定积分在几何学上的应用(比赛课教案)
数学1.7.1《定积分在几何中的应用》教案2(新人教A版选修2-2)

1.7 定积分的简单应用(共两课时)一、感悟要点1.知识与技能能利用定积分求曲边梯形的面积,以及解决物理中的变速直线运动的路程,变力做功问题。
2.过程与方法通过利用定积分求曲边梯形的面积,体会定积分的基本思想,学会其方法,通过定积分在物理中应用,学会用数学工具解决物理问题,进一步体会定积分的价值。
3.情感态度与价值观通过本节学习,进一步感受数学的应用价值,提高数学的应用意识,坚定学好数学的信心。
二、学习重难点1.重点:应用定积分解决平面图形的面积、变速直线运动的路程和变力做功等问题,使学生在解决问题的过程中体验定积分的价值。
2.难点:将实际问题化归为定积分的问题。
三、温习旧知1.定积分的几何意义和微积分基本定理分别是什么?2.曲边梯形的面积表达式是什么?3.匀变速直线运动中,s与v,t间的关系是什么?4.如果物体在变力F(x)的作用下做直线运动,那么如何计算变力F(x)所做的功W 呢?四、 例题精析例1 计算由两条抛物线2y x =和2y x =所围成的图形的面积.解析:【教学札记】合作探究:由例1总结求由两条曲线围成的平面图形面积的步骤是什么?(1) 画出图形;(2) 确定图形范围,通过解方程组求出交点的横坐标,定出积分上下限;(3) 确定被积函数,特别是要分清被积函数的上下位置;(4) 写出平面图形的面积的定积分表达式;(5) 运用微积分基本公式计算定积分,求出平面图形的面积。
例2 计算由曲线y =4y x =-以及x 轴所围成的图形的面积.解析:【教学札记】探究:这道题还有其它解法吗?解法二:将所求平面图形的面积看成一个曲边梯形与一个三角形的面积之差:解法三:将所求平面图形的面积看成位于y 轴右边的一个梯形与一个曲边梯形的面积之差,因此可以取y 为积分变量,还需把函数y=x-4变形为x=y-4,,函数y =22y x =.变式训练:计算有曲线22y x =和直线y=x-4所围成的图形面积.作业:58P 练习,60P A 组第1题.例3 一辆汽车的速度-时间曲线如图所示,求汽车在这1min 行驶的路程。
定积分在几何中的应用 说课稿 教案 教学设计

定积分在几何中的应用【教学目标】1.会应用定积分求两条或多条曲线围成的图形的面积.【教法指导】本节学习重点:会应用定积分求两条或多条曲线围成的图形的面积.本节学习难点:会应用定积分求两条或多条曲线围成的图形的面积.【教学过程】 ☆探索新知☆探究点一 求不分割型图形的面积思考 怎样利用定积分求不分割型图形的面积?答 求由曲线围成的面积,要根据图形,确定积分上下限,用定积分来表示面积,然后计算定积分即可. 例1 计算由曲线y 2=x ,y =x 2所围图形的面积S .因此,所求图形的面积为S =S 曲边梯形OABC —S 曲边梯形OABD =ʃ10x d x -ʃ10x 2d x =23x 32|10-13x 3|10=23-13=13. 反思与感悟 求由曲线围成图形面积的一般步骤:(1)根据题意画出图形;(2)找出范围,确定积分上、下限;(3)确定被积函数;(4)将面积用定积分表示;(5)用微积分基本定理计算定积分,求出结果.跟踪训练1 求由抛物线y =x 2-4与直线y =-x +2所围成图形的面积.解 由⎩⎪⎨⎪⎧ y =x 2-4y =-x +2 得⎩⎪⎨⎪⎧ x =-3y =5或⎩⎪⎨⎪⎧ x =2y =0,所以直线y =-x +2与抛物线y =x 2-4的交点为(-3,5)和(2,0),设所求图形面积为S ,根据图形可得S =ʃ2-3(-x +2)d x -ʃ2-3(x 2-4)d x=(2x -12x 2)|2-3-(13x 3-4x )|2-3=252-(-253)=1256. 