4导数研究三次函数的性质
三次函数常见的性质及应用

三次函数常见的性质及应用
一、性质
1、三次函数的图像一定是一个闭合曲线,其中心点为原点(0,0);
2、三次函数的图像具有左右对称性;
3、三次函数图像的极值点(即最大值点和最小值点)一定位于曲线的拐点处;
4、三次函数的导数存在,其单调性与函数的单调性相反;
5、三次函数的二阶导数存在,其值大于等于0;
二、应用
1、三次函数可以用来描述经济学中的供求关系;
2、三次函数可以用来描述物理学中的力学变化;
3、三次函数可以用来描述数学中的曲线图形;
4、三次函数可以用来描述自然现象中的变化趋势;
5、三次函数可以用来描述计算机科学中的数据处理。
三次函数研究课教案

附录1:课前练习题1、若函数322()25f x x mx m =-+-在区间(9,0)-上单调递减,则m 的取值范围为 . 2、若函数322()f x x ax bx a =+++在x=1处有极值10,求a,b 的值.3、已知函数3()-3f x x x =,若()-0f x a =有三个不等的实根,求a 的取值范围.4、已知函数d cx bx ax x f +++=23)(的图象如图所示,则b 的取值范围是( ).A .(-∞,0)B .(0,1)C .(1,2)D .(2,+∞)附录2:附录3:巩固练习题:判断下列三次函数32(0)y ax bx cx d a =+++≠各图象中的a,b,c,d 的符号: (1) (2) (3) (4)判别式系数a>0,0∆> a<0,0∆>a>0,0∆≤a<0,0∆≤图象导函数原函数性质单调性 增区间为12(,),(,)x x -∞+∞; 减区间为12(,)x x增区间为12(,)x x ;减区间为12(,),(,)x x -∞+∞ 增区间为(,)-∞+∞减区间为(,)-∞+∞极值点2个2个0个0个零点12()()0f x f x <:三个零点;12()()=0f x f x :一个零点; 12()()0f x f x >:无零点.1个零点对称中心 ,())33b b f a a(-- 参数对函数图象的影响0a >:两边为增函数,0a <:两边为减函数;230b ac ->:为双峰函数,230b ac -≤为单调函数; b :与a 共同影响函数的对称中心 c :0x =处的切线斜率 d :纵截距xx 1x 2x 1x 2xx 0xxxx 1 x 2xx 1x 2 xx(3)(4)A a<0,b>0,c>0,d<0B a>0,b<0,c>0,d=0C a>0,b<0,c<0,d>0D a<0,b<0,c<0,d<0。
导数法解“三次”函数问题

导数法解“三次”函数问题新教材中导数内容的介入,为研究函数的性质提供了新的活力,通过求导可以研究函数的单调性和极值,其操作的步骤学生易掌握,判别的方法也不难。
特别地,当f(x)为三次函数时,通过求导得到的f /(x)为二次函数,且原函数的极值点就是二次函数的零点;同时利用导数的几何意义:曲线在某一点P (00,y x )处的切线的斜率)(0/x f k =,可得到斜率 k 为关于0x 的二次函数。
根据这些特点,一般三次函数问题,往往可通过求导,转化为二次函数或二次方程问题,然后结合导数的基本知识及二次函数的性质来解决。
下面笔者从课堂或试卷上出现的这一类型题目中选择几例,同时结合学生产生的问题,略作说明。
例1:已知f(x)=d cx bx x +++23在(—∞,0)上是增函数,在[0,2]上是减函数,且方程f(x)=0有三个根,它们分别为α、2、β.(1) 求c 的值; (2) 求证:f(1)≥2(3) 求|α-β|的取值范围。
解:(1),23)(2/c bx x x f ++= 由题意可得:x=0为f(x)的极值点, ∴0,0)0(/=∴=c f(2)令023)(2/=+=bx x x f ,得32,021b x x -==∵f(x)在(—∞,0)上是增函数,在[0,2]上是减函数, ∴232≥-b ,即3-≤b又∵b d d b f 48,048,0)2(--=∴=++∴=∴.2371)1(≥--=++=b d b f(3)∵方程f(x)=0有三个根α、2、β. ∴设),)(2()(223n mx x x d cx bx x x f ++-=+++= 由待定系数法得2,2d n b m -=+=∴α、β为方程02)2(2=-++d x b x 的两根,∴ α+β=-(b+2),αβ=-d/2;∴|α-β|2=16)2(1242)2(222--=--=++b b b d b ∵3-≤b ,∴|α-β|2≥9, ∴|α-β| ≥3一般地,若已知三次函数f(x)=)0(23>+++a d cx bx ax 在(—∞,m )上是增函数,在[m ,n]上是减函数,在(n,+∞)上是增函数,则二次方程f /(x)=0即0232=++c bx ax 的两个根为m ,n ;且当),(),(+∞⋃-∞∈n m x 时f /(x)>0,当),(n m x ∈时f /(x)<0,反之亦然。
5-4三次函数的图象和性质

专题4 三次函数的图像和性质第一讲 三次函数的基本性质设三次函数为()32f x ax bx cx d =+++(a 、b 、c 、d R ∈且0a ≠),其基本性质有: 性质一:定义域为R .性质二:值域为R ,函数在整个定义域上没有最大值、最小值.性质三:单调性和图象.a>a <图像0∆>0∆≤0∆>0∆≤当0a >时,先看二次函数()32f x ax bx c =++,4124(3)b ac b ac ∆=-=-①当224124(3)0b ac b ac ∆=-=->,即230b ac ->时,()f x '与x 轴有两个交点1x ,2x ,)(x f 形成三个单点区间和两个极值点1x ,2x ,图像如图1,2.②当224124(3)0b ac b ac ∆=-=-=,即230b ac -=时,)(x f '与x 轴有两个等根1x ,2x ,)(x f 没有极值点图像如图3,4.③当224124(3)0b ac b ac ∆=-=-<,即230b ac -<时,()f x '与x 轴没有交点,)(x f 没有极值点,图像如图5,6.图1 图2 图3 图4 图5 图6 当0<a 时,同理先看二次函数2()32f x ax bx c '=++,.224124(3)b ac b ac ∆=-=-①当0)3(412422>-=-=∆ac b ac b ,即032>-ac b 时,)(x f '与x 轴有两个交点1x ,2x ,)(x f 形成三个单点区间和两个极值点1x ,2x .