自控实验三线性定常系统的稳态误差讲课教案

合集下载

自控实验三线性定常系统的稳态误差

自控实验三线性定常系统的稳态误差

实验三 线性定常系统的稳态误差一、实验目的1. 通过本实验,理解系统的跟踪误差与其结构、参数与输入信号的形式、幅值大小之间的关系;2. 研究系统的开环增益K 对稳态误差的影响。

二、实验设备同实验一。

三、实验内容1. 观测0型二阶系统的单位阶跃响应和单位斜坡响应,并实测它们的稳态误差;2. 观测I 型二阶系统的单位阶跃响应和单位斜坡响应,并实测它们的稳态误差;3. 观测II 型二阶系统的单位斜坡响应和单位抛物坡,并实测它们的稳态误差。

四、实验原理通常控制系统的方框图如图4-1所示。

其中G(S)为系统前向通道的传递函数,H(S)为其反馈通道的传递函数。

图4-1由图4-1求得)()()(11)(S R S H S G S E +=(1)由上式可知,系统的误差E(S)不仅与其结构和参数有关,而且也与输入信号R(S)的形式和大小有关。

如果系统稳定,且误差的终值存在,则可用下列的终值定理求取系统的稳态误差:)(lim 0S SE e s ss →=(2)本实验就是研究系统的稳态误差与上述因素间的关系。

下面叙述0型、I 型、II 型系统对三种不同输入信号所产生的稳态误差ss e 。

1.0型二阶系统设0型二阶系统的方框图如图4-2所示。

根据式(2),可以计算出该系统对阶跃和斜坡输入时的稳态误差:图4-2 0型二阶系统的方框图1) 单位阶跃输入(sS R 1)(=) 3112)1.01)(2.01()1.01)(2.01(lim 0=⨯+++++⨯=→S S S S S S e S ss图表 1仿真结果中可以看到,读到的误差值为324.506mV ,基本符合理论的推算结果。

Matlab 仿真2) 单位斜坡输入(21)(s S R =) ∞=⨯+++++⨯=→2012)1.01)(2.01()1.01)(2.01(lim SS S S S S e S ss上述结果表明0型系统只能跟踪阶跃输入,但有稳态误差存在,其计算公式为:Pss K R e +=10其中)()(lim 0S S H S G K p →≅,R 0为阶跃信号的幅值。

自动控制原理 自动控制原理 第三章3:线性定常系统的稳定误差计算P

自动控制原理 自动控制原理 第三章3:线性定常系统的稳定误差计算P

∞ v R00 ess = K 0
ν =0 ν =1 ν ≥2
13
e ss
∞ R v 00 = K 0
ν = 0 ν = 1 ν ≥ 2
0型系统稳态时不能跟踪斜坡输入 Ⅰ型系统能跟踪斜坡输入,但存在一个稳态位置误差 型系统能跟踪斜坡输入, Ⅱ 型及 Ⅱ 型以上系统 , 稳态时能准确跟踪斜坡输入 型及Ⅱ型以上系统, 信号,不存在位置误差. 信号,不存在位置误差.
( 3 66 )
K p : 静态位置误差系数
K G (s)H (s) = s
20102010-7-11
ν
∏1 i= ∏1 j=
n ν
m
(τ (T
i
s + 1) ,
j
n ≥ m
s + 1)
K
p
K ,ν = 0 = ∞ ,ν ≥ 1
10
第三章 线性系统的时域分析法
K
p
K ,ν = 0 = ∞ ,ν ≥ 1
2 s→ 0
K s v2
s→ 0
20102010-7-11
第三章 线性系统的时域分析法
17
误差系数 类型
静态位置误 差系数
Kp
静态速度误差 系数
Kv
静态加速度误 差系数
K
a
0型
K
∞ ∞
0
0
Ⅰ型
K

0 K
Ⅱ型
20102010-7-11
第三章 线性系统的时域分析法
18
输入
类型
r(t ) = R0
R0 1+ K
e
ss
ν 与 K R (s)
系统型别 开环增益有关 输入信号

《自动控制原理》第三第讲

《自动控制原理》第三第讲

误差系数 Kp Kv Ka
单位阶跃 输入
r(t) = u(t)
单位速度 输入
r(t) = t
单位加速 度输入
r(t) = 1 t 2 2
0
K0 0
1 1+K
I
∞ K0
0
II
∞ ∞K
0


