放大器简介 (23)3.1 概述 (23)3.2两级CMOS运算放大器的优点 (24)3.3 两级运算放大器原理简单分析 (24)第4章 CMOS运算放大器的仿真 (27)4.1 概述 (27)4.2 MOS运算放大器技术指标总表 (27)4.3仿真数据 (29)4.3.1 DC分析 (29)4.3.2测量输入共模围 (30)4.3.3 测量输出电压围 (31)4.3.4 测量增益与相位裕度 (33)4.3.5 电源电压抑制比测试 (34)4.3.6 运放转换速率和建立时间分析 (36)4.3.7 CMRR的频率响应测量 (38)第5章算放大器版图设计 (40)5.1 Cadence使用说明 (40)5.2 版图设计 (42)5.3 CMOS运放版图 (43)第6章总结 (44)参考文献 (44)致谢词 (45)外文资料原文 (45)外文资料译文 (46)第1章绪论1.1 课题背景1.1.1 研究背景运算放大器(简称运放)是具有很高放大倍数的电路单元。

在实际地电路中,通常结合反馈网络共同组成某种功能模块。

由于早期应用于模拟计算机中,用以实现数字运算,故得名“运算放大器”。

毕业设计(论文)-cmos运算放大电路的版图设计[管理资料]

毕业设计(论文)-cmos运算放大电路的版图设计[管理资料]

目录摘要 (3)第一章引言 (3)§ (3)§ CMOS 电路的发展和特点 (5)第二章CMOS运算放大器电路图 (8)§Pspice软件介绍 (8)Pspice运行环境 (12)Pspice功能简介 (12)§CMOS运算放大器电路图的制作 (14)§小结 (20)第三章版图设计 (20)§L-EDIT软件介绍 (20)§设计规则 (21)§集成电路版图设计 (24)PMOS版图设计 (24)NMOS版图设计 (27)CMOS运算放大器版图设计 (27)优化设计 (32)第四章仿真 (40)§DRC仿真 (41)§LVS 对照 (42)第五章总结 (48)附录 (50)参考文献 (52)致谢 (53)摘要介绍了CMOS运算放大电路的版图设计。

并对PMOS、NMOS、CMOS运算放大器版图、设计规则做了详细的分析。

通过设计规则检查(DRC)和版图与原理图对照(LVS)表明,此方案已基本达到了集成电路工艺的要求。

关键词:CMOS 放大器 NMOS PMOS 设计规则检查版图与原理图的对照AbstractThe layout desigen of CMOS operation amplifer is presented in this the layouts and design rules of PMOS,NMOS, and CMOS operation amplifer. The results of design rule check(DRC)and layout verification schmatic(LVS) shown that the project have already met to the needs of IC fabricated processing. Keywords: CMOS Amplifer NMOS PMOS DRC LVS第一章引言1.1 集成电路版图设计的发展现状和趋势集成电路的出现与飞速发展彻底改变了人类文明和人们日常生活的面目。

全差分运算放大器设计

全差分运算放大器设计

全差分运算放大器设计岳生生(200403020126)一、设计指标以上华0.6um CMOS 工艺设计一个全差分运算放大器,设计指标如下:✧直流增益:>80dB✧单位增益带宽:>50MHz✧负载电容:=5pF✧相位裕量:>60度✧增益裕量:>12dB✧差分压摆率:>200V/us✧共模电压:2.5V (VDD=5V)✧差分输入摆幅:>±4V二、运放结构选择运算放大器的结构重要有三种:(a )简单两级运放,two-stage 。

如图2所示;(b )折叠共源共栅,folded-cascode 。

如图3所示;(c )共源共栅,telescopic 。

如图1的前级所示。

本次设计的运算放大器的设计指标要求差分输出幅度为±4V ,即输出端的所有NMOS 管的,DSAT NV之和小于0.5V ,输出端的所有PMOS管的,DSAT PV之和也必须小于0.5V 。

对于单级的折叠共源共栅和直接共源共栅两种结构,都比较难达到该要求,因此我们采用两级运算放大器结构。

另外,简单的两级运放的直流增益比较小,因此我们采用共源共栅的输入级结构。

考虑到折叠共源共栅输入级结构的功耗比较大,故我们选择直接共源共栅的输入级,最后选择如图1所示的运放结构。

两级运算放大器设计必须保证运放的稳定性,我们用Miller 补偿或Cascode 补偿技术来进行零极点补偿。

三、性能指标分析1、 差分直流增益 (Adm>80db)该运算放大器存在两级:(1)、Cascode 级增大直流增益(M1-M8);(2)、共源放大器(M9-M12) 第一级增益1351113571135135753()m m m o o o o o m m m m o o o o m m g g gg gg G A R r rr r g g r r r r=-=-=-+第二级增益92291129911()m o o o m m o o gg G AR r rgg=-=-=-+整个运算放大器的增益:4135912135753911(80)10m m m m overallo o o o m m o o dB g g g gAA A g g g gr r r r ==≥++2、 差分压摆率 (>200V/us )转换速率(slew rate )是大信号输入时,电流输出的最大驱动能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