②当224124(3)0b ac b ac ∆=-=-=,即230b ac -=时,)(x f '与x 轴有两个等根1x ,2x ,)(x f 没有极值点. ③当224124(3)0b ac b ac ∆=-=-<,即230b ac -<时,)(x f '与x 轴没有交点,)(x f 没有极值点.性质四:三次方程()0f x =的实根个数对于三次函数()32f x ax bx cx d =+++(a 、b 、c 、d R ∈且0a ≠),其导数为c bx ax x f ++='23)(2当032>-ac b ,其导数0)(='x f 有两个解1x ,2x ,原方程有两个极值2123b b ac x x -±-、①当0)()(21>⋅x f x f ,原方程有且只有一个实根,图像如图13,14. ②当12()()0f x f x ⋅=,则方程有2个实根,图像如图15,16. ③当12()()0f x f x ⋅<,则方程有三个实根,图像如图17.图14 图15 图16 图17 性质五:奇偶性对于三次函数()32f x ax bx cx d =+++(a 、b 、c 、d R ∈且0a ≠). ①)(x f 不可能为偶函数;②当且仅当0b d ==时是奇函数. 性质六:对称性(1)结论一:三次函数是中心对称曲线,且对称中心是(,())33b bf a a--; (2)结论二:其导函数为2()320f x ax bx c '=++= 对称轴为3bx a=-,所以对称中心的横坐标也就是导函数的对称轴,可见,)(x f y =图象的对称中心在导函数()y f x '=的对称轴上,且又是两个极值点的中点,同时也是二阶导为零的点;(3)结论三:()y f x =是可导函数,若()y f x =的图象关于点(,)m n 对称,则'()y f x =图象关于直线m x =对称.(4)结论四:若()y f x =图象关于直线x m =对称,则'()y f x =图象关于点(,0)m 对称. (5)结论五:奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数.(6)结论六:已知三次函数()32f x ax bx cx d =+++的对称中心横坐标为0x ,若()f x 存在两个极值点1x ,2x ,则有()()()()21212012223f x f x a x x f x x x -'=--=-. 性质七:切割线性质(1)设P 是()f x 上任意一点(非对称中心),过点P 作函数()f x 图象的一条割线AB 与一条切线PT (P 点不为切点),,,A B T 均在()f x 的图象上,则T 点的横坐标平分A B 、点的横坐标,如图18.图18 图19 图20x 1 x 2x x 1 x 2推论1:设P 是()f x 上任意一点(非对称中心),过点P 作函数()f x 图象的两条切线PM PN 、切点分别为M P 、,则M 点的横坐标平分P N 、的横坐标,如图19.推论2:设)(x f 的极大值为M ,当成M x f =)(的两根为1x ,2x 12()x x <,则区间[]12,x x 被中心(,())33b bf a a--和极小值点三等分,类似的,对极小值点N 也有此结论,如图20.第二讲 三次函数切线问题一般地,如图,过三次函数()f x 图象的对称中心作切线L,则坐标平面被切线L 和函数()f x 的图象分割为四个区域,有以下结论:(1)过区域Ⅰ、IV 内的点作()f x 的切线,有且仅有3条;(2)过区域II 、Ⅲ内的点以及对称中心作()f x 的切线,有且仅有1条; (3)过切线L 或函数()f x 图象(除去对称中心)上的点作()f x 的切线,有且仅有2条. 【例1】过点()11-,与曲线()32f x x x =-相切的直线方程是______ . 【解析】由题意可得: ()2'32f x x =-,设曲线上点的坐标为()3000,2x x x -,切线的斜率为2032k x =-, 切线方程为: ()()()320000232y x x x x x --=--,由于切线过点()1,1-,则: ()()()32000012321x x x x ---=--,解得:01x =或012x =-将其代入切线方程式整理可得,切线方程为:20x y --=或5410x y +-=.【例2】若2f x f x +-= 3x x ++对R x ∈恒成立,则曲线y f x =在点()2,2f 处的切线方程为____. 【解析】()()()()()()3323,23f x f x x x f x f x x x +-=++∴-+=-+-+()()()()333233f x x x x x ⎡⎤∴=++--+-+⎣⎦()()()321,31,213f x x x f x x f ''∴=++=+=又 ()211f =,则曲线()y f x =在点()()2,2f 处的切线方程为()11132y x -=- ,即1315y x =-. 【例3】过点()21A ,作曲线()33f x x x =-的切线最多有( ) A .3条 B .2条 C .1条 D .0条【解析】法一:设切点为()300,3x x x -,则切线方程为()()()320000333y x x x x x --=--,因为过()21A ,,所以()()()323200133322670x x x x xx --=--∴-+=令()32267g x x x =-+,()26120g x x x =-='0,2x x ∴==,而()()070,210g g =>=-<,所以()0g x =有三个零点,即切线最多有3条,选A .法二:根据题意,()33f x x x =-关于点()0,0中心对称,()()23303f x x f ''=-⇒=-,在原点的切线方程为3y x =-,()221f =>故点()2,1A 位于区域Ⅰ,有三条切线(如图),选A .秒杀秘籍:第三讲 四段论法则─“房间里装大象”()()320f x ax bx cx d a =+++>且导函数0∆> ()()320f x ax bx cx d a =+++<且导函数0∆>极大值 极大值极小值等值点 中心 极小值 极小值 中心 极小值等值点 1.对称中心:33bb faa ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,; 2.