建筑力学基本计算5力法计算一次超静定结构

合集下载

用力法求解超静定结构

用力法求解超静定结构

用力法求解超静定结构概述超静定结构是指结构中的支座和约束条件多于结构自由度的情况。

用力法是一种经典的结构分析方法,常用于求解超静定结构。

本文将介绍用力法求解超静定结构的基本原理和步骤,并通过实例加以说明。

一、基本原理用力法的基本原理是根据平衡条件和变形约束,通过假设未知力的大小和方向,建立力的平衡方程和变形方程,解出未知力和结构的变形。

用力法适用于各种类型的结构,包括梁、柱、桁架等。

二、步骤用力法求解超静定结构的步骤如下:1. 选择合适的剖面根据结构的几何形状和约束条件,选择合适的剖面,将结构分割为若干个部分。

2. 假设未知力的方向和大小根据结构的特点和约束条件,假设未知力的方向和大小。

通常,未知力的方向可以根据结构的几何形状和外力的作用方向来确定,而未知力的大小则需要通过力的平衡方程来求解。

3. 建立力的平衡方程根据假设的未知力和结构的几何形状,建立力的平衡方程。

平衡方程包括力的平衡条件和力的矩平衡条件。

4. 建立变形方程根据结构的变形情况和约束条件,建立变形方程。

变形方程可以根据结构的刚度和约束条件来确定。

5. 解方程将力的平衡方程和变形方程联立,解方程组得到未知力和结构的变形。

6. 检验结果将求解得到的未知力和结构的变形代入原平衡方程和变形方程中,检验结果的准确性。

如果结果符合平衡和变形的要求,则求解成功;如果结果不符合要求,则需要重新假设未知力并重新求解。

三、实例分析为了更好地理解用力法求解超静定结构的步骤和原理,下面以一个简单的梁结构为例进行分析。

假设有一根悬臂梁,在梁的自重和外力作用下,需要求解支座反力和梁的变形。

1. 选择合适的剖面选择悬臂梁的剖面,将梁分割为两个部分:悬臂部分和支座部分。

2. 假设未知力的方向和大小假设支座反力的方向向上,大小为R。

3. 建立力的平衡方程根据力的平衡条件,可以得到悬臂部分的平衡方程:R - F = 0,其中F为梁的自重。

4. 建立变形方程根据梁的几何形状和约束条件,可以建立悬臂部分的变形方程,得到悬臂部分的弯矩和挠度。

超静定结构习题答案

超静定结构习题答案

超静定结构习题答案一、力法计算超静定结构1. 图示结构的超静定次数n = 。

答案:图示结构的超静定次数n = 8 。

2.用力法计算图示超静定刚架(利用对称性),绘出M 图。

答案:kN13.296]341621[145]4333323321[1011111111=-=⨯⨯⨯-=∆=⨯⨯+⨯⨯⨯⨯==∆+X EIEI EI EI X P P δδ 3. 图(b )为 图(a ) 结构的力法基本体系,试求典型方程中的系 数 δ11和 自 由 项 ∆1P 。

X lq(b)q答案:q⎪⎭ ⎝-===ϕδl l EIl l X C 4341111作M 图 1X M M =二、位移法1.求图示结构位移法典型方程的系数 r11 和 自 由 项 R P1 ,( 括号内 数表示相对 线刚度)。