CMOS运算放大器的设计毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。

尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。

对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。

作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。

作者签名:日期:学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。

除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。

对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。

本人完全意识到本声明的法律后果由本人承担。

作者签名:日期:年月日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。

本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。

涉密论文按学校规定处理。

作者签名:日期:年月日导师签名:日期:年月日目录第一章绪论 (7)1.1设计平台及软件介绍 (7)1.1.1PSPICE简介 (7)1.1.2 L-Edit简介 (7)1.1.3 Cadence OrCAD Capture简介 (7)1.2 设计方法 (8)1.2.1CMOS运算放大器设计方法 (8)1.2.2运算放大器的性能优化 (8)第二章全差分运算放大器基础 (10)2.1 MOS器件基本特性 (11)2.1.1 MOSFET的结构和大信号特性 (11)2.1.2 MOSFET的小信号模型 (12)2.2运算放大器概述 (13)2.3全差分运算放大器特点 (14)第三章CMOS模拟运放设计 (16)3.1设计目标 (16)3.2电路结构分析 (16)3.3.1 输入级设计 (18)3.3.2电流镜电路 (18)3.3.3偏置电路 (19)3.3.4 输出级 (20)3.3.5 整体电路 (20)第四章运放参数的模拟与测量 (22)4.1瞬态分析 (22)4.2 温度特性 (23)4.3输出阻抗 (24)4.4交流特性分析 (25)5.1版图设计基础 (26)5.1.1设计流程 (26)5.1.2 L-edit中的版图设计 (27)5.2 版图设计 (28)5.3版图参数的提取并仿真 (29)5.3.1版图参数的提取和修改 (29)5.3.2电路仿真 (29)第六章总结 (31)【参考资料】 (32)附录: (33)一、Pspice仿真代码: (33)1、原理层次仿真代码(偏置电压由直流电压直接替代) (33)2、MOS分压电路中MOS宽长比确定电路 (35)3、最终Pspice仿真代码 (35)二、版图生成代码 (37)三、版图修改代码 (40)第一章绪论1.1设计平台及软件介绍1.1.1 PSPICE简介PSPICE是由SPICE(Simulation Program with Intergrated Circuit Emphasis)发展而来的用于微机系列的通用电路分析程序。

于1972年由美国加州大学伯克利分校的计算机辅助设计小组利用FORTRAN语言开发而成,主要用于大规模集成电路的计算机辅助设计。

PSPICE仿真软件具有强大的电路图绘制功能、电路模拟仿真功能、图形后处理功能和元器件符号制作功能,以图形方式输入,自动进行电路检查,生成图表,模拟和计算电路。

它的用途非常广泛,不仅可以用于电路分析和优化设计,还可用于电子线路、电路和信号与系统等课程的计算机辅助教学。

与印制版设计软件配合使用,还可实现电子设计自动化。

被公认是通用电路模拟程序中最优秀的软件,具有广阔的应用前景。

1.1.2 L-Edit简介L-Edit是专用集成电路设计软件TannerTools中的主要版图设计软件,是一个用来制造集成电路掩膜的版图设计工具。

L-Edit中的层与掩膜生产过程相关联,不同的层能被方便地显示为不同的颜色和样式,并且每层间相互独立。

L-Edit 以文件、单元、简单的掩膜的形式描述版图设计。

其最大的特点是速度快、功能强、使用方便和分层设计。

1.1.3 Cadence OrCAD Capture简介Cadence、OrCAD、Capture 是线路图输入系统,具有快捷、通用的设计输入能力,针对设计一个新的模拟电路、修改现有的一个 PCB 的线路图、或者绘制一个 HDL 模块的方框图,都提供了所需要的全部功能。

它运行在 PC 平台,用于 FPGA 、 PCB 和Cadence、OrCAD、PSpice设计应用中,它是业界第一个真正基于 Windows 环境的线路图输入程序,易于使用的功能及特点已使其成为线路图输入的工业标准。

1.2 设计方法1.2.1CMOS运算放大器设计方法CMOS运算放大器的设计通常包括结构设计和器件设计两个状态。

首先,寻找可行的结构,如果选择的结构不符合要求,则需要修改结构或重新设计。

一旦符合条件,接着进行器件设计,确定直流工作点、器件尺寸和偏置网络,必须仔细计算器件的尺寸以满足运放的交、直流要求。

为了满足所有的设计指标,这两个设计步骤需要重复的进行。

下图给出了运算放大器的设计流程:图1.1:模拟运算放大器设计流程1.2.2运算放大器的性能优化“理想”运放具有以下的特性:无限大的输入阻抗和输出电流;无限大的转换速率和开环增益;无噪声、失调、功耗浪费和信号失真;无负载、频率和电源电压的限制。