1

K
1
0
K
1. 稳态误差与输入信号有关;与开环增益有关;与积分环节的个 数有关。
2. 减小或消除稳态误差的方法: a、增加开环放大系数K; b、提高系统的型号数;
R(s)
E(s) -
G1 ( s)
+ G2 (s) C(s)
H (s) (b)
通常,给定输入作用产生的误差为系统的给定误差
(E=R-HC),扰动作用产生的误差为扰动误差。认为扰动输入时 系统的理想输出为零,故从输出端的误差信号为:
En
= C理想
− C实际
=
−C实际
=
−Cn
= − G2 1+ G1G2 H
=
lim sv+1R(s)
s→0
lim sv + K
s→0
由上式可见, ess 与系统的型号v﹑开环增益K及输入信号
的形式及大小有关,由于工程实际上的输入信号多为阶跃信号
﹑斜坡信号(即等速度信号) ﹑抛物线信号(即等加速度信号) 或者为这三种信号的组合, 所以下面只讨论这三种信号作用 下的稳态误差问题.
Ka
m
G(s)H (s)
=
K sv
∏ (τ is +1)
i =1
n−v
∏ (Tjs +1)

《自动控制原理》第三章 35 稳态误差计算

《自动控制原理》第三章 35 稳态误差计算

两种定义的联系: E ' ( s ) E ( s ) H (s)
H ( s ) 1时, E ( s ) E ' ( s )
能源与动力学院 第三章 线性系统的时域分析法
3
1. 误差与稳态误差的定义…
e(t ) L1[ E (s)] L1[e (s) R (s)] L1[ R (s) ] 1 G(s)H (s)
3-6 线性系统的稳态误差计算 (Steady-state error)
稳定性 系统性能 动态性能
稳态性能 稳态误差
稳态性能
原理性误差 结构性误差 (附加稳态误差)
系统结构 输入类型、形式 摩擦,间隙 死区等非线性
能源与动力学院
第三章 线性系统的时域分析法
1
3-6 线性系统稳态误差计算
本节内容:
N(s)
C(s)
G2 (s)
H (s)
输出端误差定义
E'n
(s)
Cn(s)
G2(s)
1G1(s)G2(s)H(s)
N(s)
输入端误差定义
En(s)
Cn(s)H(s)
G2(s)H(S) 1G1(s)G2(s)H(s)
ets (t ) ess (t ) 稳态误差
ess ( )
Lim
s0
sE (s)
Lim
s0
1
sR (s) G(s)H
(s)
ess():终值误差 条件s: E(s)在右半平面及析 虚( 轴原 上点 解除外)
能源与动力学院 第三章 线性系统的时域分析法
4
1. 误差与稳态误差的定义…
例1
R(s) E(S)
误差与稳态误差的定义 系统的类型 输入作用下稳态误差计算 扰动作用下稳态误差 减小或消除稳态误差的措施

实验三自动控制系统的稳定性实验

实验三自动控制系统的稳定性实验

实验三自动控制系统的稳定性实验一、实验目的:1.观察线性系统稳定和不稳定的运动状态。

验证理论上的稳定判据的正确性。

2.研究系统的开环放大系数K对稳定性的影响。

3.了解系统时间常数对稳定性的影响。

二、实验内容:系统稳定性观察,验证理论判据。

1.实验线路R32图3—1 三阶系统的模拟电路图2.按实验参数表3—1分别接实验线路实验参数表3—1参数方案 T1=R13C1=1秒 T2=R22C2=10秒 T3=R32C3方案一 R13=1MΩ,C1=1μF R22=1MΩ,C2=10μF R32=100KΩ,C3=1μF方案二 R13=1MΩ,C1=1μF R22=1MΩ,C2=10μF R32=100KΩ,C3=0.1μF方案三 R13=1MΩ,C1=1μF R22=1MΩ,C2=10μF R32=1MΩ,C3=1μF在A1输入端接适当宽度的方波信号,将a(即U Z/U D之值)由0→1逐步变化,观察并记录各组参数时系统稳定性变化,测系统临界比例系数(特别记住系统由稳定到出现自持振荡的a值),观察并记录该系数对系统稳定性影响。

将实验结果记录在实验记录表3—3中。

3.按上面的线路,依实验参数表3—3调参数(A1接成积分器)实验参数表3—3参数方案 T1=R11C1=0.1秒 T2=R22C2=1秒 T3=R32C3方案一 R13=∞,C1=1μF R22=1MΩ,C2=1μF R32=100KΩ,C3=1μF方案二 R13=∞,C1=1μF R22=1MΩ,C2=1μF R32=50KΩ,C3=1μF重复2的实验过程并做记录实验于录表3—4中。