m答案r11 = 17RP1 = 322.图示结构位移法典型方程的系数r22 和自由项 R P1 分 别 是 ⎽⎽⎽⎽ ,⎽⎽⎽⎽⎽ 。

( 括 号 内 数 表 示 相 对 线 刚 度 )22答案r22= 4.5RP1= -83. 计算图示结构位移法典型方程中的系 数 r r1122, 。

答案 :r EI 110375=.r EI 2235=.4.计算图示结构的位移法典型方程的全部自由项。

答案 :R P 10=R P 280=-k N三、力矩分配法1.用力矩分配法作图示连续梁的弯矩图(分配两轮)。

答案:2.用力矩分配法作图示连续梁的弯矩图(分配两轮)。

答案:。

力法、位移法求解超静定结构讲解

力法、位移法求解超静定结构讲解

力法、位移法求解超静定结构讲解
超静定结构是指在结构中存在多余的支座或者杆件,使得结构的自由度小于零,即结构无法通过静力学方法求解。

在这种情况下,我们需要采用力法或者位移法来求解结构的内力和位移。

力法是指通过假设结构内力的大小和方向,来求解结构的内力和位移的方法。

在力法中,我们需要假设结构内力的大小和方向,然后通过平衡方程和变形方程来求解结构的内力和位移。

力法的优点是计算简单,适用于简单的结构,但是对于复杂的结构,力法的假设可能会导致误差较大。

位移法是指通过假设结构的位移,来求解结构的内力和位移的方法。

在位移法中,我们需要假设结构的位移,然后通过平衡方程和变形方程来求解结构的内力和位移。

位移法的优点是适用于复杂的结构,可以准确地求解结构的内力和位移,但是计算较为繁琐。

在实际工程中,我们通常采用力法和位移法相结合的方法来求解超静定结构。

首先,我们可以通过力法来确定结构的内力大小和方向,然后再通过位移法来求解结构的位移。

这种方法可以充分利用力法和位移法的优点,减小误差,提高计算精度。

超静定结构的求解需要采用力法和位移法相结合的方法,通过假设结构的内力和位移,来求解结构的内力和位移。

在实际工程中,我们需要根据具体情况选择合适的方法,以保证计算精度和效率。

结构力学——5力法

结构力学——5力法

系数行列式之值>0 主系数 ii 0
0 副系数 ij 0 0
5)最后内力
M M 1 X 1 M 2 X 2 .......... ... M n X n M
返回
P
作业: 第106页 5-1(a)、(b)(c)、 (f)、 (g)、(i)、 (j) 5-2 (a)、(b)(c)
静力特性
非荷载外因的影响
内力与刚度的关系
无关
返回
6. 力法解超静定结构的思路 首先以一个简单的例子,说明力法的思路和基本概 念。讨论如何在计算静定结构的基础上,进一步寻求计 算超静定结构的方法。 1判断超静定次数: n=1 2. 选择基本体系(结构) 3写出变形(位移)条件:
(a)
EI 原体系(原结构)
返回
(1)对称结构作用对 称荷载
11X1+12X2+△1P=0 21X1+22X2+△2P=0 33X3+△3P=0
MP图是正对称的,故△3P=0。 X3=0 。 则
返回
(1)力法方程的物理意义为: 基本结构在全部多余 未知力和荷载共同作用下,基本结构沿多余未知力方向 上的位移,应与原结构相应的位移相等。 (2)系数及其物理意义: 下标相同的系数 i i 称为主系数(主位移),它是单位 单独作用时所引起的沿其自身方向上 多余未知力 的位移,其值恒为正。 系数 i j(i≠j)称为副系数(副位移),它是单位多余未知力 单独作用时所引起的沿 Xi方向上的位移, 其值可能为正、为负或为零。据位移互等定理,有 i j= j i △i P称为常数项(自由项)它是荷载单独作用时所引起 的沿Xi方向的位移。其值可能为正、为负或为零。 返回 上述方程的组成具有规律性,故称为力法典型方程。

结构力学 力法计算超静定结构

结构力学 力法计算超静定结构

Δ1 = 0 称为位移协调条件。
( 3 – 1)
情景二 力法的基本原理和典型方程
知识链接
Δ1 = 0 的物理意义:基本结构在荷载与 X1 的共同作用下,B 处所产 生的竖向位移应等于原结构 B 处的实际竖向位移(因原结构 B 处无
竖向位移,故 Δ = 1 0 )。根据叠加原理,基本结构在 q 与 X1 的 共同作用下,产生的 B 处竖向位移 Δ1,应等于 q 与 X1 分别单独作 用在基本结构 B处的竖向位移的叠加,即
情景二 力法的基本原理和典型方程 知识链接
情景二 力法的基本原理和典型方程
知识链接 2.力法原理
如图 3 – 17a 所示一次超静定梁,去掉支座 B,用多余未知力 X1 代 替,得如图 3 – 17b 所示的基本结构。由前述知,只要设法求出多 余未知力 X1,则其余支反力和内力的计算就与静定结构完全相同。 但仅靠平衡条件无法求出 X1,因为在基本结构中除 X1 外还有三个 支座反力未知,故平衡方程数目少于未知力数,其解值是不定的。 为求出未知力 X1,将图 3 – 17a 所示超静定梁与图 3 – 17b 所示静 定梁的受力条件和变形条件进行比较。
Δ11=δ11X11,于是上述位移条件(3–2)可写成
δ11X11 + Δ1P= 0
(3-3)
此方程为力法的基本方程。δ11 和 Δ1P 都是静定结构在已知力作用下 的位移,完全可以由项目二中所述方法求得,于是多余未知力 X 1 即可
由式(3–3)求得。这种以多余未知力为基本知量,通过基本结构,利
用计算静定结构的位移,达到求解超静定结构的方法称为力法。 为了计算 δ11 和 Δ1P ,分别作基本结构在荷载作用下的弯矩图 MP 和
由于原结构在b点的位移为零因此基本结构在荷载和多余未知力共同作用下b点沿x1x2x3方向的水平位移竖向位移和角位移也都应该为零即b处应满足位移条件102030项目实施情景二力法的基本原理和典型方程x11单独作用时沿x1x2x3方向位移分别为112131

