可逆矩阵 矩阵乘积的行列式

可逆矩阵  矩阵乘积的行列式
可逆矩阵  矩阵乘积的行列式

§5.2 可逆矩阵 矩阵乘积的行列式

5.2.1 教学目的

5.2.1.1 掌握矩阵可逆,逆矩阵的定义和简单性质. 5.2.1.2 掌握矩阵可逆的充要条件及求逆矩阵的两种方法. 5.2.1.3 掌握矩阵乘积的行列式和秩的性质.

5.2.2 教学重点

矩阵可逆的定义,充要条件及求逆矩阵的方法.

5.2.3 教学难点

用初等变换法求逆矩阵的理论.

5.2.4 教学过程

一、矩阵可逆,逆矩阵的定义和简单性质. (一)矩阵可逆,逆矩阵的定义

Def 1 令A 是数域F 上一个n 矩阵,若存在F 上n 阶矩阵B ,使得 AB=BA=I

那么A 叫可逆矩阵(或非奇异矩阵),而B 叫作A 的逆矩阵. (二)逆矩阵的简单性质

1、若是矩阵A 可逆,则A 的逆矩阵唯一. 把A 的唯一的逆矩阵记作.

2、可逆矩阵A 的逆矩阵也可逆,并且

.

1、1、1、两个可逆矩阵A 和B 的乘积也可逆,并且

.

一般,m 个可逆矩阵A 1,A 2,…,A m 的乘积A 1A 2…A m 也可逆. 并且

(A 1A 2,…,A m )-1

=

4、可逆矩阵A 的转置

也可逆,并且

二、矩阵可逆的充要条件 (一)判断矩阵可逆的思路.

判断一般的n 阶矩阵A 是否可逆很复杂,但判断形如

,矩阵的可逆

1

-A 1-A

A

A =--1

1

)(1

1

1

)

(---=A

B

AB 1

1

121---A A A m A '

)()

(1

1

'

='--A

A ???

? ?

?000r

I

性十分简单,即当r=n 时,可逆;当r

时,不可逆.如何将一

般的矩阵A 的可逆性与

的可逆性挂勾?

(二)判断矩阵,可逆的予备知识 1、初等矩阵的概念

对单位阵施行一次初等变换所得到的矩阵:

i j

i

i j

都叫做初等矩阵.

2、初等矩阵和初等变换的联系

???

?

??000r I ???

? ?

?000r

I ???

? ?

?000r I ????????

????????

?

?=11

1

1

1

1

1

1

ij p j i i

k

k D i ??????????

?

?

?=11

1

1)(

j

i k k T ji ??????????

?

?

?=11

1

1

1)(

左乘一个初等矩阵相当于对矩阵施行一次相应的行的初等变换;右乘一个初等矩阵相当于对矩阵施行一次相应的列的初等变换.

3、初等矩阵都是可逆的,它们的逆矩阵仍是初等矩阵:

4、初等变换不改变矩阵的可逆性.

La5.2.1 设对矩阵A 施行一个初等变换后,得到矩阵,则A 可逆的充要条件是可逆.

5、矩阵在初等变换下的标准形

La5.2.2 一个m ×n 矩阵A 总可以通过初等变换化为以下形式的矩阵.

(三)矩阵可逆的充要条件

Th5.2.3 n 阶矩阵A 可逆的充要条件是它可通过初等变换化为单位阵. Th5.2.4 n 阶矩阵A 可逆的充要条件是它可写成初等矩阵的乘积. Th5.2.5 n 阶矩阵A 可逆当且仅当A 的秩等于n. Th5.2.6 n 阶矩阵A 可逆,当且仅它的的行列式detA ≠0. 三、逆矩阵的求法 (一)初矩阵的求法

一个可逆矩阵A 可以通过行初等变换化为单位矩阵I 即存在初等矩阵E 1,E 2,…,E s ,使

用A -1右乘这个等式的两端,得

法则:在通过行初等变换把可逆矩阵A 化为单位矩阵I 时,对单位矩阵I 施行同样的初等变换,就得到A 的逆矩阵A -1.

例1:求矩阵

的逆矩阵. 解: →→

)

()

(),1

()

(,1

1

1

k T k T k

D k D p p ij ij i i ij ij -===---A A ???? ?

?=00

0r

I A I A E E E s =12 1

12-=A

I E E E s ????? ??---=201013

121

A ????

?

?

?---10

20

10100130011

21 ????

? ?

?---10

1

3

2

0013350001121

(二)行列式法

设n 阶矩阵

则有以下等式成立:

若令

, 则

把A *叫矩阵A 的伴随矩阵.

当A 可递时,

,即

例: 设

,求A -1

解:因为

=2≠0,所以A 可逆.

又因A 11=2,A 12=2,A 13=-4,A 21=-1,A 22=-1,A 23=3,

15

35

15

90

5153

53100

52515101-----

????????

?

?-----

959

29

11

0513132

010

919492001

???????

??=nn n n n n a a a a a a a a a A

2

1

22221

11211?????≠==+++j i j i A A a A a A a jn

in j i j i 若若02211 ??

???≠==+++j

i j i A A a A a A a nj

ni j i j i 若若02211 ???

????

??=nn n

n

n n A A A A A A A A A A

211221212111*

??????

?

?

?==A A A

A A AA

01000*

*

I A A A A A A =???? ??=???? ??**11*

1

1A

A

A

=-?????

??-=01

1213

112A 0

1

1

213

112-=A

利用这个公式去求逆矩阵,计算量一般很大,公式(8)的意义主要在理论方面.例如,可应用它来给出克莱姆规律的另一种推导法

a 11x 1+a 12x 2+…+a 1n x n =

b 1 a 21x 1+a 22x 2+…+a 2n x n =b 2 …………………………

a n1x 1+a n2x 2+…+a nn x n =

b n

利用矩阵的乘法

令 (a ij )=A ,以A -1左乘端

由此得

四、矩阵乘积的行列式 (一)矩阵乘积的行列式

引理:一个n 阶矩阵A 总可以通过第三种行和列的初等变换在成一个对角矩阵

(10)

证:如果A 的第一行和第一列的元素不都是零,那么必要时总可以通过第

????? ??-----=∴-13

4

112112211

A

???????