三、实验准备及要求:1.对实验内容(一)的实验线路,分别用代数稳定判据和频率分析法判据,判定其稳定性,实验结果验证。

2.对实验内容(二)的给定开环传递函数,选择设计各项参数,拟定实验步骤。

设计各项实验内容的记录表格。

四、实验报告要求:1.画出各项实验的模拟实验电路图。

自动控制系统实验教案

自动控制系统实验教案

自动控制系统实验教案一、实验目的1. 理解自动控制系统的原理和组成;2. 掌握自动控制系统的分析和设计方法;3. 熟悉自动控制系统的实验操作和调试技巧;4. 培养学生动手能力和团队协作精神。

二、实验原理1. 自动控制系统的基本概念:系统、输入、输出、反馈、控制目标等;2. 自动控制系统的分类:线性系统、非线性系统、时间不变系统、时变系统等;3. 自动控制系统的数学模型:差分方程、微分方程、传递函数、状态空间表示等;4. 自动控制器的设计方法:PID控制、模糊控制、自适应控制等。

三、实验设备与器材1. 实验台:自动控制系统实验台;2. 控制器:可编程逻辑控制器(PLC)、微控制器(MCU)等;3. 传感器:温度传感器、压力传感器、流量传感器等;4. 执行器:电动机、电磁阀、伺服阀等;5. 信号发生器:函数发生器、任意波形发生器等;6. 示波器、频率分析仪等测试仪器。

四、实验内容与步骤1. 实验一:自动控制系统的基本原理与组成(1)了解自动控制系统实验台的基本结构;(2)学习自动控制系统的原理和组成;(3)分析实验台上的控制系统。

2. 实验二:线性系统的时域分析(1)根据实验要求,搭建线性系统实验电路;(2)利用信号发生器和示波器进行实验数据的采集;(3)分析实验数据,得出系统特性。

3. 实验三:线性系统的频域分析(1)搭建线性系统实验电路,并连接频率分析仪;(2)进行频域实验,采集频率响应数据;(3)分析频率响应数据,得出系统特性。

4. 实验四:PID控制器的设计与调试(1)学习PID控制原理;(2)根据系统特性,设计PID控制器参数;(3)搭建PID控制实验电路,并进行调试。

5. 实验五:模糊控制器的设计与调试(1)学习模糊控制原理;(2)根据系统特性,设计模糊控制器参数;(3)搭建模糊控制实验电路,并进行调试。

五、实验要求与评价2. 实验操作:熟悉实验设备的操作,正确进行实验;3. 数据处理:能够正确采集、处理实验数据;4. 分析与总结:对实验结果进行分析,得出合理结论;5. 课堂讨论:积极参与课堂讨论,分享实验心得。

自动控制原理课件:线性系统的稳定性和稳态特性分析

自动控制原理课件:线性系统的稳定性和稳态特性分析
设系统处于某一平衡状态,若此系统在干 扰作用下离开了原来的平衡状态,那么,在扰 动消失后,系统能否回到原来的平衡状态,这 就是系统的稳定性问题。
上述系统在干扰作用消失后,能够恢复到 原始的平衡状态,或者说系统的零输入响应具 有收敛性质,则系统为稳定的。
由此可得到线性系统稳定的充分必要条件: 系统特征方程的所有根(系统的所有闭环极点),均位于复数s平面的左半部.
系统给定误差传递函数为
Er (s) R(s)
1 1 G(s)
1
1 K (0.5s 1)
s(s 1)(3s 1)
Er
(s)
s(s
s(s 1)(3s 1) 1)(3s 1) K (0.5s
1)
R(s)
esr
lim
s0
sEr
(s)
lim s
s0
s(s 1)(3s 1)
1
s(s 1)(3s 1) K(0.5s 1) s
3.3 劳斯稳定判据 线性系统稳定与否,取决于特征根的实部是否均为负值(复数s平面
的左半部).但是求解高阶系统的特征方程是相当困难的.而劳斯判据,
避免解特征方程,只需对特征方程的系数进行代数运算,就可以判断系统
的稳定性,因此这种数据又称为代数稳定判据.
1.劳斯判据 将系统的特征方程写成如下标准形式
下面要讨论系统跟踪输入信号的精确度或抑制干扰信号的能 力.
这里讨论的稳态误差仅限于由系统结构、参数及输入信号的不 同而导致的稳态误差,不包含由于具体元件的灵敏性、温湿度影响所 带来的误差问题。
控制系统的输入包含给定输入和扰动量, 对应的控制系统的稳态误差也分为两类:
给定稳态误差
扰动稳态误差
Er (s) R(s) B(s) R(s) Er (s)Gc (s)Go (s)H(s)