极大值到对称中心距离为x ∆,极小值到对称中心距离为x ∆,极小值等值点到极大值距离为x ∆,极大值等值点到极小值距离为x ∆;3.对称中心为极值与极值等值点的三等分点(三次函数性质七).【例4】函数()331f x x x =-+在闭区间[],03-上的最大值、最小值分别是( ) A .1,1-B .3,17-C .1,17-D .9,19-【解析】依题意得对称中心为()0,1,由()233f x x '=-,得1x =±,如图,画出四段论图像,得()()max 13f x f =-=,()()min 317f x f =-=-.【例5】已知函数()3f x x ax b =++的定义域为[1,2]-,记()f x 的最大值为M ,则M 的最小值为( ) A .4B .3C .2D .3【解析 】依题意得对称中心为()0,b ,定义域内画出四段论图像,得()()()112f f f -=-=,解得3a =-,0b =,即()()()1122f f f -=-==,故选C .【例6】已知()33f x x x m =-+,在区间[0,2]上任取三个数a ,b ,c ,均存在以()f a ,()f b ,()f c 为边长的三角形,则m 的取值范围是( )A .2m >B .4m >C .6m >D .8m >【解析】由()()()233311f x x x x '=-=+-,得1x =±,画出函数四段论图像 ∵函数的定义域为[0,2],所以()()min 12f x f m ==-,()()max 22f x f m ==+,()0f m =由题意知()()()112f f f +>,即422m m -+>+得到6m >,故选C .【例7】已知32()2f x ax ax b =-+在区间[2,1]-上的最大值是5,最小值为11-,求()f x 解析式.【解析】由32()2f x ax ax b =-+,得2()34(34)f x ax ax ax x '=-=-,令()0f x '=,则10x =,243x =(舍去),如图分类画出四段论图像;当0>a 时,如图1所示,()()max 05f x f b ===,()()min 251611f x f a =-=-=-,得1a =, 所以32()25f x x x =-+;当0<a 时,如图2所示,()()max 216115f x f a =-=--=,得1a =-,()()min 011f x f b ===-,所以32()211f x x x =-+-;综上323225,0()211,0x x a f x x x a ⎧-+>⎪=⎨-+-<⎪⎩.图1()0a > 图2()0a <【例8】若函数()321233f x x x =+-在区间)5,(+a a 内存在最小值,则实数a 的取值范围是( )A .)0,5[-B .)0,5(-C .)0,3[-D .)0,3(-【解析】由题意,()22f x x x '=+,另()1202,0f x x x '=⇒=-=,又()()30f f -=画出四段论图像,依题意结合图象可知,⎩⎨⎧>+<≤-0503a a ,得a ∈[﹣3,0),故选C .【例9】若函数32430ax x x -++≥对任意的[]2,1x ∈-恒成立,求a 的取值范围( ) A .[]2,2-B .[]2,4-C .[]2,6-D .[]2,8-【解析】两边同时除以3x ,当0x =时恒成立;当(]0,1x ∈时,即323410a x x x+-+≥恒成立,令[)()11,+t t x=∈∞,构造()()()()()322min 340,981911g t t t t a g t g t t t t t '=+-+⇒≥=+-=-+,对称中心为44,99f ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,画出函数四段论图像得()()min 160g t g a ==+≥,即6a ≥-;同理当[),02x ∈-时,()()max10g t g =-≤,得2a ≥-,故选C .【例10】设函数()32f x x ax bx c =+++,a b c R ∈,,,总存在[]004x ∈,,使得不()0f x m ≥等式成立,则实数m 的取值范围是 . 【解析】根据四段论法则(最佳位置选取)得对称中心为()20,,令()32g x x ax bx c =+++,画出四段论图像知()()()()()201069243f f f a b c f f =⎧⎪=-⇒=-==-⎨⎪=-⎩,,,即()32692g x x x x =-+-,()32692f x x x x =-+-,易得()()min 12Maxf x f ==,所以2m ≤.达标训练一.选择题1.函数()32395f x x x =-+在区间]2,2[-上的最大值是( ) A .5 B .2 C .7- D .14 2.已知32()26f x x x a =-+(a 是常数)在[22]-,上有最大值3,那么在[22]-,上的最小值是( ) A .5-B .11-C .29-D .37-3.函数3()34([01])f x x x x =-∈,的最大值是( ) A .1 B .12C .0D .1-4.若函数()3232f x x x a =-+在]1,1[-上有最大值3,则该函数在]1,1[-上的最小值是( )A .12- B .0 C .12 D .15.若函数()33f x x x =-在区间()212,a a -上有最小值,则实数a 的取值范围是( ) A .)11,1(-B .)4,1(-C .]2,1(-D .)2,1(-6.若函数()33f x x x =-在)8,(2a a -上有最小值,则实数a 的取值范围是( ) A .)1,7(-B .)1,7[-C .)1,2[-D .)1,2(-7.函数()33f x x ax a =--在)1,0(内有最小值,则a 的取值范围是( ) A .01a ≤<B .01a <<C .11a -<<D .102a <<8.当]1,2[-∈x 时,不等式3243mx x x ≥--恒成立,则实数m 的取值范围是( ) A .86,9⎡⎤--⎢⎥⎣⎦B .[]6,2--C .[]5,3--D .[]4,3--9.若关于x 的不等式32392x x x m --+≥对任意[]2,2x ∈-恒成立,则m 的取值范围是( )A .(],7-∞B .(],20--∞C .(],0-∞D .[]12,7-10.