??=??????? ????????? ??n n

nn n n n n b b b x x x a a a

a a a a a a

2121

2

1

2222111211

???????

?????????

??=??????? ??n

nn n

n

n n n

b b b A A A A A A A A A A x

x x

21

212221212111211)(1),,,(122112

121ni n i i n

ni i i i A b A b A b A b b b A A A A

x +++=?????

??

??= ???????

??=n d d d A 002

1

三种初等变换使左上角的元素不为零,于是再通过适当的第三种初等变换可以把A 化为

如果A 的第一行和第一列都是零,那么A 已经具有(10)的形式. 对A 进行同样的考虑,易见可用第三种初等变换逐步把A 化为对角矩阵. 根据行列式的性质,我们有

定理:设A 、B 是任意两个n 阶矩阵,那么

证:先看一个特殊情况,即A 是一个对角矩阵的情形,设

现在看一般情形,由引理,可以通过第三种初等变换把A 化成一个对角矩阵,并且|A|=||,矩阵A 也可以反过来通过对施行第三种初等变换而得出,即存在T ij (k)型矩阵,T 1、T 2、…T g ,使

A=T 1…T p T p+1…T g

于是,AB= T 1…T p T p+1…T g ,B=(T 1…T p )(T p+1…T g B )

而由行列式的性质知道,任意一个n 阶矩阵的行列式不因对它施行第三种行或列初等变换而求所改变.

|AB|= |T 1…T p T p+1…T g B|

=||| T p+1…T g B | =|||B|=|A||B| 由这个定理显然可以得出

????? ?

?00001

1

A d

n

d d d A A 21==B

A A

B =??

??

???

?

?=n d d d A 002

1

???????

??==nn n n n n ij b b b b b b b b b b B

2

12222111211

)(=AB ???

????

??nn n n n n n n n b d b d b d b d b d b d b d b d b d

2

1

222222*********

1B

A B d d d AB n == 21A A A A A A A A A

|A 1A2…A m |=|A 1||A 2|…|A m |

(二)矩阵乘积的秩

定理:两个矩阵乘积的秩不大于每一因子的秩,特别当有一个因子是可逆矩阵时,乘积的秩等于另一因子的秩.

证:设A 是一个m ×n 矩阵,B 是一个n ×p 矩阵,并且秩A=r ,由定理5.2.2,可以对A 施行行初等变换将A 化为

换句话说,存在m 阶初等矩阵E 1,…,E p 和n 阶初等矩阵E p+1,…,E q , 使E 1…E p AE p+1…E q =.

于是 E 1…E p ABE p+1=E 1…E p AE p+1…E q E q -1…E p+1-1B

=E q -1…E p+1-1B=,显然除前r 行外,其余各元行的元素都是零,所以秩≤r ;另一方面,E 1…E p+1AB 是由AB 通过行初等变换而得到的所以它与AB 有相同的秩,这样就证明了秩AB ≤秩A.同理可证秩AB ≤秩B.

如果A 、B 中有一个,例如A 是可逆矩阵,一方面AB ≤秩B ,另一方面,B=A -1

(AB),所以秩B ≤秩AB ,因此秩AB=秩B.

这个定理也很容易推广到任意m 个矩阵的乘积的情形,任意m 个矩阵乘积的秩不大于每一因子的秩.

???? ?

?=00

0r

I A A A B A B A B A

行列式跟矩阵的关系

行列式跟矩阵的关系 行列式是若干数字组成的一个类似于矩阵的方阵,与矩阵不同的是,矩阵的表示是用中括号,而行列式则用线段。 矩阵由数组成,或更一般的,由某元素组成。就是m×n 矩阵就是mn个数排成m个横行n个竖列的阵式。n×n矩阵的行列式是通过一个定义,得到跟这个矩阵对应的一个数,具体定义可以去看书。注意,矩阵是一个阵式,方阵的行列式是跟一个方阵对应一个数。行列式的值是按下述方式可能求得的所有不同的积的代数和,即是一个实数求每一个积时依次从每一行取一个元因子,而这每一个元因子又需取自不同的列,作为乘数,积的符号是正是负决定于要使各个乘数的列的指标顺序恢复到自然顺序所需的换位次数是偶数还是奇数。 也可以这样解释:行列式是矩阵的所有不同行且不同列的元素之积的代数和,和式中每一项的符号由积的各元素的行指标与列指标的逆序数之和决定:若逆序数之和为偶数,则该项为正;若逆序数之和为奇数,则该项为负。 行列式在数学中,是一个函数,其定义域为的矩阵,取值为一个标量,写作或。行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说,在维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。 行列式概念最早出现在解线性方程组的过程中。十七世纪晚期,关孝和与莱布尼茨的著作中已经使用行列式来确定线性方程组解的个数以及形式。十八世纪开始,行列式开始作为独立的数学概念被研究。十九世纪以后,行列式理论进一步得到发展和完善。矩阵概念的引入使得更多有关行列式的性质被发现,行列式在许多领域都逐渐显现出重要的意义和作用,出现了线性自同态和矢量组的行列式的定义。

矩阵代码大全(矩阵的逆、乘法、加法、行列式)(c++程序)

班级:数学112班学号:201112010222姓名:吕文辉报告日期:2012/12/17 实验代码: 1.输入10个数进行排序: #include using namespace std; int main() { int a[10],i,j,t; cout<<"input 10 numbers"<>a[i]; for(i=0;i<10;i++) for(j=i+1;j<10;j++) if(a[i]>a[j]) {t=a[j];a[j]=a[i];a[i]=t;} for(i=0;i<10;i++) cout< #include using namespace std; const int m=2,n=3; int main() { int a[m][n],i,j,k=0; cout<<"input a array"<>a[i][j]; for(i=0;i

} 3.矩阵转置的程序代码: #include using namespace std; int const m=2,n=3; int main() { int i,j,k=0,kk=0; int a[m][n],b[n][m]; for(i=0;i>a[i][j]; for(i=0;i #include using namespace std; int const m=3,n=3,q=3; int main() { double a[m][n],b[n][q],c[m][q]; int i,j,k,kk=0; cout<<"输入矩阵a"<