力法计算超静定结构

力法计算超静定结构
MP
Δ1=δ11X1 + Δ1P=0 X1=-Δ1P / δ11 ql2/8
M 1M P dx EI 1 1 ql 2 3l = - ql 4 =- l EI 3 2 4 8 EI
D 1P =
=3ql/8
↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓
或按: = MX1 M P 叠加 M
1
§9.1 超静定结构的组成和超静定次数
a) 静定结构 b) 超静定结构
是无多余约束的几何不变体系。 是有多余约束的几何不变体系。 由此可见:内力超静定,约束有多余,是超 静 定结构区别于静定结构的基本特点。 超静定次数确定 把原结构变成静定结构 超静定次数=多余约束的个数 时所需撤除的约束个数
撤 (1).撤除一根支杆、切断一根链杆、把固定端化成固定铰 除 支座或在连续杆上加铰,等于撤除了一个约束。 约 束 (2)撤除一个铰支座、 撤除一个单铰或撤除一个滑动支 的 座,等于撤除两个约束。 方 式: (3)撤除一个固定端或切断一个梁式杆,等于撤除三个约束。 2
P
l/2
EI=常数 l d 11 = EI l d 22 = 3EI
1
1 1
X1=1
M1 M2
P
d 12 = d 21 =
D1P
l 6 EI
Pl 2 = , D2P = 0 16EI
6 Pl 88 3Pl X2 = 88 X1 = 17
MP
Pl/4
例题:用力法解图示刚架。EI=常数。
P E D Pl/2 C 3 E P D ×Pl/20
M图
8
3ql/8
例: 解:
q ↓↓↓↓↓↓↓↓↓↓↓↓ I1 I2
q=20kN/m
q=20kN/m

建筑力学教学课件 第15章力法及利用对称性计算超静定结构的内力

建筑力学教学课件 第15章力法及利用对称性计算超静定结构的内力
(2)建立力法方程。根据切口两侧截面沿 杆轴方向的相对线位移为零的条件,可建立力 法方程,即
δ11X1+Δ1P=0
15.1.3 力法计算步骤与示例
15.1.3 力法计算步骤与示例
3. 排架
排架常用于装配式单层工业厂房,其 屋架简化为一刚度无限大的直杆(杆件),屋 架与柱之间的联结为铰接。用力法分析排架 时,常取杆件的轴力作为基本未知力,其基 本结构为一组与地面固结的竖向的悬臂梁 (柱),其他计算步骤与梁相同。
15.1.2 力法典型方程
在式(15-4)的方程组中,位于从左上方δ11至右下方δnn的 一条主对角线上的系数δii称为主系数;主对角线两侧的其他系 数δij(i≠j)称为副系数;最后一项ΔiP称为自由项。所有的系数和 自由项都是基本结构上与某一多余未知力Xi作用方向相应的位 移,并规定与所设的多余未知力Xi作用方向一致时为正。因为 主系数δii代表由单位力Xi=1作用时,在其本身方向引起的位移, 它必然与单位力Xi=1的方向一致,所以主系数恒为正数。而副 系数δij(i≠j)则可正、可负或为零。根据位移互等定理有
根据以上所述,力法计算超静定结构的步骤可归纳如下: (1)选取基本结构。去掉原结构的多余约束,并以多余 未知力代替相应多余约束的作用,从而得到基本结构。 (2)建立力法方程。根据基本结构在去掉多余约束出的 位移等于原结构相应位置的位移,建立力法方程。 (3)求系数和自由项。对于一般结构,可用图乘法计算 力法方程中的系数和自由项。对于曲杆或变截面杆则不能用图 乘法。这是,必须列出弯矩方程,用位移公式计算。
Δ1=Δ11+Δ1P=0
(15-1)
式(15-1)称为变形协调条件,它是基本结构与原结
构等同的条件,也是确定多余未知力大小的依据。