函数()3213f x x x a =-+,函数()23g x x x =-,它们的定义域均为[)1,+∞,并且函数()f x 的图象始终在函数()g x 的上方,那么a 的取值范围是( ) A .),0(∞+B .)0,(-∞C .),34(∞+-D .]34,(-∞11.设函数()321252f x x x x =--+,若对于任意[]1,2x ∈,()f x m <恒成立,则实数m 的取值范围为( )A .),7(∞+B .),8(∞+C .),7[∞+D .),8[∞+ 12.已知函数()3231f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围是( ) A .),2(∞+B .)2,(--∞C .),1(∞+D .)1,(--∞13.已知304a b ≥-≥,,函数()()311f x x ax b x =++-≤≤,设()f x 的最大值为M ,对任意的a b R ∈、恒有M k ≥,则实数k 的最大值为( ) A .4B .2C .21 D .41 14.曲线3y x x =-的所有切线中,经过点(1,0)的切线的条数是( ) A .0B .1C .2D .315.已知函数321()3()3f x x x ax a R =-++∈有两个极值点1x ,212()x x x <,则( )A .1()3f x ,210()3f x <B .1()3f x ,210()3f x >C .1()3f x ,210()3f x <D .1()3f x ,210()3f x >16.已知函数32()698f x x x x =-+-+,则过点(0,0)可以作几条直线与曲线()y f x =相切( ) A .3条B .1条C .0条D .2条17.已知函数32()f x x ax bx c =+++,[3x ∈-,3]的图象过原点,且在点(1,f (1))和点(1-,(1))f -处的切线斜率为2-,则()f x =( ) A .是奇函数B .是偶函数C .既是奇函数又是偶函数D .是非奇非偶函数 18.已知函数32()f x x ax bx c =--+有两个极值点1x ,2x ,若122()x x f x <=,则1()f x x =的解的个数为( ) A .0B .1C .2D .3 19.已知函数32()21f x x mx nx =-++,()f x '是函数()f x 的导数,且2(2)()3f x f x '+='--,若在[1,]π上()1f x 恒成立,则实数n 的取值范围为( )A .]21,(-∞B .]21,(--∞C .),21[∞+ D .),[∞+π20.(2019•汕头月考)函数321()3f x x x ax =-+在[1-,2]上单调递增,则a 的取值范围是( )A .0a >B .0aC .1aD .1a > 21.(2019•浙江期中)已知函数321()23f x x ax x =+-在区间(1,)+∞上有极小值无极大值,则实数a 的取值范围( ) A .12a <B .12a >C .12aD .12a22.(2019•长沙期中)已知函数2()431f x x x =-+,3()31g x x x =--,则()f x 与()g x 的大小关系是( ) A .()()f x g x =B .()()f x g x >C .()()f x g x <D .随x 的变化而变化23.(2019•临川月考)正项等差数列{}n a 中的11a ,4027a 是函数321()4433f x x x x =-+-的极值点,则20192a =( )A .2B .3C .4D .524.若函数32()132x a f x x x =-++在区间(1,2)上单调递减,则实数a 的取值范围为( )A .]25,2[B .),25[∞+C .),25(∞+ D .(2,)+∞25.(2019•醴陵期中)函数32()394f x x x x =--+,若函数()()g x f x m =-在[2x ∈-,5]上有3个零点,则m 的取值范围为( ) A .(23,9)-B .]2,23(-C .]9,2[D .)9,2[26.(2019•湛江一模)已知函数32()f x x x ax a =-+-存在极值点0x ,且10()()f x f x =,其中10x x ≠,102x x +=( ) A .3B .2C .1D .027.(2019•邯郸一模)过点(1,0)M -引曲线3:2C y x ax a =++的两条切线,这两条切线与y 轴分别交于A ,B 两点,若||||MA MB =,则a =( )A .254-B .274-C .2512-D .4912-28.(2019•黔东南州一模)已知函数322()2(63)1216(0)f x x a x ax a a =-+++<只有一个零点0x ,且00x <,则a 的取值范围为( )A .1(,)2-∞-B .)0,21(-C .3(,)2-∞- D .)0,23(-29.(2019•莆田一模)若函数32()23af x x x x =-+没有极小值点,则a 的取值范围是( )A .]21,0[B .1[,)2+∞C .1{0}[,)2⋃+∞D .1{0}(,)2⋃+∞30.(2018秋•晋中期末)已知3215()632f x x ax ax b =-++的两个极值点分别为1x ,212()x x x ≠,且2132x x =,则函数12()()f x f x -=( ) A .1-B .16C .1D .与b 有关31.(2019•陕西一模)已知函数3()3f x x x =+,则不等式33863(1)1x x x x+>+++的解集为( ) A .)1,1()2,(-⋃--∞ B .),1[)1,2[∞+⋃--C .),1(]2,(+∞⋃--∞D .)1,2(-32.(2018•宜春期末)等比数列{}n a 的各项均为正数,5a ,6a 是函数321()3813f x x x x =-++的极值点,则2122210log log log (a a a ++⋯+=( ) A .23log 5+B .8C .10D .1533.(2018•湖北期末)已知函数32()17(f x ax bx cx a =++-,b ,)c R ∈的导函数为()f x ',()0f x '的解集为{|23}x x -,若()f x 的极小值等于98-,则a 的值是( ) A .8122-B .13C .2D .534.