矩阵行列式的概念与运算

知识点总结: 一、矩阵的概念与运算 1、 矩阵1112 132122 23a a a a a a ?? ??? 中的行向量是()111213a a a a =r ,()2122 23b a a a =r ; 2、 如:1112131112111221222321222122,,c c c a a b b A B C c c c a a b b ?? ???? === ? ? ??????? ,那么 11111212111221212222212233,333a b a b a a A B A a b a b a a ++???? +== ? ? ++????, 1111122111121222 111312232111222121122222 21132223a c a c a c a c a c a c AC a c a c a c a c a c a c +++?? = ?+++?? 矩阵加法满足交换律和结合律,即如果,,A B C 是同阶的矩阵,那么有: ,()()A B B A A B C A B C +=+++=++。 同理如果矩阵,A B 是两个同阶矩阵,那么将它们对应位置上的元素相减所得到的矩阵C 叫做矩阵A 与B 的差,记作C A B =-。 实数与矩阵的乘法满足分配律:即()a A B aA aB +=+。 矩阵对乘法满足:()A B C AB AC +=+,()B C A BA CA +=+,()()()a AB aA B A aB == ()()AB C A BC = 3、 矩阵乘法不满足交换率,如111 11 11 122222222.a b c d c d a b a b c d c d a b ????????≠ ??? ??????????? 矩阵乘法能进行的条件是左边的矩阵A 的列数与右边矩阵B 的行数相等,而且矩阵的乘法不满足交换率,不满足消去律。 二、行列式概念及运算 1.用记号 2 2 11b a b a 表示算式1221b a b a -,即 2 2 11b a b a =1221b a b a -,其中 2 2 11b a b a 叫做二阶行列 式;算式1221b a b a -叫做二阶行列式的展开式;其计算结果叫做行列式的值;2121,,,b b a a 都叫做行列式的元素.利用对角线 2 2 11b a b a 可把二阶行式写成它的展开式,这种方法叫做二阶行列式 展开的对角线法则;即在展开时用主对角线元素的乘积减去副对角线元素的乘积. 2.二元一次方程组的解 二元一次方程组???=+=+222 1 11c y b x a c y b x a (其中2121,,,b b a a 不全为零);记 2 211b a b a 叫做方程组的系数

第五专题 矩阵的数值特征(行列式、范数、条件数、迹、秩、相对特征根)

第五专题 矩阵的数值特征 (行列式、迹、秩、相对特征根、范数、条件数) 一、行列式 已知A p ×q , B q ×p , 则|I p +AB|=|I q +BA| 证明一:参照课本194页,例4.3. 证明二:利用AB 和BA 有相同的非零特征值的性质; 从而I p +AB ,I q +BA 中不等于1的特征值的数目 相同,大小相同;其余特征值都等于1。 行列式是特征值的乘积,因此|I p +AB|和|I q +BA|等于特征值(不等于1)的乘积,所以二者相等。 二、矩阵的迹 矩阵的迹相对其它数值特征简单些,然而,它在许多领域,如数值计算,逼近论,以及统计估计等都有相当多的应用,许多量的计算都会归结为矩阵的迹的运算。下面讨论有关迹的一些性质和不等式。 定义:n n ii i i 1 i 1 tr(A)a ====λ∑∑,etrA=exp(trA)

性质: 1. tr(A B)tr(A)tr(B)λ+μ=λ+μ,线性性质; 2. T tr(A )tr(A)=; 3. tr(AB)tr(BA)=; 4. 1 tr(P AP)tr(A)-=; 5. H H tr(x Ax)tr(Axx ),x =为向量; 6. n n k k i i i 1 i 1 tr(A),tr(A )===λ=λ∑∑; 从Schur 定理(或Jordan 标准形)和(4)证明; 7. A 0≥,则tr(A)0≥,且等号成立的充要条件是A=0; 8. A B(A B 0)≥-≥即,则tr(A)tr(B)≥,且等号成立的充要条件是A=B (i i A B (A)(B)≥?λ≥λ); 9. 对于n 阶方阵A ,若存在正整数k,使得A k =0,则tr(A)=0(从Schur 定理或Jordan 标准形证明)。 若干基本不等式 对于两个m ×n 复矩阵A 和B ,tr(A H B)是m ×n 维酉空间上的内积,也就是将它们按列依次排成的两个mn 维列向量的内积,利用Cauchy-schwarz 不等式 [x,y]2≤[x,x]﹒[y,y]

线性代数行列式算与性质

线性代数行列式的计算与性质 行列式在数学中,是一个函数,其定义域为的矩阵,取值为一个标量,写作或。行列式可以看做是有向面积或体积的概 念在一般的欧几里得空间中的推广。或者说,在维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。 行列式概念最早出现在解线性方程组的过程中。十七世纪晚期,关孝和与莱布尼茨的著作中已经使用行列式来确定线性方程组解的个数以及形式。十八世纪开始,行列式开始作为独立的数学概念被研究。十九世纪以后,行列式理论进一步得到发展和完善。矩阵概念的引入使得更多有关行列式的性质被发现,行列式在许多领域都逐渐显现出重要的意义和作用,出现了线性自同态和矢量组的行列式的定义。 行列式的特性可以被概括为一个多次交替线性形式,这个本质使得行列式在欧几里德空间中可以成为描述“体积”的函数。 矩阵 A 的行列式有时也记作 |A|。绝对值和矩阵范数也使用这个记法,有可能和行列式的记法混淆。不过矩阵范数通常以双垂直线来表示(如: ),且可以使用下标。此外,矩阵的绝对值是没有定义的。因此,行 列式经常使用垂直线记法(例如:克莱姆法则和子式)。例如,一个矩阵: A= ? ? ? ? ? ? ? i h g f e d c b a , 行列式也写作,或明确的写作: A= i h g f e d c b a , 即把矩阵的方括号以细长的垂直线取代 行列式的概念最初是伴随着方程组的求解而发展起来的。行列式的提出可以追溯到十七世纪,最初的雏形由日本数学家关孝和与德国数学家戈特弗里德·莱布尼茨各自独立得出,时间大致相同。