探究点二 分割型图形面积的求解思考 由两条或两条以上的曲线围成的较为复杂的图形,在不同的区间位于上方和下方的曲线不同时,这种图形的面积如何求呢?例2 计算由直线y =x -4,曲线y =2x 以及x 轴所围图形的面积S .解 方法一 作出直线y =x -4,曲线y =2x 的草图.解方程组⎩⎨⎧ y =2x ,y =x -4得直线y =x -4与曲线y =2x 交点的坐标为(8,4).直线y =x -4与x 轴的交点为(4,0).因此,所求图形的面积为S =S 1+S 2=ʃ402x d x +[]ʃ 842x d x -ʃ 84x -4d x=22332x |40+22332x |84-12(x -4)2|84 =403.方法二 把y 看成积分变量,则S =ʃ40(y +4-12y 2)d y =(12y 2+4y -16y 3)|40 =403. 反思与感悟 两条或两条以上的曲线围成的图形,一定要确定图形范围,通过解方程组求出交点的坐标,定出积分上、下限,若积分变量选x 运算较繁锁,则积分变量可选y ,同时要更换积分上、下限.跟踪训练2 求由曲线y =x ,y =2-x ,y =-13x 所围成图形的面积. 解 画出图形,如图所示.得交点分别为(1,1),(0,0),(3,-1),所以S =ʃ10[x -(-13x )]d x +ʃ31[(2-x )-(-13x )]d x =ʃ10(x +13x )d x +ʃ31(2-x +13x )d x =(23x 32+16x 2)|10+(2x -12x 2+16x 2)|31 =23+16+(2x -13x 2)|31 =56+6-13×9-2+13=136. 探究点三 定积分的综合应用例3 在曲线y =x 2(x ≥0)上某一点A 处作一切线使之与曲线以及x 轴所围成的面积为112,试求:切点A 的坐标以及在切点A 处的切线方程.解 如图,设切点A (x 0,y 0),其中x 0≠0,由y ′=2x ,过点A 的切线方程为y -y 0=2x 0(x -x 0),即y =2x 0x -x 20,令y =0,得x =x 02,即C (x 02,0),=12(x 0-x 02)·x 20=14x 30. ∴S =13x 30-14x 30=112x 30=112. ∴x 0=1,从而切点为A (1,1),切线方程为2x -y -1=0.反思与感悟 本题综合考查了导数的意义以及定积分等知识,运用待定系数法,先设出切点的坐标,利用导数的几何意义,建立了切线方程,然后利用定积分以及平面几何的性质求出所围成的平面图形的面积,根据条件建立方程求解,从而使问题得以解决.跟踪训练3 如图所示,直线y =kx 分抛物线y =x -x 2与x 轴所围图形为面积相等的两部分,求k 的值.解 抛物线y =x -x 2与x 轴两交点的横坐标为x 1=0,x 2=1,所以,抛物线与x 轴所围图形的面积 S =ʃ10(x -x 2)d x =⎝ ⎛⎭⎪⎫x 22-13x 3|10=16. 又⎩⎪⎨⎪⎧ y =x -x 2,y =kx ,又知S =16,所以(1-k )3=12,于是k =1- 312=1-342.。
定积分在几何中简单应用教学设计

.--
-
师生活动
设计意如何灵 活选择积
2.曲边形面积解法----转化为曲边梯形,做出辅助线.
分变量,确
3.定积分表示曲边梯形面积----确定积分区间、被积函数. 定 被 积 函
问题:表示不出定积分. 探讨:X 为积分变量表示不到,那换成 Y 为积分变量呢? 4.计算定积分.
数,通过该 题突破教 学难点。
教 【板书】根据师生探究的思路
形、梯形和曲边梯形组合的图形.
【巩固练习】
练习5.计算由曲线 y sin x 与 y cosx 及 x 0 、 x 2
所围平面图形的面积.