(2019•朝阳二模)已知31()3f x x x =-+在区间2(,10)a a -上有最大值,则实数a 的取值范围是( )A .1a <-B .23a -<C .21a -<D .31a -<<35.(2018•海淀期末)函数32()7f x x kx x =+-在区间]1,1[-上单调递减,则实数k 的取值范围是( ) A .]2,(--∞B .]2,2[-C .),2[∞+-D .),2[∞+36.(2019•汉阳模拟)函数32()31f x ax x =+-存在唯一的零点0x ,且00x <,则实数a 的范围为( ) A .(,2)-∞-B .(,2)-∞C .(2,)+∞D .(2,)-+∞37.(2019•瀍河月考)设函数3()2f x ax bx =-+的极大值和极小值分别为M ,m ,则(M m +=( ) A .0 B .1C .2D .4 38.(2018•南阳期末)函数32()392f x x x x =--+在]4,0[上的最大值和最小值分别是( ) A .2,18- B .18-,25-C .2,25-D .2,20-39.(2018•合肥期末)已知函数53()353f x x x x =---+,若f (a )(2)6f a +->,则实数a 的取值范围是( ) A .(,3)-∞ B .(3,)+∞C .(1,)+∞D .(,1)-∞二 填空题1.(2019•东城一模)已知函数3()4f x x x =-,若1x ∀,2[x a ∈,]b ,12x x ≠都有12122()(2)(2)f x x f x f x +>+成立,则满足条件的一个区间是 .2.(2019•陕西二模)设函数32()21f x x ax bx =+++的导函数为()f x ',若函数()y f x ='的图象的顶点横坐标为12-,且f '(1)0=.则a b +的值为 .3.(2019•新疆二模)已知函数32()f x x ax =-在(1,1)-上没有最小值,则a 的取值范围是 . 4.(2019•十堰模拟)对于三次函数32()(f x ax bx cx d a =+++,b ,c ,d R ∈,0)a ≠,有如下定义:设()f x '是函数()f x 的导函数,()f x ''是函数()f x '的导函数,若方程()0f x ''=有实数解m ,则称点(m ,())f m 为函数()y f x =的“拐点”.若点(1,3)-是函数32()5g x x ax bx =-+-,(,)a b R ∈的“拐点”也是函数()g x 图象上的点,则当4x =时,函数4()log ()h x ax b =+的函数值为 .5.(2018•揭阳期末)已知函数3()2f x x x =+,若2(1)(2)0f a f a -+,则实数a 的取值范围是 . 6.(2018•长治期末)已知函数3()23f x x x =-,若过点(1,)P t 存在3条直线与曲线()y f x =相切,则t 的取值范围是 .7.(2019•自贡模拟)已知32()31f x ax x =+-存在唯一的零点0x ,且00x <,则实数a 的取值范围是 . 8.(2019•天山月考)设321()252f x x x x =--+,当[1x ∈-,2]时,()f x m <恒成立,则实数m 的取值范围为 .9.已知函数()32143+33f x x x x =--,直线l :920x y c ++=.若当[]2,2x ∈-时,函数()y f x =的图象恒在直线l 的下方,则c 的取值范围是 . 三 解答题1.已知函数321()23f x ax x =+,其中0a >.若()f x 在区间[11]-,上的最小值为2-,求a 的值.2.知函数32()6([12])f x ax ax b x =-+∈-,的最大值为3,最小值为29-,求a 、b 的值.3.已知函数321()2f x x x bx c =-++;(1)若()f x 在(,)-∞+∞上是增函数,求b 的取值范围;(2)若()f x 在1=x 时取得极值,且[1,2]x ∈-时,2)(c x f <恒成立,求c 的取值范围.4.(2019•海淀期中)已知函数32()f x ax bx x c =+++,其导函数()y f x '=的图象过点1(,0)3和(1,0).(1)函数()f x 的单调递减区间为 ,极大值点为 ; (2)求实数a ,b 的值;(3)若()f x 恰有两个零点,请直接写出c 的值.5.(2019•莱西月考)设函数32()32g x x x =-+.(1)若函数()g x 在区间(0,)m 上递减,求m 的取值范围;(2)若函数()g x 在区间(-∞,]n 上的最大值为2,求n 的取值范围.6.(2019•海淀一模)已知函数3215()||132f x x x a x =-+-. (1)当6a =时,求函数()f x 在(0,)+∞上的单调区间;(2)求证:当0a <时,函数()f x 既有极大值又有极小值.7.(2019•怀柔一模)已知函数32()231()f x x ax a R =++∈.(1)当0a =时,求()f x 在点(1,f (1))处的切线方程;(2)求()f x 的单调区间;(3)求()f x 在区间[0,2]上的最小值8.(2019•天津一模)已知函数32()21()f x x ax a R =-+∈.(1)6a =时,直线6y x m =-+与()f x 相切,求m 的值;(2)若函数()f x 在(0,)+∞内有且只有一个零点,求此时函数()x 的单调区间;(3)当0a >时,若函数()f x 在]1,1[-上的最大值和最小值的和为1,求实数a 的值.9.(2018•镇海期末)已知函数311()32f x x =+. (1)求曲线()y f x =在点5(1,)6P 处的切线与x 轴和y 轴围成的三角形面积; (2)若过点(2,)a 可作三条不同直线与曲线()y f x =相切,求实数a 的取值范围.10.(2018•太原期末)若2x =是函数32()3f x ax x =-的极值点.(1)求a 的值;(2)若[]x n m ∈,时,4()0f x -成立,求m n -的最大值.11.(2018•佛山期末)已知函数322()33()f x x ax a l x =++-.(1)若()f x 在1x =处取得极小值,求a 的值;(2)设1x ,2x 是22()()635(0)g x f x ax a x a a =--+>的两个极值点,若12()()0g x g x +,求a 的最小值.。
三次函数性质总结_S

已知函数
.