矩阵与行列式的相似与不同

矩阵与行列式的相似与不同 学校:长江大学 院系:信息与数学学院 专业:信息与计算科学 姓名:郑洲 辅导老师:谢老师

【摘要】:本文中主要讨论了高等代数中矩阵和行列式的概念,并且从概念,性质以及运算几个方面阐述了行列式与矩阵的相似与不同。 【关键词】:矩阵.行列式.相似与区别 矩阵是指纵横排列的二维数据表格,最早来自于方程组的系数及常数所构成的方阵。数学上,一个m×n的矩阵是一个由m行n列元素排列成的矩形阵列.矩阵里的元素可以是数字、符号或数学式。其重要的作用是解线性方程组和表示线性变换。 行列式在数学中,是由解线性方程组产生的一种算式,是由若干数字组成的一个类似于矩阵的方阵。行列式是一个函数,值是一个标量。其值是按下述方式可能求得的所有不同的积的代数和,即是一个实数求每一个积时依次从每一行取一个元因子,而这每一个元因子又需取自不同的列,作为乘数,积的符号是正是负取决于要使各个乘数的列的指标顺序恢复到自然顺序所需的换位次数是偶数还是基数。 我们先看看矩阵和行列式有哪些相似。 1.形式上比较相似:矩阵和行列式看上去比较相似,主要表现在:它们中的元素都有顺序的排成行列表,表面上看起来很相似,导致很多初学者容易把行列式和矩阵弄混淆;其次,它们中的表示方法一致,比如说行列式和 矩阵中第i行第j列的元素都用a ij表示;并且,它们对行列的称呼一致,从 上到下依次称作第一行,第二行…第n行,记作r1,r2,…r n;从左到右依次称为第一列,第二列,…第n列,记作c1,c2…c n。 2.性质上有相同点:在一个不等于0的数乘行列式或矩阵的某一行或某一列时,等于该数乘以此行或此列的每一个元素;行列式和矩阵中把一个不为0的数乘行列式或矩阵的某一行或列后可以加到另一行或列对应的元素上,即某一行(列)的k倍可以加到另一行(列)上。 3.运算上具有相同点:(1)行列式和矩阵都满足叫法交换率和结合律。可以表示为 D1+D2=D2+D1(D1+D2)+D3=D1+(D2+D3) A+B = B+A (A+B)+C = A+(B+C) (2)行列式和矩阵满足乘法结合律,即 D1D2D3=(D1D2)D3 A(BC)=(AB)C (3)行列式适合乘法分配率,矩阵适合乘法左分配率和右分配率,也就是说 D1(D2+D3)=D1D2+D1D3(D2+D3)D1=D2D1+D3D1 A(B + C) = AB + AC (B + C)A=BA + CA 矩阵和行列式虽然说有很多相同点,但它们始终是两个不同的概念,那么矩阵和行列式有什么区别呢。 1.先从概念上可以看出:(1)n阶行列式D n是n2个数按一定顺序排列成的n行n列的方阵,其实际上是一个数,行列式在数表两端加||;而矩阵是m ×n个数按一定方式排列的m行n列数表,归根结底是一个数表,矩阵在数表两端加()或[]。行列式是方形数表中定义,对不上方形的数表,不能讨论任何行列式的问题,而矩阵无此限制(2)行列式和矩阵行列之间存在差

线性代数行列式基本概念

目录 目录 (1) 一、行列式 (2) 见ppt。 (2) 二、矩阵特征值 (2) 三、正定矩阵 (2) 四、幺模矩阵 (3) 五、顺序主子阵 (4) 六、正定二次型 (6) 七、矩阵的秩 (6) 八、初等变换(elementary transformation) (7)

一、行列式 见ppt。 二、矩阵特征值 设 A 是n阶方阵,如果存在数m和非零n维列向量 x,使得 Ax=mx 成立,则称 m 是A的一个特征值(characteristic value)或本征值(eigenvalue)。非零n维列向量x称为矩阵A的属于(对应于)特征值m的特征向量或本征向量,简称A的特征向量或A的本征向量。 求矩阵特征值的方法 Ax=mx,等价于求m,使得(mE-A)x=0,其中E是单位矩阵,0为零矩阵。 |mE-A|=0,求得的m值即为A的特征值。|mE-A| 是一个n次多项式,它的全部根就是n阶方阵A的全部特征值,这些根有可能相重复,也有可能是复数。 如果n阶矩阵A的全部特征值为m1 m2 ... mn,则|A|=m1*m2*...*mn 如果n阶矩阵A满足矩阵多项式方程g(A)=0, 则矩阵A的特征值m一定满足条件g(m)=0;特征值m可以从解方程g(m)=0求得。 三、正定矩阵 设M是n阶实系数对称矩阵,如果对任何非零向量 X=(x_1,...x_n),都有XMX′>0(X'为X的转置矩阵 ),就称M正定(Positive Definite)。 正定矩阵在相合变换下可化为标准型,即单位矩阵。 所有特征值大于零的对称矩阵(或厄米矩阵)也是正定矩阵。 另一种定义:一种实对称矩阵.正定二次型f(x1,x2,…,xn)=X′AX的矩阵A(A′)称为正定矩阵. 判定定理1:对称阵A为正定的充分必要条件是:A的特征值全为正。 判定定理2:对称阵A为正定的充分必要条件是:A的各阶顺序主子式都为正。 判定定理3:任意阵A为正定的充分必要条件是:A合同于单位阵。 正定矩阵的性质: 1.正定矩阵一定是非奇异的。非奇异矩阵的定义:若n阶矩阵A的行列式不为零,即|A|≠0,则称A为非奇异矩 2.正定矩阵的任一主子矩阵也是正定矩阵。