.--
体现了对 称的思想 和分类思 想,培养学
-
【学生活动】学生独立思考 【成果展示】邀请一位同学把自己的成果展示给大家
y
y cosx 1
学
问:此题还有其他解法吗?
答: S1 S2 所以只算一个 S,取 2 倍就可以了.
【教师点评】做的漂亮,解题时要注意发现题目的特征,联系我们以前的知 过 识将问题化简后再解答,提高效率.
【应用提升】
程
如图,一桥拱的形状为抛物线,已
知该抛物线拱的高为常数 h,
宽为常数 b.
h
求证:抛物线拱的面积
s
生的作图
学
1. 找到图形----画图得到曲边形.
能力,在寻
2. 曲边形面积解法----转化为曲边梯形,做出辅助线.
定积分在几何学上的应用(比赛课教案)

定积分在几何学上的应用(比赛课教案)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN教学题目:选修2-2 1.7.1定积分在几何中的应用教学目标:一、知识与技能:1.让学生深刻理解定积分的几何意义以及微积分的基本定理;2.通过本节课的探究,学生能够应用定积分解决不太规则的平面图形的面积,能够初步掌握应用定积分解决实际问题的基本思想和方法3.初步掌握利用定积分求曲边梯形的几种常见题型及方法二、过程与方法:1. 探究过程中通过数形结合的思想,加深对知识的理解,同时体会到数学研究的基本思路和方法。
三、情感态度与价值观:探究式的学习方法能够激发学生的求知欲,培养学生对学习的浓厚兴趣;探究式的学习过程能够培养学生严谨的科学思维习惯和方法,培养学生勇于探索和实践的精神;教学重点:应用定积分解决平面图形的面积,使学生在解决问题的过程中体会定积分的价值。
教学难点:如何恰当选择积分变量和确定被积函数。
课型、课时:新课,一课时教学工具:常用教具,多媒体,PPT课件教学方法:积分⎰ba f (x )dx 在几何上表示 引导法,探究法,启示法 教学过程x =a 、x =b 与 x 轴所围成的曲边梯形的面积。
当f (x )≤0时由y =f (x )、x =a 、x =b与 x 轴所围成的曲边梯形面积的负值 类型1.求由一条曲线y=f(x)和直线x=a,x=b(a<b)及x 轴所围成平面图形的面积SOxab y =f (x )xOaby =f (x )⎰ba f (x )dx =⎰ca f (x )dx +⎰bc f (x )dx 。
=-S xyoabc)(x f y =xyo)(x f y =ab 当f (x )≥0时,积分dx x f ba )(⎰在几何上表示由y =f (x )、由一条曲线和直线所围成平面图形的面积的求解练习. 求抛物线y=x 2-1,直线x=2,y=0所围成的图形的面积。
数学:1.7.1《定积分在几何中的应用》教案(新人教A版选修2-2)

1.7.1 定积分在几何中的应用一、教学目标:1. 了解定积分的几何意义及微积分的基本定理.2.掌握利用定积分求曲边图形的面积二、教学重点与难点:1. 定积分的概念及几何意义2. 定积分的基本性质及运算的应用 三教学过程: (一)练习1.若11(2)a x x+⎰d x = 3 + ln 2,则a 的值为( D ) A .6 B .4 C .3 D .22.设2(01)()2(12)x x f x x x ⎧≤<=⎨-<≤⎩,则1()a f x ⎰d x 等于( C ) A .34B .45C .56D .不存在 3.求函数dx a ax x a f )46()(1022⎰++=的最小值 解:∵102231022)22()46(x a ax x dx a ax x ++=++⎰223221200(64)(22)|22x ax a dx x a a x a a ++=++=++⎰.∴22()22(1)1f a a a a =++=++. ∴当a = – 1时f (a )有最小值1.4.求定分3-⎰x .5.怎样用定积分表示:x =0,x =1,y =0及f (x )=x 2所围成图形的面积?6. 你能说说定积分的几何意义吗?例如⎰ba dx x f )(的几何意义是什么?表示x 轴,曲线)(x f y =及直线a x =,b x =之间的各部分面积的代数和, 在x 轴上方的面积取正,在x 轴下方的面积取负二、新课例1.教材P56面的例1例2.教材P57面的例2。