实验三系统稳定性分析

实验三系统稳定性分析

实验三 系统稳定性分析
熟悉闭环系统稳定和不稳定现象,并加深理解线性定常系统的稳定性只与其结构和参数有关,而与外作用无关的性质。

一、实验目的
1.熟悉三阶模拟系统的组成。

2.研究增益K 对三阶系统稳定性的影响。

3.研究时间常数T 对三阶系统稳定性的影响。

二、主要实验设备及仪器
1.TKKL -2型控制理论实验箱一台。

2.TD 4652型10MHz 超低频慢扫描双踪示波器一台。

3.万用表一只。

三、实验线路
1.某恒值调节系统
k 200o
U
图3-1恒值调节系统 2.某随动系统
o
U
图3-2 随动系统
四、实验内容
1.按图3-1所示的参数接线,经检查无误后方可通电进行实验。

2.调节RW,观察实验过程。

记录实验结果并分析总结。

调节该电阻,观察实验过程并分析。

图3-3 4.将图3-1中第一级运算放大器的反馈电容换为F
1.0,观察实验过程并分析。

5.按图3-2所示的参数接线,经检查无误后调节RW,观察实验过程。

记录实验结果并分析总结。

五、实验报告
1.定性地分析系统的开环增益K和时间常数T对三阶系统稳定性的影响。

2.将代数稳定判据的结果与实验所得出的结果作一比较。

3.总结和分析实验结果并写出实验报告。

六、实验思考题
1.为使系统能稳定工作,开环增益K应适当取小还是取大?
2.试解释在三阶系统的实验中,输出为什么会出现削顶的等幅震荡?
3.实验内容中2、3及4项目是否相同?为什么?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Matlab仿真
2.I型二阶系统
设图4-4为I型二阶系统的方框图。
图4-4
1)单位阶跃输入
图表3
图上看到,当时,误差的确是趋于0的。
Matlab仿真
2)单位斜坡输入
这表明I型系统的输出信号完全能跟踪阶跃输入信号,在稳态时其误差为零。对于单位斜坡信号输入,该系统的输出也能跟踪输入信号的变化,且在稳态时两者的速度相等(即 ),但有位置误差存在,其值为 ,其中 , 为斜坡信号对时间的变化率。
五、实验步骤
1. 0型二阶系统
当输入ur为一单位阶跃信号时,用上位软件观测图中e点并记录其实验曲线,并与理论偏差值进行比较。
当输入ur为一单位斜坡信号时,用上位软件观测图中e点并记录其实验曲线,并与理论偏差值进行比较。
注:单位斜坡信号的产生最好通过一个积分环节(时间常数为1S)和一个反相器完成。
2.I型二阶系统
Matlab仿真
2)单位斜坡输入( )
上述结果表明0型系统只能跟踪阶跃输入,但有稳态误差存在,其计算公式为:
其中 ,R0为阶跃信号的幅值。由实验观测到的图4-3(a)和图4-3(b)所示的波形可知,系统实际的稳态误差符合理论计算的结果。
图4-3(a)图4-3(b)
图表2
从图上可以看出,对于这个系统,当输入是单位斜坡信号时,系统的误差会随着时间的推移而不断的加大,可以想见如果不是系统量程有限,误差一定会趋于无穷大,这与理论结果是一致的。而图上当输入信号超出量程之后,信号不再增大,误差也不再增大,这与输入阶跃信号的结果也是一致的。
图表4
图中读到的误差值稳定在95mV左右,与预期的100mV相差不多,认为是正确的。
Matlab仿真
3)单位抛物输入
图表5
可见,输入单位抛物信号时,I型系统的误差是趋于无穷大的。当输入信号超量程时,系统又变成输入单位统
设图4-5为II型二阶系统的方框图。
六、实验思考题
1.为什么0型系统不能跟踪斜坡输入信号?
答:以实验要求中给出的系统为例,
图4-2 0型二阶系统的方框图
从0型系统的方框图可以推知,对阶跃信号稳态误差为
对斜坡信号的稳态误差为
可见,由于0型系统的E(S)在原点处没有零点,而斜坡信号拉氏变换后在原点有一个二阶极点,极点不能被抵消,造成了误差的不断累积,因此0型系统不能跟踪斜坡输入信号。