矩阵与行列式知识梳理

矩阵与行列式知识梳理 一、矩阵的概念 1 将mn 个实数),,2,1;,,2,1(n j m i a ij ==排成m 行n 列的矩形数表(通常用圆括号把数表括起来): ?? ? ? ? ? ? ??=mn m m n n a a a a a a a a a A 2 1 22221 11211称为一个m 行n 列的矩阵,简称n m ?矩阵,用______表示. 简记为_____.数ij a 称为矩阵的元素. 几种特殊类型的矩阵:行矩阵、列矩阵、方阵、单位矩阵、零矩阵. 2 对于关于y x ,的线性方程组?? ?=+=+222111c y b x a c y b x a ,则矩阵??? ? ??2211 b a b a 称为该线性方程组的系数矩阵. 矩阵??? ? ??22 2 111 c b a c b a 称为该线性方程组的增广矩阵. 3 矩阵的三种变换: (1) (2) (3) 4 矩阵变换的目的是将线性方程组的系数矩阵变成单位矩阵,其增广矩阵的最后一列就是方程组的解. 二、二阶行列式 1 定义:我们用记号 2 2 11b a b a 表示算式1221b a b a -,即 12212 2 11b a b a b a b a -=,记号 2 2 11b a b a 叫做行列式,因为它只有两行两列,所以把它叫做二阶行列式. 1221b a b a -叫做行列式 2 2 11b a b a 的展开式,其计算结果叫做 2 2 11b a b a 的值.1a 、2a 、1b 、2b 都叫做行列式 2 2 11b a b a 的元素. 2 对角线法则:二阶行列式的展开式是主对角线上的两个数的乘积减去副对角线上的两个数的乘积. 3作为判别式的二阶行列式:关于x 、y 的二元一次方程组???=+=+222 1 11c y b x a c y b x a ①其中1a 、2a 、 1b 、2b 不全为零,行列式2 2 11b a b a D = 叫做方程组①的系数行列式. 设2 2 11b c b c D x = ,

可逆矩阵 矩阵乘积的行列式

§5.2 可逆矩阵 矩阵乘积的行列式 5.2.1 教学目的 5.2.1.1 掌握矩阵可逆,逆矩阵的定义和简单性质. 5.2.1.2 掌握矩阵可逆的充要条件及求逆矩阵的两种方法. 5.2.1.3 掌握矩阵乘积的行列式和秩的性质. 5.2.2 教学重点 矩阵可逆的定义,充要条件及求逆矩阵的方法. 5.2.3 教学难点 用初等变换法求逆矩阵的理论. 5.2.4 教学过程 一、矩阵可逆,逆矩阵的定义和简单性质. (一)矩阵可逆,逆矩阵的定义 Def 1 令A 是数域F 上一个n 矩阵,若存在F 上n 阶矩阵B ,使得 AB=BA=I 那么A 叫可逆矩阵(或非奇异矩阵),而B 叫作A 的逆矩阵. (二)逆矩阵的简单性质 1、若是矩阵A 可逆,则A 的逆矩阵唯一. 把A 的唯一的逆矩阵记作. 2、可逆矩阵A 的逆矩阵也可逆,并且 . 1、1、1、两个可逆矩阵A 和B 的乘积也可逆,并且 . 一般,m 个可逆矩阵A 1,A 2,…,A m 的乘积A 1A 2…A m 也可逆. 并且 (A 1A 2,…,A m )-1 = 4、可逆矩阵A 的转置 也可逆,并且 二、矩阵可逆的充要条件 (一)判断矩阵可逆的思路. 判断一般的n 阶矩阵A 是否可逆很复杂,但判断形如 ,矩阵的可逆 1 -A 1-A A A =--1 1 )(1 1 1 ) (---=A B AB 1 1 121---A A A m A ' )() (1 1 ' ='--A A ??? ? ? ?000r I

性十分简单,即当r=n 时,可逆;当r

高中数学(矩阵行列式)综合练习含解析

高中数学(矩阵行列式)综合练习含解析 1.定义运算?? ????++=?????????????df ce bf ae f e d c b a ,如??? ???=?????????????1514543021.已知πβα=+, 2 π βα=-,则=? ? ? ???????? ??ββααααsin cos sin cos cos sin ( ). A. 00?? ???? B. 01?????? C. 10?????? D. 11?????? 2.定义运算 a b ad bc c d =-,则符合条件 120 121z i i i +=--的复数z 对应的点在 ( ) A.第四象限 B.第三象限 C.第二象限 D.第一象限 3.矩阵E =??? ? ??1001的特征值为( ) A. 1 B. 2 C. 3 D. 任意实数 4. 若行列式21 24 1 013 9x x =-,则=x . 5.若2021310x y -??????= ??? ?-?????? ,则x y += . 6.已知一个关于y x ,的二元一次方程组的增广矩阵为112012-?? ??? ,则 x y -=_______. 7.矩阵1141?? ???? 的特征值为 . 8.已知变换100M b ?? =? ??? ,点(2,1)A -在变换M 下变换为点(,1)A a ',则a b += 9.配制某种注射用药剂,每瓶需要加入葡萄糖的量在10ml 到110ml 之间,用0.618 法寻找最佳加入量时,若第一试点是差点,第二试点是好点,则第三次试验时葡萄糖的加入量可以是 ; 10.已知 , ,则y= . 11.若2211 x x x y y y =--,则______x y +=

行列式与矩阵幂迹代数关系

行列式与矩阵幂迹的代数关系 计算]det[xB A +的公式 (1)递归推导法: ∑=+=i i i x C xB A w ]det[]det[ ... ]det[)(]det[)(]det[]det[)()ln (]det[21)(ln )(ln w v v w w v w ww w w w w tr tr tr tr e tr e x x x tr x tr x x +?=?=?=?=?=?- 001)](det[]det[)(!==+?=?=x i x x n x i tr i C v w w ... 2)()()()()()(3 1 1 1 1 1 1 111122111v ww ww ww w w ww ww w w ww w w w w v v w w ww w w v -=???-??-?=???+???=?-=?-?=??=?-------------x x x x x x x x x x x x x x x x x x )()1)..(1 )(()(n m m n x tr n m m m tr ++-----=?v v () m x m n m m n m n x x i x i i i i tr tr tr n m m m tr m tr tr i C x C x )()()()1)..(1)(()()(1)(! det ]det[100 B A v v v v v A B A -=+==+-----=-=?+?= =+∑ (2)直接展开法