练习:例3.求曲线y=sinx ,x ]32,0[π∈与直线x=0 ,32π=x ,x 轴所围成图形的面积。
练习:1.如右图,阴影部分面积为( B )A .[()()]b a f x g x -⎰d xB .[()()][()()]c b a c g x f x dx f x g x -+-⎰⎰d xC .[()()][()()]b b a c f x g x dx g x f x -+-⎰⎰d xD .[()()]b a g x f x +⎰d x2.求抛物线y = – x 2 + 4x – 3及其在点A (1,0)和点B (3,0。
教学设计5:1.7.1 定积分在几何中的应用

1.7.1定积分在几何中的应用教学目标 1.会应用定积分求两条或多条曲线围成的图形的面积.2.能利用定积分解决物理中的变速直线运动的路程、变力做功问题.学会用数学工具解决物理问题,进一步体会定积分的价值.教学知识梳理知识点一定积分在几何中的应用思考怎样利用定积分求不分割型图形的面积?【答案】求由曲线围成的面积,要根据图形,确定积分上、下限,用定积分来表示面积,然后计算定积分即可.梳理(1)当x∈[a,b]时,若f(x)>0,由直线x=a,x=b(a≠b),y=0和曲线y=f(x)所围成的曲边梯形的面积S=ʃb a f(x)d x.(2)当x∈[a,b]时,若f(x)<0,由直线x=a,x=b(a≠b),y=0和曲线y=f(x)所围成的曲边梯形的面积S=-ʃb a f(x)d x.(3)当x∈[a,b]时,若f(x)>g(x)>0,由直线x=a,x=b (a≠b)和曲线y=f(x),y=g(x)所围成的平面图形的面积S=ʃb a[f(x)-g(x)]d x.(如图)知识点二变速直线运动的路程思考变速直线运动的路程和位移相同吗?【答案】不同.路程是标量,位移是矢量,路程和位移是两个不同的概念.梳理(1)当v(t)≥0时,求某一时间段内的路程和位移均用21()t t t⎰v d t求解.(2)当v(t)<0时,求某一时间段内的位移用21()t t t⎰v d t求解,这一时段的路程是位移的相反数,即路程为-21()t t t⎰v d t.做变速直线运动的物体所经过的路程s,等于其速度函数v=v(t)(v(t)≥0)在时间区间[a,b]上的定积分,即s=ʃb a v(t)d t.知识点三变力做功问题思考恒力F沿与F相同的方向移动了s,力F做的功为W=Fs,那么变力做功问题怎样解决?【答案】与求曲边梯形的面积一样,物体在变力F(x)作用下运动,沿与F相同的方向从x =a到x=b(a<b),可以利用定积分得到W=ʃb a F(x)d x.梳理如果物体在变力F(x)的作用下做直线运动,并且物体沿着与F(x)相同的方向从x=a 移动到x=b(a<b),那么变力F(x)所做的功为ʃb a F(x)d x.题型探究类型一 利用定积分求面积命题角度1 求不分割型图形的面积例1 由曲线y 2=x ,y =x 2所围图形的面积S =________. 【答案】13【解析】由⎩⎪⎨⎪⎧y 2=x ,y =x 2,得交点的横坐标为x =0及x =1.因此,所求图形的面积为 S =S 曲边梯形OABC -S 曲边梯形OABD=ʃ10x d x -ʃ10x 2d x=⎪⎪⎪2332x 10-⎪⎪13x 310=23-13=13. 反思与感悟 求由曲线围成图形面积的一般步骤 (1)根据题意画出图形.(2)找出范围,确定积分上、下限. (3)确定被积函数. (4)将面积用定积分表示.