(Ⅰ)讨论函数 的单调区间;
(Ⅱ)设函数 在区间
内是减函数,求 的取值范围.
【题型 2】不等式与恒成立问题 例题 2 (08 安徽文)
设函数
(Ⅰ)已知函数 在 处取得极值,求 的值;
(Ⅱ)已知不等式
对任意
都成立,求实数 的取值范围。
7
【题型 3】三次方程根问题
例题 3 (05 全国)设 为实数,函数
,若 在
上的最大值为 20,求它在
变式 8 当
【2012 高 考北京 文第 19 题改编】已知函数
,
时,若函数
在区间 上的最大值为 ,求 的取值范围。
g(x) x3 bx 。
例题 11. 【2014 高考北京文第 20 题改编】已知函数 的取值范围
.若过点
存在 3 条直线与曲线
相切,求
变式 9 (1)已知函数 (2)已知函数 (3)问过点
.若过点
存在 2 条直线与
相切,求 的取值范围;
.若过点
存在 1 条直线与
相切,求 t 的取值范围
,
,
分别存在几条直线与曲线
相切?
变式 10 已知函数
在
处有极值.
(Ⅰ)求函数 (Ⅱ)若函数
的单调区间;
在区间
上有且仅有一个零点,求 的取值范围。
例题 12. 设 变式 11 已知函数
围.
例题 13. 已知函数 例题 14. 已知函数 例题 15. 已知函数
是可导函数,若
的图象关于点
对称,则
图象关于直线
对称.
(5)
是可导函数,若
的图象关于直线
对称,则
图象关于点
导数与三次函数的关系

通过乘法法则和链式法则,将原函数进行求导,得到 导数表达式。
注意事项
在计算过程中,需要注意各项的系数和变量的指数变 化。
三次函数导数的性质
单调性
通过导数的符号判断函 数的单调性,若导数大 于0,函数单调递增; 若导数小于0,函数单 调递减。
极值点
导数为0的点称为临界 点或驻点,是函数值可 能发生变化的点,即极 值点。
数学教育改革
在数学教育领域,如何更好地教授导数与三次函数的关系,将直接 影响学生理解和应用数学的能力。
未来研究方向
对于导数与三次函数关系的深入研究,将推动数学理论和应用的不 断发展,为解决复杂问题提供更多有效工具。
THANKS
谢谢
凹凸性
通过求二阶导数判断函 数的凹凸性,二阶导数 大于0,函数为凹函数; 二阶导数小于0,函数 为凸函数。
三次函数导数的几何意义
切线斜率
导数在某一点的值表示该点处切线的斜率。
函数变化率
导数表示函数在某一点附近的变化率,即函 数值增量与自变量增量的比值。
单调区间
通过导数的符号变化,可以确定函数的单调 区间。
优化问题求解
导数在优化问题中扮演关键角色,如最大值和最小 值问题,通过求导可以找到使函数取得极值的点。
近似计算
在科学、工程和经济学中,经常需要估算函 数的近似值,导数有助于更精确地估计这些 值。
导数与三次函数关系在数学中的地位
连接初等与高等数学
导数与三次函数的关系是初等数学与 高等数学之间的桥梁,帮助学习者逐
VS
极值判断
在找到极值点后,我们可以进一步判断这 些点是极大值还是极小值。如果函数在极 值点左侧递增,右侧递减,则该点为极大 值;如果函数在极值点左侧递减,右侧递 增,则该点为极小值。
三次函数图像与性质(解析版)

专题2-2三次函数图像与性质【题型1】求三次函数的解析式【题型2】三次函数的单调性问题【题型3】三次函数的图像【题型4】三次函数的最值、极值问题【题型5】三次函数的零点问题【题型6】三次函数图像,单调性,极值,最值综合问题【题型7】三次函数对称中心【题型8】三次函数的切线问题【题型9】三次函数根与系数的关系1/342/34【题型1】求三次函数的解析式(1)一般式:()³²f x ax bx cx d =+++(a ≠0)(2)交点式:()123()()()f x a x x x x x x =---(a ≠0)1.若三次函数()f x 满足()()()()00,11,03,19f f f f ''====,则()3f =()A .38B .171C .460D .965【解析】待定系数法,求函数解析式设()³²f x ax bx cx d =+++,则()232f x ax bx c '=++,由题意可得:()()()()0011031329f d f a b c d f c f a b c ⎧==⎪=+++=⎪⎨==⎪⎪=+'=⎩'+,解得101230a b c d =⎧⎪=-⎪⎨=⎪⎪=⎩,则()3210123f x x x x =-+,所以()32310312333171f =⨯-⨯+⨯=.【题型2】三次函数的单调性问题三次函数是高中数学中的一个重要内容,其考点广泛且深入,主要涉及函数的性质、图像、最值、零点以及与其他函数的综合应用等方面。
以下是对三次函数常见考点的详细分析:1.三次函数的定义与形式∙定义:形如f (x )=ax 3+bx 2+cx +d (其中a ≠=0)的函数称为三次函数。
∙形式:注意系数a ,b ,c ,d 的作用,特别是a 的正负决定了函数的开口方向(a >0开口向上,a <0开口向下)。
导数之三次函数图像与性质ppt

5 5 , 极小值-1, 当 a 或 a 1 时 27 27
函数 g ( x ) x 3 x 2 x 与函数 y a 只有一个交点, 所以当 a ( ,
5 ) (1, ) 时,曲线 y f ( x ) 与 x 轴仅有一个交点。 27
本课小结
3
几何画板
f ( x) ax bx cx d (a 0)
3 2
2 f ( x) 3ax 2bx c
4b -12ac 4(b -3ac)
2 2
a 0, 0
y y
x1 O
x2
x2 x x1