∑ ∏∑∑ ∏∑∑∏∑∑∏∑∏∑∑∏∑∑∑∑∑=-+∞ ==+∞ ==∞===∞==∞=+=∞ =+--∑ -=+∑ -=∑=∑==∑=≡-=-=+=++≡+=+=+n jm m m i m i m i n n n jm m m i m i m i n n n jm m i m i n n m i m i jm m i im m i m m m m i im m i m i i i m m i i i i m i i i i j j i i i i i j j i i i i i j j i i i i i i j j i i i i i i i i i i m tr x x i m tr x m P x m P x m x P m x P P x m i tr x m i tr x x tr x x x x x }, {)1(0 }, {)1(0 },{0}{}{0},{1 01101 1!)))((()1(]det[]det[!))(()1(!!!!) (!1))()1((!1) ) ()1(exp())ln(exp(]det[]det[det ]det[det ]det[det ]det[B A A B A D D D D δD δD δA B A δA B A δA B A 111 按照分配

第五专题 矩阵的数值特征(行列式、范数、条件数、迹、秩、相对特征根)

第五专题 矩阵的数值特征 (行列式、迹、秩、相对特征根、范数、条件数) 一、行列式 已知A p ×q , B q ×p , 则|I p +AB|=|I q +BA| 证明一:参照课本194页,例4.3. 证明二:利用AB 和BA 有相同的非零特征值的性质; 从而I p +AB ,I q +BA 中不等于1的特征值的数目 相同,大小相同;其余特征值都等于1。 行列式是特征值的乘积,因此|I p +AB|和|I q +BA|等于特征值(不等于1)的乘积,所以二者相等。 二、矩阵的迹 矩阵的迹相对其它数值特征简单些,然而,它在许多领域,如数值计算,逼近论,以及统计估计等都有相当多的应用,许多量的计算都会归结为矩阵的迹的运算。下面讨论有关迹的一些性质和不等式。 定义:n n ii i i 1i 1tr(A)a ====λ∑∑,etrA=exp(trA) 性质: 1. tr(A B)tr(A)tr(B)λ+μ=λ+μ,线性性质; 2. T tr(A )tr(A)=; 3. tr(AB)tr(BA)=; 4. 1tr(P AP)tr(A)-=;

5. H H tr(x Ax)tr(Axx ),x =为向量; 6. n n k k i i i 1i 1tr(A),tr(A )===λ=λ∑∑; 从Schur 定理(或Jordan 标准形)和(4)证明; 7. A 0≥,则tr(A)0≥,且等号成立的充要条件是A=0; 8. A B(A B 0)≥-≥即,则tr(A)tr(B)≥,且等号成立的充要条件是A=B (i i A B (A)(B)≥?λ≥λ); 9. 对于n 阶方阵A ,若存在正整数k,使得A k =0,则tr(A)=0(从Schur 定理或Jordan 标准形证明)。 若干基本不等式 对于两个m ×n 复矩阵A 和B ,tr(A H B)是m ×n 维酉空间上的内积,也就是将它们按列依次排成的两个mn 维列向量的内积,利用Cauchy-schwarz 不等式 [x,y]2≤[x,x]﹒[y,y] 得 定理:对任意两个m ×n 复矩阵A 和B |tr(A H B)|2≤tr(A H A)﹒tr(B H B) 这里等号成立的充要条件是A=cB,c 为一常数。特别当A 和B 为实对称阵或Hermit 矩阵时 0≤|t r(AB)|≤ 定理:设A 和B 为两个n 阶Hermite 阵,且A≥0,

关于矩阵的Kronecker积的一些性质

关于矩阵的Kronecker积的一些性质 作者:王秀清, 陈兆英, 于朝霞 作者单位:济南大学理学院,250022,济南 刊名: 山东师范大学学报(自然科学版) 英文刊名:JOURNAL OF SHANDONG NORMAL UNIVERSITY(NATURAL SCIENCE) 年,卷(期):2010,25(4) 参考文献(10条) 1.徐仲;张凯院;陆全矩阵论简明教程 2007 2.陈邦考矩阵Kronecker积的推广[期刊论文]-大学数学 2004(04) 3.杜鹃;范啸涛;杨健康自伴矩阵与Hermite二次型[期刊论文]-成都理工大学学报(自然科学版) 2007(04) 4.Li J S·Kronecker products of positive semidefinite Matrices 1997(03) 5.陈公宁矩阵理论与应用(第二版) 2007 6.Britz T;Olesky D D;Van Den Driessche P The Moore-Penrose inverse of matrices with an acyclic bipartite graph[外文期刊] 2004(0) 7.Berr Israel A;Greville T N E Generalized Inverse:Theory and Applications 2003 8.George V A quantitative version of the Bservation that the Hadam and product is a principal submatrix of the kronecker product 2000 9.James V B Schur majorization inequalities for symmetrized sums with applications to tensor products[外文期刊] 2003(0) 10.樊树平;段五朵亚正定矩阵的Kronecker积[期刊论文]-大学数学 2006(02) 本文读者也读过(10条) 1.王伟贤.王志伟.WANG Wei-xian.WANG Zhi-wei一类逆M矩阵的判定[期刊论文]-曲阜师范大学学报(自然科学版) 2009,35(2) 2.王宏羽.张湘茹.孙燕.李龙芸.李丽庆.宋恕平.周立中.刘基巍盐酸托烷司琼防治NP方案治疗非小细胞肺癌引起恶心呕吐的临床试验研究[期刊论文]-中国肿瘤临床与康复2004,11(4) 3.周金森.ZHOU Jin-sen关于代数张量积的性质研究[期刊论文]-龙岩学院学报2007,25(6) 4.王礼萍.Wang Liping核运算的矩阵构造[期刊论文]-哈尔滨师范大学自然科学学报2000,16(5) 5.杨载朴复亚正定矩阵的一些性质[期刊论文]-数学研究与评论2000,20(1) 6.黄允发.HUANG Yun-fa二阶K-可换矩阵Kronecker积的性质[期刊论文]-高师理科学刊2010,30(2) 7.胥德平.何淦瞳.XU De-ping.HE Gan-tong矩阵块Kronecker积的性质及一些不等式[期刊论文]-贵州大学学报(自然科学版)2004,21(4) 8.杨胜良.YANG Sheng-liang两类下三角形Pascal矩阵的相似性[期刊论文]-数学杂志2011,31(1) 9.贺爱玲.马玉明.刘慧.陈业红.HE Ai-ling.MA Yu-ming.LUI Hui.CHEN Ye-hong关于矩阵相似的一个注记[期刊论文]-山东轻工业学院学报(自然科学版)2005,19(3) 10.周相泉.刘利英.ZHOU Xiang-quan.LIU Li-ying模糊数矩阵及其运算[期刊论文]-山东理工大学学报(自然科学版)2005,19(3) 本文链接:https://www.360docs.net/doc/162502404.html,/Periodical_sdsdxb-zrkx201004043.aspx