(5)用微积分基本定理计算定积分,求出结果.跟踪训练1 求由抛物线y =x 2-4与直线y =-x +2所围成的图形的面积.解 由⎩⎪⎨⎪⎧y =x 2-4,y =-x +2,得⎩⎪⎨⎪⎧ x =-3,y =5或⎩⎪⎨⎪⎧x =2,y =0, 所以直线y =-x +2与抛物线y =x 2-4的交点坐标为(-3,5)和(2,0), 设所求图形面积为S ,根据图形可得,S =ʃ2-3(-x +2)d x -ʃ2-3(x 2-4)d x= ⎪⎪⎝⎛⎭⎫2x -12x 22-3-⎪⎪⎝⎛⎭⎫13x 3-4x 2-3 =252-⎝⎛⎭⎫-253=1256.命题角度2 分割型图形面积的求解例2 求由曲线y =x ,y =2-x ,y =-13x 所围成的图形的面积.解 画出图形,如图所示.解方程组⎩⎨⎧y =x ,x +y =2,⎩⎪⎨⎪⎧y =x ,y =-13x ,⎩⎪⎨⎪⎧x +y =2,y =-13x , 得交点坐标分别为(1,1),(0,0),(3,-1),所以S =ʃ10⎣⎡⎦⎤x -⎝⎛⎭⎫-13x d x +ʃ31⎣⎡⎦⎤2-x -⎝⎛⎭⎫-13x d x =ʃ10⎝⎛⎭⎫x +13x d x +ʃ31⎝⎛⎭⎫2-23x d x =⎪⎪⎪⎝ ⎛⎭⎪⎫2332x +16x 210+⎪⎪⎝⎛⎭⎫2x -13x 231 =23+16+6-13×9-2+13=136. 反思与感悟 两条或两条以上的曲线围成的图形,一定要确定图形范围,通过解方程组求出交点的坐标,定出积分上、下限,若积分变量选x 运算较烦琐,则积分变量可选y ,同时要更换积分上、下限.跟踪训练2 求由曲线y =x 2,直线y =2x 和y =x 所围成的图形的面积.解 由⎩⎪⎨⎪⎧ y =x 2,y =x 和⎩⎪⎨⎪⎧y =x 2,y =2x ,解出O ,A ,B 三点的横坐标分别是0,1,2.故所求的面积S =ʃ10(2x -x )d x +ʃ21(2x -x 2)d x= ⎪⎪x 2210+⎪⎪⎝⎛⎭⎫x 2-x 3321=12-0+⎝⎛⎭⎫4-83-⎝⎛⎭⎫1-13=76. 类型二 定积分在物理中的应用例3 一点在直线上从时刻t =0 s 开始以速度v =t 2-4t +3(v 的单位:m/s)运动,求: (1)该点在t =4 s 时的位置; (2)该点前4 s 走过的路程.解 (1)在t =4 s 时,该点的位移为ʃ40(t 2-4t +3)d t =⎪⎪⎝⎛⎭⎫13t 3-2t 2+3t 40=43,即在t =4 s 时,该点与出发点的距离为43m.(2)因为v (t )=t 2-4t +3=(t -1)(t -3),所以在区间[0,1]及[3,4]上,v (t )≥0,在区间[1,3]上,v (t )≤0,所以走过的路程s =ʃ10(t 2-4t +3)d t +||ʃ31t 2-4t +3d t +ʃ43(t 2-4t +3)d t =ʃ10(t 2-4t +3)d t -ʃ31(t2-4t +3)d t +ʃ43(t 2-4t +3)d t =4(m),即前4 s 走过的路程为4 m.反思与感悟 (1)求变速直线运动的物体的路程(位移)方法①用定积分计算做直线运动物体的路程,要先判断速度v (t )在时间区间内是否为正值,若v (t )>0,则运动物体的路程为s =ʃb a v (t )d t ;若v (t )<0,则运动物体的路程为s =ʃb a |v (t )|d t =-ʃb a v (t )d t ;②注意路程与位移的区别. (2)求变力做功的方法步骤①首先要明确变力的函数式F (x ),确定物体在力的方向上的位移;②利用变力做功的公式W =ʃb a F (x )d x 计算;③注意必须将力与位移的单位换算为牛顿与米,功的单位才为焦耳.跟踪训练3 一弹簧在弹性限度内,拉伸弹簧所用的力与弹簧伸长的长度成正比.