f ( x) ax bx cx d (a 0)
1 )上 3
5 ) (1, ) 时,曲线 y f ( x ) 与 x 轴仅有一个交点。 27
方法二: 将 f ( x ) 与 x 轴交点问题转化为函数 g ( x ) x 3 x 2 x 与函数 y a 的 交点个数问题
y=-a
y
5 27
x
-1
易求函数 g ( x ) x 3 x 2 x 的极大值
方法一: 转化为a>0利用图像 方法二: 利用图象
例 3 设 a 为实数,函数 f ( x ) x 3 x 2 x a 。 (Ⅰ)求 f ( x ) 的极值; (Ⅱ)当 a 在什么范围内取值时,曲线 y f ( x )与x 轴仅有一个交点。
解法分析:
1 5 对于问题(Ⅰ)易得 f(x)的极大值是 f ( ) a ,极小值是 f (1) a 1 3 27
三次函数图像与性质
复习:二次函数的图象与性质
函数 二次函数y=ax2+bx+c(a、b、c是常数a≠0) a>0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4导数研究三次函数的性质复习目标:掌握三次函数的图象和性质,尤其是利用导数研究单调性、极值情况,以及三次函数的零点。
复习重点难点:(1)三次函数的图象的四种情况;(2)三次函数的极值情况;【典型例题】题型一:三次函数单调性的讨论例1.已知函数32()2f x ax x x =++在R 上恒为增函数,求实数a 的取值范围.例2.已知函数f (x )=-x 3+3x 2+9x +a ,(I )求f (x )的单调递减区间;(II )若f (x )在区间[-2,2]上的最大值为20,求它在该区间上的最小值.题型二:三次函数极值,最值的讨论例3. 已知a 是实数,函数2()()f x x x a =-;(1)若'(1)3f =,求a 的值及曲线()y f x =在点(1,(1))f 处的切线方程;(2)求()f x 在区间[]2,0上的最大值.例4.已知函数()f x 的导数2()33,f x x ax '=-(0).f b =,a b 为实数,12a <<.(1)若()f x 在区间[1, 1]-上的最小值、最大值分别为2-、1,求a 、b 的值;(2)设函数2()(()61)x F x f x x e '=++⋅,试判断函数()F x 的极值点个数.【课后作业】1.过曲线y =x 3+x-2上的点P 0的切线平行于直线y =4x-1,则切点P 0的坐标为2.已知向量a =(x 2,x +1),b =(1-x ,t ).若函数f (x )=a·b 在区间(-1,1)上是增函数,求t 的取值范围.3.函数f (x )=x 3+x 2-x 在区间[-2,1]上的最大值和最小值分别是4.已知某生产厂家的年利润y (单位:万元)与年产量x (单位:万件)的函数关系式为31812343y x x =-+-,则使该生产厂家获得最大年利润的年产量为5.设函数b x a ax x x f +-+-=2233231)( (0<a <1). (1)求函数)(x f 的单调区间; (2)当x ∈[]2,1++a a 时,不等式|()x f/ |≤a ,求a 的取值范围.6.已知函数3221()21(0)32a f x x x a x a =--+> (1)求函数()f x 的极值;(2)若函数()y f x =的图象与值线0y =恰有三个交点,求实数a 的取值范围;(3)已知不等式2'()1f x x x <-+对任意(1,)a ∈+∞都成立,求实数x 的取值范围.7.已知函数()()a x x f -=2()x b -,b a ,为常数,(1)若a b ≠,求证:函数()x f 存在极大值和极小值(2)设()x f 取得极大值、极小值时自变量分别为12,x x ,令点A 11(,()x f x ),B 22(,()x f x ),若a >b ,直线AB 的斜率为12-,求函数()x f 和/()f x 的公共递减区间的长度.答案:【典型例题】1. 61≥a . 2.(I ) 0)(,963)(2<'++-='x f x x x f 令,解得x <-1或x >3所以函数f (x )的单调递减区间为(-∞,-1),(3,+∞).(II ))}2(),2(max{)(,5)1()(,3212m ax m in f f x f a f x f -=+-=-=∴<<-<-)2()2(,22)2(,2)2(->∴+=+=-f f a f a f 于是有 22+a =20,解得 a =-2.故f (x )=-x 3+3x 2+9x -2,因此f (-1)=-7,即函数f (x )在区间[-2,2]上的最小值为-7.3. 解析:(1)2'()32f x x ax =-.因为'(1)323f a =-=,所以0a =.又当0a =时,(1)1,'(1)3f f ==,所以曲线()(1,(1))y f x f =在处的切线方程为3x y --2=0.(2)令'()0f x =,解得1220,3a x x ==. 当203a ≤,即a ≤0时,()f x 在[0,2]上单调递增,从而max (2)84f f a ==-. 当223a ≥时,即a ≥3时,()f x 在[0,2]上单调递减,从而max (0)0f f ==. 当2023a <<,即03a <<,()f x 在20,3a ⎡⎤⎢⎥⎣⎦上单调递减,在2,23a ⎡⎤⎢⎥⎣⎦上单调递增,从而max 84,0 2.0,2 3.a a f a -<≤⎧⎪=⎨<<⎪⎩综上所述,max 84, 2.0, 2.a a f a -≤⎧⎪=⎨>⎪⎩4.