矩阵行列式(较难与困难)

第I卷(选择题) 请点击修改第I卷的文字说明 评卷人得分 一、选择题 1.我国的《洛书》中记载着世界上最古老的一个幻方:将1,2,…,9填入3×3的方格内,使三行、三列、二对角线的三个数之和都等于15,如图1所示,一般地,将连续的正整数1,2,3,…n2填入n×n个方格中,使得每行、每列、每条对角线上的数的和相等,这个正方形就叫做n阶幻方,记n阶幻方的对角线上数的和为N,如图1的幻方记为N3=15,那么N12的值为() A.869 B.870 C.871 D.875

第II 卷(非选择题) 请点击修改第II 卷的文字说明 评卷人 得分 二、解答题 2.已知矩阵??????=121a A 的一个特征值3=λ所对应的一个特征向量?? ? ???=11e , 求矩阵A 的逆矩阵1-A . 3.已知矩阵 10120206A B -???? ==???? ???? ,,求矩阵1.A B - 4.选修4-2:矩阵与变换 已知直线:23l x y -=,若矩阵13a A b -?? = ??? ,a b R ∈所对应的变换σ把直线l 变换为它自身。 (Ⅰ)求矩阵A ; (Ⅱ)求矩阵A 的逆矩阵. 5.求曲线1x y +=在矩阵M 10103?? ??=?????? 对应的变换作用下得到的曲线所围成图形的面积. 6.(本小题满分7分)选修4-2:矩阵与变换 已知二阶矩阵M 有特征值λ1=4及属于特征值4的一个特征向量??? ? ??=321e 并有特征值 12-=λ及属于特征值-1的一个特征向量???? ??-=112e , ??? ? ??-=11α (Ⅰ )求矩阵M ;(Ⅱ )求5 M αr . 7.选修4—2:矩阵与变换 已知矩阵00a b ??=????M 满足:i i i l =M αα,其中(1,2)i i l =是互不相等的实常数,(1,2)i i =α,是非零的平面列向量,11l =,211?? =???? α,求矩阵M . 8.变换T 1是逆时针旋转 2 π 的旋转变换,对应的变换矩阵是M 1;变换T 2对应的变换矩阵是M 2=. (1)求点P (2,1)在T 1作用下的点P ′的坐标; (2)求函数y =x 2 的图象依次在T 1,T 2变换的作用下所得曲线的方程. 9.二阶矩阵M 对应的变换将点(1,-1)与(-2,1)分别变换成点(-1,-1)与(0,-

上海版教材矩阵与行列式习题(有答案)

矩阵、行列式和算法() 姓名 成绩 一、填空题 1.行列式 cos sin 3 6 sin cos 3 6 π π π π 的值是 . 2.行列式 a b c d (,,,{1,1,2}a b c d ∈-)的所有可能值中,最大的是 . 3.将方程组203253x y z x y =?? +=??+=? 写成系数矩阵形式为 . 4.若由命题A :“ 2 2031x x >-”能推出命题B :“x a >”,则a 的取值范围是 . 5.若方程组111 222 a x b y c a x b y c +=?? +=?的解为2,1==y x ,则方程组 ?? ?=++=++03520 352222 111c y a x b c y a x b 的解为x = ,y = . 6.方程21 24 1 013 9 x x ≤-的解集为 . 7.把 22111133 33 22 2 4 x y x y x y x y x y x y +- 表示成一个三阶行列式为 . 8.若ABC ?的三个顶点坐标为(1,2),(2,3),(4,5)A B C ----,其面积为 . 9.在函数()211 1 2 x f x x x x x -=--中3x 的系数是 . 10.若执行如图1所示的框图,输入12341,2,4,8,x x x x ====则输出的数等于 .

图2 11.矩阵的一种运算,???? ??++=???? ??????? ??dy cx by ax y x d c b a 该运算的几何意义为平面上的点),(y x 在矩阵??? ? ??d c b a 的作用下变换成点(,)ax by cx dy ++,若曲线10x y +-=在矩阵??? ? ??11b a 的作用下变换成曲线10x y --=,则a b +的值为 . 12.在集合{}1,2,3,4,5中任取一个偶数a 和奇数b 构成以原点为起点的向量(),a b α=.从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形,记所有作成的平行四边形的个数为n ,其中面积不超过...4的平行四边形的个数为m ,则m n = 二.选择题 13.系数行列式0D =是三元一次方程组无解的( ) A. 充分非必要条件 B. 必要非充分条件 C. 充分必要条件 D. 既非充分也非必要条件 14.下列选项中错误的是( ). A. b d a c d b c a - = B. a b c d d b c a = C. d c d b c a 33++ d c b a = D. d c b a d b c a ----- = 15.若,,a b c 表示ABC ?的三边长, 且满足02 22 =++++++c b a c c c b a b b c b a a a , 则ABC ?是( ). A. 等腰三角形 B. 直角三角形 C. 等腰直角三角形 D. 等边三角形 16. 右边(图2)的程序框图输出结果S =( ) A .20 B. 35 C. 40 D .45