若20 N 的力能使弹簧伸长3 cm ,则把弹簧从平衡位置拉长13 cm(在弹性限度内)时所做的功W 为( ) A.16930 J B .5 J C.15930 J D .6 J【答案】A【解析】设拉伸弹簧所用的力为F N ,弹簧伸长的长度为x m ,则F =kx . 由题意知20=0.03k ,得k =2 0003,所以F =2 0003x .由变力做功公式,得W =ʃ0.1302 0003x d x =⎪⎪1 000x 230.130=16930(J), 故把弹簧从平衡位置拉长13 cm 时所做的功为16930 J.当堂检测1.由曲线y =x 2与直线y =2x 所围成的平面图形的面积为( ) A.43 B.83 C.163 D.23【答案】A【解析】如图,画出曲线y =x 2和直线y =2x 的图象, 则所求面积S 为图中阴影部分的面积.解方程组⎩⎪⎨⎪⎧ y =2x ,y =x 2,得⎩⎪⎨⎪⎧x =0,y =0,⎩⎪⎨⎪⎧x =2,y =4. 所以A (2,4),O (0,0).所以S =ʃ202x d x -ʃ20x 2d x=x 2⎪⎪⎪⎪20-13x 320=4-⎝⎛⎭⎫83-0=43. 2.一物体在力F (x )=3x 2-2x +5(力的单位:N ,位移单位:m)的作用下沿与力F (x )相同的方向由x =5 m 运动到x =10 m ,则F (x )做的功为( ) A .925 J B .850 J C .825 J D .800 J【答案】C【解析】依题意F (x )做的功是W =ʃ105F (x )d x =ʃ105(3x 2-2x +5)d x=(x 3-x 2+5x )|105=825(J).3.由曲线y =1x 与直线x =1,x =2,y =1所围成的封闭图形的面积为________.【答案】1-ln 2【解析】因为函数y =1x 在[1,2]上的积分为S 2=ʃ211xd x =ln x |21=ln 2,所以围成的封闭图形的面积S 1等于四边形ABCD 的面积减去S 2的面积,即S 1=1-ln 2. 4.一辆汽车的速度—时间曲线如图所示,则汽车在1分钟内行驶的路程为________ m.【答案】900【解析】由速度—时间曲线得 v (t )=⎩⎪⎨⎪⎧3t ,0≤t ≤10,-35t +36,10<t ≤60,所以汽车在1分钟内行驶的路程为ʃ1003t d t +ʃ6010 ⎪⎪⎝⎛⎭⎫-35t +36d t =32t 2100+⎪⎪⎝⎛⎭⎫-310t 2+36t 6010 =150+750=900 m.5.求由抛物线y =x 2-1,直线x =2,y =0所围成的图形的面积. 解 作出草图如图所示,所求图形的面积为图中阴影部分的面积. 由x 2-1=0,得抛物线与x 轴的交点坐标是(-1,0)和(1,0), 因此所求图形的面积为S =ʃ1-1|x 2-1|d x +ʃ21(x 2-1)d x =ʃ1-1(1-x 2)d x +ʃ21(x 2-1)d x= ⎪⎪⎝⎛⎭⎫x -x 331-1+⎪⎪⎝⎛⎭⎫x 33-x 21=⎝⎛⎭⎫1-13-⎝⎛⎭⎫-1+13+⎝⎛⎭⎫13×23-2-⎝⎛⎭⎫13-1 =83.。
定积分在几何中的应用

1.7.1 定积分在几何中的应用主讲:XXXX 卞志业教学目标:1、 进一步让学生深刻体会“分割、以直代曲、求和、逼近”求曲边梯形的思想方法;2、 让学生深刻理解定积分的几何意义以及微积分的基本定理;3、 初步掌握利用定积分求曲边梯形的几种常见题型及方法;教学重难点: 重点 曲边梯形面积的求法难点 定积分求体积以及在物理中应用 教学过程:一、复习回顾1.微积分基本定理是什么?学生回答:若函数f(x)在区间[a,b]上连续,,这就是微积分基本定理,又叫牛顿—莱布尼茨公式。
2.定积分的几何意义是什么?学生回答: x=a 、x=b 与 x 轴所围成的曲边梯形的面积。