事实上,没有运放能达到以上所有的特性。

在实际的设计中,运放参数中的大多数都会互相牵制,这将导致设计变成一个多维优化的问题。

如下图“模拟电路设计八边形法则”所示,这样的折衷选择、互相制约对高性能放大器的设计提出了许多难题,要靠理论和经验才能得到一个较佳的折衷方案。

图1.2:模拟电路设计八边形法则第二章全差分运算放大器基础本章主要介绍MOS器件的一些特性,以及运算放大器的相关内容。

2.1 MOS 器件基本特性2.1.1 MOSFET 的结构和大信号特性下面为N 沟道增强型MOS 管的剖面图及其输出特性曲线。

图2.1:强反型时增强型NMOS 管的剖面图图2.2:NMOS 管的i-u 特性CMOS 管的强反型区:当MOS 器件的栅源电压大于阈值电压时,称之为强反型状态。

当TH GS DS u u u ->时,器件饱和区,这里的DS u ,GS u 与TH u 分别指MOS管的漏源电压、栅源电压和阈值电压。

实际上,在MOS 运放设计中,大部分的MOS 管都是工作在饱和状态,因为对于给定的漏极电流和器件尺寸来说,工作在饱和区可以提供稳定GS u 的电流和比较大的电压增益。

在饱和区,MOS 器件的漏极电流d i 和栅源电压的关系由下式决定:()()2221TH GS N TH GS ox n D u u K u u LWC i -=-=μ 式中uN 为NMOS 沟道中电子迁移率,COX 为栅氧化区单位面积电容,W 为有效沟道宽度,L 是有效沟道长度,KN 为NMOS 管的导电因子。

在模拟电子电路中,MOSFET 的跨导gm 是一个重要的参数。

根据上式可求得MOSFET 在饱和区静态工作点处的小信号跨导:()THGS DTH GS oxn GS D m u u i u u L W C u i g -=-=∂∂=2μ或者Dox n m i LW C u g 2=可见MOSFET 的饱和区的跨导m g 不仅与它的工作电流D i 有关,而且可通过选择器件尺寸LW加以改变。

正因为如此,使MOS 模拟IC 的设计更为灵活。

2.1.2 MOSFET 的小信号模型当NMOS 管在直流偏置作用下工作于饱和区时,其交流小信号等效模型如下 图所示,在电路计算中,由MOS 管的大信号模型算出电路的静态工作点后,就必须由小信号等效模型来分析电路。

小信号模型是能简化计算工作的线性模型,它是在一定的电压电流下有效,它的各项参数依赖于大信号模型参数和直流变量。

图2.3:MOSFET 的小信号模型上图列出手工设计时的简化等效电路模型,各参数定义如下:栅-衬底电容DB C 和源-衬底电容SB C ;GB C 、GS C 、栅-漏电容GD C ;()TH GS oxn GS D m u u LWC u i g -=∂∂=μ 饱和区跨导:令 LW C oxn μβ=m g 可以表示为:()D TH GS m i u u g ββ2=-=输出电阻为:Do i r λ1=输出电阻影响模拟电路的许多特性,例如,它限制着大多数放大器的最大电压增益。

在简化的手工分析中,可以使用近似表达式:GS m D u g i =2.2运算放大器概述运算放大器是模拟电路设计中用途最广/最重要的部件,大量的具有复杂程度的运放被用来实现各种功能:从直流偏置产生到高速放大或滤波。

运算放大器是具有足够正向增益的放大器(受控源),当加负反馈时,闭环传输函数与运算放大器的增益几乎无关。

利用这个原理可以设计出很多有用的模拟电路和系统。

对运算放大器最主要的一个要求是有一个足够大的开环增益以符合负反馈的概念。

单级放大器大多没有足够大的增益,因此多数CMOS 运放采用两级或多级增益。

最常用的运算放大器之一是两级运算放大器,下图为最常用的两级运算放大器的框图。

图2.4:运算放大器的基本结构上图描述了运算放大器的重要组成部分,CMOS运算放大器在结构上非常类似于双极型运算放大器。

输入级——主要作用是放大差模输入信号,由差分放大电路组成,有时会提供一个差分到单端的转换,利用它的对称性可以提高整个电路的共模抑制比,可以改善噪声和失调性能,且具有很强的抗干扰能力,并具有温度漂移下、级间易直接耦合。

增益级——这一级的主要作用是提高电压的增益,如果差分输入级没有完成差分到单端的转换,那么这个工作应该由这级来完成。

输出级——输出级一般由源极跟随器或推挽放大器组成,用于降低输出阻抗,维持大的信号摆幅。

偏置电路——主要用于为每只晶体管建立适当的静态工作点。

补偿电路——在运算放大器中加负反馈,用以保持整个电路工作的稳定。

相关文档
最新文档