矩阵的运算及其运算规则

矩阵的运算及其运算规则 一、矩阵的加法与减法 1、运算规则 设矩阵,, 则 简言之,两个矩阵相加减,即它们相同位置的元素相加减! 注意:只有对于两个行数、列数分别相等的矩阵(即同型矩阵),加减法运算才有意义,即加减运算是可行的. 2、运算性质(假设运算都是可行的) 满足交换律和结合律 交换律; 结合律. 二、矩阵与数的乘法 1、运算规则

数乘矩阵A,就是将数乘矩阵A中的每一个元素,记为或.特别地,称称为的负矩阵. 2、运算性质 满足结合律和分配律 结合律:(λμ)A=λ(μA);(λ+μ)A =λA+μA. 分配律:λ(A+B)=λA+λB. 典型例题 例6.5.1已知两个矩阵 满足矩阵方程,求未知矩阵. 解由已知条件知 三、矩阵与矩阵的乘法 1、运算规则

设,,则A与B的乘积是这样一个矩阵: (1) 行数与(左矩阵)A相同,列数与(右矩阵)B相同,即. (2) C的第行第列的元素由A的第行元素与B的第列元素对应相乘,再取乘积之和. 典型例题 例6.5.2设矩阵 计算 解是的矩阵.设它为 想一想:设列矩阵,行矩阵,和的行数和列数分别是多少呢 是3×3的矩阵,是1×1的矩阵,即只有一个元素. 课堂练习

1、设,,求. 2、在第1道练习题中,两个矩阵相乘的顺序是A在左边,B在右边,称为A左乘B 或B右乘A.如果交换顺序,让B在左边,A在右边,即A右乘B,运算还能进行吗?请算算试试看.并由此思考:两个矩阵应当满足什么条件,才能够做乘法运算. 3、设列矩阵,行矩阵,求和,比较两个计算结果,能得出什么结论吗? 4、设三阶方阵,三阶单位阵为,试求和,并将计算结果与A比较,看有什么样的结论. 解: 第1题 . 第2题 对于

矩阵的秩与行列式的意义

这里首先讨论一个长期以来困惑工科甚至物理系学生的一个数学问题,即,究竟什么是面积,以及面积的高维推广(体积等)? 1 关于面积:一种映射 大家会说,面积,不就是长乘以宽么,其实不然。我们首先明确,这里所讨论的面积,是欧几里得空间几何面积的基本单位:平行四边形的面积。平行四边形面积的定义,几何上说是相邻两边边长乘以他们之间的夹角的正弦。 然而为了应对更一般情形和更高维度的数理问题,我们有必要把面积的定义推广开来。注意到以下事实:面积是一个标量,它来自于(构成其相邻边)两个矢量。因此,我们可以将面积看成一个映射: 其中V就是一个矢量,V*V代表两个矢量的有序对;f就是面积的值。 下面我们将说明这个映射是一个线性映射。 从最简单的例子出发。如果第一个矢量是(1,0),第二个矢量是(0,1);也就是说,两个矢量分别是X和Y轴上的单位正向量,那么由这两个矢量张成的四边形就是一个正方形,其面积根据定义,就是长乘以宽=1*1=1。 因此有:

如果我们把第一个矢量”缩放“a倍,面积将会相应是原来的a倍;把第二个矢量“缩放”b倍,面积也会成为原来的b倍。如果同时缩放,很显然,面积将会变成原面积的ab倍。这表明,面积映射对于其两个操作数(矢量)的标量积是各自线性的,如下: 最后,我们要说明,面积映射对于其操作数(矢量)的矢量加法也是线性的。因为矢量加法操作的本身是线性的,那么其面积映射理应对此也是一个线性映射。这里我们打算从几个实际的例子出发,说明映射的加法线性性的后果。 显然(两个共线矢量所张成的平行四边形还是一条线,因此面积为0): 假定面积映射是一个关于矢量加法的线性映射,那么我们有:

第五专题 矩阵的数值特征(行列式、范数、条件数、迹、秩、相对特征根)

第五专题矩阵的数值特征 (行列式、迹、秩、相对特征根、范数、条件数) 一、行列式 已知A p×q, B q×p, 则|I p+AB|=|I q+BA| 证明一:参照课本194页,例4.3. 证明二:利用AB和BA有相同的非零特征值的性质; 从而I p+AB,I q+BA中不等于1的特征值的数目相同,大小相同;其余特征值都等于1。 行列式是特征值的乘积,因此|I p+AB|和|I q+BA|等于特征值(不等于1)的乘积,所以二者相等。 二、矩阵的迹 矩阵的迹相对其它数值特征简单些,然而,它在许多领域,如数值计算,逼近论,以及统计估计等都有相当多的应用,许多量的计算都会归结为矩阵的迹的运算。下面讨论有关迹的一些性质和不等式。 定义: n n ii i i1i1 tr(A)a == ==λ ∑∑,etrA=exp(trA) 性质: 1. tr(A B)tr(A)tr(B) λ+μ=λ+μ,线性性质;

2. T tr(A )tr(A)=; 3. tr(AB)tr(BA)=; 4. 1 tr(P AP)tr(A)-=; 5. H H tr(x Ax)tr(Axx ),x =为向量; 6. n n k k i i i 1 i 1 tr(A),tr(A )===λ=λ∑∑; 从Schur 定理(或Jordan 标准形)和(4)证明; 7. A 0≥,则tr(A)0≥,且等号成立的充要条件是A=0; 8. A B(A B 0)≥-≥即,则tr(A)tr(B)≥,且等号成立的充要条件是A=B (i i A B (A)(B)≥?λ≥λ); 9. 对于n 阶方阵A ,若存在正整数k,使得A k =0,则tr(A)=0(从Schur 定理或Jordan 标准形证明)。 若干基本不等式 对于两个m ×n 复矩阵A 和B ,tr(A H B)是m ×n 维酉空间上的内积,也就是将它们按列依次排成的两个mn 维列向量的内积,利用Cauchy-schwarz 不等式 [x,y]2≤[x,x]﹒[y,y] 得 定理:对任意两个m ×n 复矩阵A 和B |tr(A H B)|2≤tr(A H A)﹒tr(B H B)

相关文档
最新文档