需要注意的是:当f(x)≤0时,由y=f (x)、x=a 、x=b 与 x 轴所围成的曲边梯形位于 x 轴的下方。
,那么并且)()(x f x F ='⎰-=baa Fb F dx x f )()()( 当f (x )≥0时,积分dx x f ba)(⎰在几何上表示由y =f (x )、 a b y f (x) ()b a S f x dx=⎰即:O x y xy O a b y f (x)()baS f x dx=-⎰即:二、例题讲解例1.计算由两条抛物线2y x =和2y x =所围成的图形的面积.【分析】从图像中可以看出:两条抛物线所围成的图形的面积,可以由以两条曲线所对应的曲边梯形的面积的差得到。
解:201y x x x y x⎧=⎪⇒==⎨=⎪⎩及,所以两曲线的交点为(0,0)、(1,1),面积S=S曲边梯形OABC-S曲边梯形OABD112xdx x dx =-⎰⎰【点评】求两曲线围成的平面图形面积的一般步骤: (1)画草图,求出曲线的交点坐标; (2)将曲边形面积转化为曲边梯形面积; (3)确定被积函数及积分区间; (4)计算定积分,求出面积。
例2计算由直线y 2x =曲线y x 4,=-以及x 轴所围图形的面积S.【分析】12332x = 10331x -= = 3231-31 4xyO84 22Bxy 2=4-=x y S 2S 1 S 2S 14 y O84 22 A ⎥⎦⎤⎢⎣⎡⨯⨯-+=+=⎰⎰44212284421dx x dx x s s s A: 44212821⨯⨯-=-=⎰dx x s s s B:解:作出直线4y x =-,曲线2y x =的草图,所求面积为下图阴影部分的面积.解方程组2,4y x y x ⎧=⎪⎨=-⎪⎩得直线4y x =-与曲线2y x =的交点的坐标为(8,4) .直线4y x =-与x 轴的交点为(4,0).因此,所求图形的面积为S=S 1+S 24880442[2(4)]xdx xdx x dx =+--⎰⎰⎰334828220442222140||(4)|3323x x x =++-=.三、巩固练习求下列曲线所围成的图形的面积。
1.7.1定积分在几何中的应用教学设计(优秀经典公开课比赛教案)

1.7.1 定积分在几何中的应用一、教学目标1. 了解定积分的几何意义及微积分的基本定理.2.掌握利用定积分求曲边图形的面积二、预习导学三:教学重难点重点:曲边梯形面积的求法难点:定积分求体积以及在物理中应用1.若11(2)a x x +⎰d x = 3 + ln 2,则a 的值为( D )A .6B .4C .3D .22.设2(01)()2(12)x x f x x x ⎧≤<=⎨-<≤⎩,则1()a f x ⎰d x 等于( C )A .34 B .45 C .56 D .不存在3.求函数dx a ax x a f )46()(1022⎰++=的最小值 解:∵102231022)22()46(x a ax x dx a ax x ++=++⎰223221200(64)(22)|22x ax a dx x a a x a a ++=++=++⎰.∴22()22(1)1f a a a a =++=++. ∴当a = – 1时f (a )有最小值1.4.求定分3-⎰x .5.怎样用定积分表示:x =0,x =1,y =0及f (x )=x 2所围成图形的面积?31)(102101⎰⎰===dx x dx x f S6. 你能说说定积分的几何意义吗?例如⎰ba dx x f )(的几何意义是什么?表示x 轴,曲线)(x f y =及直线a x =,b x =之间的各部分面积的代数和, 在x 轴上方的面积取正,在x 轴下方的面积取负四、问题引领,知识探究例1.求椭圆12222=+b y a x 的面积。