解(Ⅰ)由已知得,323()2f x x ax b =-+; 由()0f x '=,得10x =,2x a =. ∵[1, 1]x ∈-,12a <<,∴ 当[1, 0)x ∈-时,()0f x '>,()f x 递增;当(0, 1]x ∈时,()0f x '<,()f x 递减.∴ ()f x 在区间[1, 1]-上的最大值为(0)f b =,∴1b =. 又33(1)11222f a a =-+=-,33(1)1122f a a -=--+=-,∴ (1)(1)f f -<. 由题意得(1)2f -=-,即322a -=-,得43a =.故43a =,1b =为所求. (Ⅱ) 2222()(3361)33(2)1x x F x x ax x e x a x e ⎡⎤=-++⋅=--+⋅⎣⎦. ∴ []222()63(2)233(2)1x x F x x a e x a x e '⎡⎤=--⋅+--+⋅⎣⎦22[66(3)83]x x a x a e =--+-⋅.二次函数266(3)83y x a x a =--+-的判别式为22236(3)24(83)12(31211)123(2)1a a a a a ⎡⎤∆=---=-+=--⎣⎦,令0∆≤,得:21(2),22333a a -≤-≤≤+令0∆>,得2,233a a <->+或 ∵20x e >,12a <<,∴当22a ≤<时,()0F x '≥,函数()F x 为单调递增,极值点个数为0;当12a <<()0F x '=有两个不相等的实数根,根据极值点的定义,可知函数()F x 有两个极值点.【课后作业】1.(1,0)或(-1,-4)2.解:f (x )=a·b =x 2(1-x )+t (x +1)=-x 3+x 2+tx +t ,……4分∴f ′(x )=-3x 2+2x +t . …………7分∵f (x )在(-1,1)上是增函数,∴-3x 2+2x +t ≥0在x ∈(-1,1)上恒成立.∴t ≥3x 2-2x , ……………11分令g (x )=3x 2-2x ,x ∈(-1,1).∴g (x )∈⎣⎡⎭⎫-13,5,∴t ≥5. ……………15分3. f (x )max =1,f (x )min =-2。
4.9万件 解析:令导数2'810y x =-+>,解得09x <<;令导数2'810y x =-+<,解得9x >,所以函数31812343y x x =-+-在区间(0,9)上是增函数,在区间(9,)+∞上是减函数,所以在9x =处取得极大值,也是最大值。
5. (1)∵f ′(x )=-x 2+4ax -3a 2=-(x -3a )(x -a ),……3分由f ′(x )>0得:a <x <3a ;由f ′(x )<0得:x <a 或x >3a ;……………7分则函数f (x )的单调递增区间为(a,3a ),单调递减区间为(-∞,a )和(3a ,+∞).(2)∵f ′(x )=-x 2+4ax -3a 2=-(x -2a )2+a 2,∴f ′(x )在[a +1,a +2]上单调递减,∴f ′(x )max =f ′(a +1)=2a -1,f ′(x )min =f ′(a +2)=4a -4. ……………11分∵不等式|f ′(x )|≤a 恒成立,∴⎩⎪⎨⎪⎧|2a -1|≤a 4a -4≥-a ,解得:45≤a ≤1, ……………14分 又0<a <1,∴45≤a <1, 即a 的取值范围是45≤a <1. ……………15分6.(1)22'()2,f x x ax a =-- 令22()20f x x ax a '=--=,则x a =-或2x a = 22()20f x x ax a '∴=-->时,x a <-或,2x a >x a ∴=-时,()f x 取得极大值37()1,26f a a x a -=+=时,()f x 取得极小值 310(2)13f a a =-+ (2)要使函数()y f x =的图象与直线0y =恰有三个交点,则函数()y f x =的极大值大于零,极小值小于零;由(1)的极值可得33710610103a a ⎧+>⎪⎪⎨⎪-+<⎪⎩解之得a >=(3)要使2'()1f x x x <-+对任意(1,)a ∈+∞都成立即22221x ax a x x --<-+, 2(1)21a x a -<+ (1,)10a a ∈+∞∴-<2211a x a+>-对任意(1,)a ∈+∞都成立, 则x 大于2211a a+-的最大值 22212(1)4(1)33[2(1)4]111a a a a a a a +-+-+=-=--++--- 由(1,)a ∈+∞,310,2(1)1a a a ->∴-+≥-12a =+2214)1a a+∴≤--故2max 21()(41a x a+>=-+-7【答案】(1)[])2(3)()(/b a x b x x f +--= b a ≠ 32b a b +≠∴0)(,=∴x f 有两不等 b 和32b a + ∴f (x )存在极大值和极小值(2)①若a =b ,f (x )不存在减区间②若a >b 时由(1)知x 1=b ,x 2=32b a +∴A (b ,0)B ⎪⎪⎭⎫ ⎝⎛--+9)(2,322b a b a 21329)(22-=-+-∴b b a b a ∴)(3)(22b a b a -=- 23=-∴b a )(x f ∴的减区间为)32,(b a b +即(b ,b +1),,f (x)减区间为)21,(+-∞b ∴公共减区间为(b ,b +21)长度为21。