自控实验三线性定常系统的稳态误差
实验三 线性定常系统的稳态误差
一、实验目的
1.通过本实验,理解系统的跟踪误差与其结构、参数与输入信号的形式、幅值大小之间的关系;
2.研究系统的开环增益K对稳态误差的影响。
二、实验设备
同实验一。
三、实验内容
1.观测0型二阶系统的单位阶跃响应和单位斜坡响应,并实测它们的稳态误差;
当输入ur为一单位阶跃信号时,用上位软件观测图中e点并记录其实验曲线,并与理论偏差值进行比较。
当输入ur为一单位斜坡信号时,用上位软件观测图中e点并记录其实验曲线,并与理论偏差值进行比较。
3. II型二阶系统
当输入ur为一单位斜坡(或单位阶跃)信号时,用上位软件观测图中e点并记录其实验曲线,并与理论偏差值进行比较。
(2)
本实验就是研究系统的稳态误差与上述因素间的关系。下面叙述0型、I型、II型系统对三种不同输入信号所产生的稳态误差 。
1.0型二阶系统
设0型二阶系统的方框图如图4-2所示。根据式(2),可以计算出该系统对阶跃和斜坡输入时的稳态误差:
图4-2 0型二阶系统的方框图
1)单位阶跃输入( )
图表1
仿真结果中可以看到,读到的误差值为324.506mV,基本符合理论的推算结果。
2.为什么0型系统在阶跃信号输入时一定有误差存在,决定误差的因素有哪些?
答:同样以以实验要求中给出的系统为例,
图4-2 0型二阶系统的方框图
从0型系统的方框图可以推知,对阶跃信号稳态误差为
可见,由于阶跃信号拉氏变换后在原点只有一个一阶极点,能够被抵消,同时也不存在未被抵消的零点,这时的就是常数。
从系统框图可见,0型系统由两个惯性环节串联,再做负反馈构成,惯性环节的传递函数:
稳态误差决定于两个惯性环节的放大倍数,
3.为使系统的稳态误差减小,系统的开环增益应取大些还是小些?
答:从上面的计算式子就可以看出,为了减少0型系统的稳态误差,系统的开环增益应当取大些。
对于I型系统,前面也已推导过,对斜坡信号输入存在稳态误差,其值为 ,其中 , 为斜坡信号对时间的变化率。
对于II型系统,情况类似,可见,为了减少稳态误差,开环增益都应该增大。
图4-5 II型二阶系统的方框图
同理可证明这种类型的系统输出均无稳态误差地跟踪单位阶跃输入和单位斜坡输入。当输入信号 ,即 时,其稳态误差为:
单位阶跃输入
图表6
结果为误差趋于零。
Matlab仿真
单位斜坡输入
图表7
结果为误差趋于零
Matlab仿真
单位抛物输入
图表8
可以看到,误差接近于理论值100mV
Matlab仿真
当输入ur为一单位单位抛物波信号时,用上位软件观测图中e点并记录其实验曲线,并与理论偏差值进行比较。
注:①单位抛物波信号的产生最好通过两个积分环节(时间常数均为1S)和一个反相器完成。
②本实验中不主张用示波器直接测量给定信号与响应信号的曲线,因它们在时间上有一定的响应误差;
③在实验中为了提高偏差e的响应带宽,可在二阶系统中的第一个积分环节并一个510K的普通电阻。
2.观测I型二阶系统的单位阶跃响应和单位斜坡响应,并实测它们的稳态误差;
3.观测II型二阶系统的单位斜坡响应和单位抛物坡,并实测它们的稳态误差。
四、实验原理
通常控制系统的方框图如图4-1所示。其中G(S)为系统前向通道的传递函数,H(S)为其反馈通道的传递函数。
图4-1
由图4-1求得
(1)
由上式可知,系统的误差E(S)不仅与其结构和参数有关,而且也与输入信号R(S)的形式和大小有关。如果系统稳定,且误差的终值存在,则可用下列的终值定理求取系统的稳态误差:
4.解释系统的动态性能和稳态精度对开环增益K的要求是相矛盾的,在控制工程中应如何解决这对矛盾?
答:从之前得到的分析结果可知,为了减少稳态误差,需要增大开环增益K,但是,对于动态性能来说,开环增益越大,意味着ζ越小,超调量越大,因此,动态性能和稳态精度对开环增益K的要求是矛盾的。
相关文档
最新文档