解:先画出椭圆的图形,见图6-16,因为椭圆是关于坐标轴对称的,所以整个椭圆的面积S 是第一象限内那部分面积的4倍,即有⎰=b a ydx S 4其中 22x a a b y -=所以 ⎰⎰-=-=a a dx x a a b dx x a a b S 022022441.利用§6.5例2已算出的结果⎰=-a a dx x a 02224π,可得244b a S ab a ππ=⨯=(平方单位)当a b =时,我们得到圆的面积2a S π=例2.求由曲线3324,16y y x y y x -=-=所围成的面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学题目:
选修2-2 1.7.1定积分在几何中的应用
教学目标:
一、知识与技能:
1.让学生深刻理解定积分的几何意义以及微积分的基本定理;
2.通过本节课的探究,学生能够应用定积分解决不太规则的平面图形的面积,能够初步掌握应用定积分解决实际问题的基本思想和方法
3.初步掌握利用定积分求曲边梯形的几种常见题型及方法
二、过程与方法:
1. 探究过程中通过数形结合的思想,加深对知识的理解,同时体会到数学研究的基本思路和方法。
三、情感态度与价值观:
探究式的学习方法能够激发学生的求知欲,培养学生对学习的浓厚兴趣;探究式的学习过程能够培养学生严谨的科学思维习惯和方法,培养学生勇于探索和实践的精神;
教学重点:
应用定积分解决平面图形的面积,使学生在解决问题的过程中体会定积分的价值。
教学难点:
如何恰当选择积分变量和确定被积函数。
课型、课时:
新课,一课时
教学工具:
常用教具,多媒体,PPT课件
教学方法:
引导法,探究法,启示法
教学过程
积分⎰b
a f (x )dx 在几何上表示 x =a 、x =
b 与 x 轴所围成的曲边梯形
的面积。
当f (x )≤0时由y =f (x )、x =a 、x =b 与 x 轴所围成的曲边梯形面积的负值
类型1.求由一条曲线y=f(x)和直线x=a,x=b(a<b)及x 轴所围成平面图形的面积S
由一条曲线和直线所围成平面图形的面积的求解
练习. 求抛物线y=x 2-1,直线x=2,y=0所围成的图形的面积。
解:如图:由x 2-1=0得到抛物线与x 轴的交点坐标是(-1,0),(1,0).所求面积如图阴影所示:
所以:
⎰b
a
f (x )dx =⎰c
a f (x )
O
x
a
b y =f (x )
x
O
a
b
y =f (x )
⎰b
a
f (x )dx =⎰c a f (x )dx +
⎰b
c f (x )dx 。
=-S (2)
x
y
o
a
b
c
)
(x f y =(3)
(1) x
y
o )
(x f y =a b (1) ()b a S f x dx =⎰(2) ()b a S f x dx =-⎰(3) |()|()()()c
b
c
b
a
c
a
c
S f x dx f x dx f x dx f x dx
=+=-+⎰⎰⎰⎰21
22
1
1(1)(1)S x dx x dx
-=---⎰⎰2
1
33
1
1
8
()()333x x x x -=---=y
x
当f (x )≥0时,积分dx x f b
a )(⎰在几何上表示由y =f (x )、
类型2:由两条曲线y=f(x)和y=g(x),直线x=a,x=b(a<b)所围成平面图形的面积S
总结:当x ∈[a ,b ]有f (x )>g (x )时,由直线x =a ,x =b (a ≠b )和曲线y =f (x ),y =g (x )围成的平面图形的面积S
=
.
不分割型图形面积的求解步骤:
(1)准确求出曲线的交点横坐标;
(2)在坐标系中画出由曲线围成的平面区域;
(3)根据图形写出能表示平面区域面积的定积分;
(4)计算得所求面积.
y
x
o
b
a
)
(x f y =)(x g y =(2)
)
(x f y =)
(x g y =(1)
()()b
a
f x
g x dx -⎡⎤⎣⎦⎰。