超静定结构的计算

超静定结构的计算

§1.3超静定结构的计算超静定结构是具有多余约束的几何不变体系,仅根据静力平衡条件不能求出其全部支座反力和内力,还须考虑变形协调条件。

计算超静定结构的基本方法是力法和位移法。

这两种基本方法的解题思路,都是设法将未知的超静定结构计算问题转换成已知的结构计算问题。

转换的桥梁就是基本体系,转换的条件就是基本方程,转换后要解决的关键问题就是求解基本未知量。

1.3.1力法力法是以多余未知力为基本未知量、一般用静定结构作为基本结构,以变形协调条件建立基本方程来求解超静定结构内力的计算方法。

超静定结构多余约束(或多余未知力)的数目称为超静定次数,用n表示。

确定超静定次数的方法是:取消多余约束法,即去掉超静定结构中的多余约束,使原结构变成静定结构,所去掉的多余约束的数目即为原结构的超静定次数。

在结构上去掉多余约束的方法,通常有如下几种:●切断一根链杆,或者移去一个支座链杆,相当于去掉一个约束;●将一个固定支座改成固定铰支座,或将受弯杆件某处改成铰接,相当于去掉一个抗转动约束;●去掉一个联结两刚片的铰,或者撤去一个固定铰支座,相当于去掉两个约束;●将一梁式杆切断,或者撤去一个固定支座,相当于去掉三个约束。

现以图1-26a所示一次超静定结构为例,说明力法的基本原理。

其中,要特别重视力法的三个基本概念。

图1-261、力法的基本未知量:取超静定结构中的多余未知力(如图1-26a 中的X1)作为力法的基本未知量,以X i表示。

多余未知力在超静定结构内力分析中处于关键的地位,因此,有必要将其突出出来,作为主攻目标。

力法这个名称也因此而得。

2、力法的基本体系:将原结构中的多余约束(如图1-26a中的支座B)去掉,所得到的无任何外加因素的结构,称为力法的基本结构(图1-26b);基本结构在荷载和多余未知力共同作用下的体系,称为力法的基本体系(图1-26c)。

在基本体系中,仍然保留原结构的多余约束反力X1,只是把它由被动力改为主动力,因此基本体系的受力状态与原结构完全相同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

建筑力学基本计算5
力法计算一次超静定结构
1、基本概念和计算要求
在学习力法计算超静定结构的时候,要注意下列几点:
1) 力法的基本原理,通过多余未知力的概念,把超静定结构问题转化为静定结构的计算问题。

2) 结构超静定次数的确定,多余约束、多余约束反力和抄静定次数的关系,基本结构的确定。

3) 力法典型方程的建立及方程中想关系数的意义。

2、基本计算方法
在学习力法的基本方法时,要注意下列问题:
1) 选择基本结构。

由于力法是以多余未知力作为基本未知量,首先应根据去掉多余约束的
原则和方法去掉多余约束代之以多余未知力,得到与原结构相应的静定结构即基本结构。

选择基本结构应注意:基本结构必须是几何不变体系的静定结构,几何可变体系(或瞬变体系)不能用作基本结构;多余约束力的方向应该符合约束的方向;选择的基本结构应该尽量使解题步骤简化。

2) 基本方程的建立。

将基本结构与原结构以受力条件进行比较会发现:只要多余未知力就
是原结构的支座反力,则基本结构与原结构受力情况完全一致;当解出多余未知力,将其视为荷载加在基本结构上,超静定结构的计算即转化为静定结构的计算。

3、计算步骤和常用方法
考试要求基本是以力法计算一次超静定刚架(或梁)为主,基本计算步骤是:
1) 选择基本结构。

确定超静定结构的次数,去掉多余约束,并以相应的约束力代替而得到
的一个静定结构作为基本结构。

2)
建立力法典型方程。

01111=∆+P X δ(一次超静定结构) 3) 计算δ11和Δ1P 。

首先要画出基本结构在荷载作用下的M P 图和基本结构在单位未知力作用下的1M 图,然后用图乘法分别计算δ11(1M 图和1M 图图乘)和Δ1P (M P 图和1M 图图乘)。

4)
求多余未知力。

代入力法典型方程求出多余未知力。

5) 作内力图(一般为作弯矩图)。

可按P M X M M +⋅=11式叠加对应点的弯矩,从而画
出弯矩图。

4、举例
作图(a )所示超静定刚架的弯矩图。

已知刚架各杆EI 均为常数。

[解](1)选择基本结构
图(a )为二次超静定刚架,去掉C 支座约束,代之以多余未知力X 1、X 2得到如图(b )所示悬臂刚架作为基本结构。

(2)建立力法典型方程
原结构C 支座处无竖向位移和水平位移,故△1=O ,△2=0,则其力法方程为
(3)计算系数和自由项
①画基本结构荷载弯矩图M P 图如图(c )所示。

②画基本结构单位弯矩图1M 图和2M 图分别如图(d )、(e )所示。

③用图乘法计算各系数和自由项:
(4)求多余未知力
将以上所求得的系数和自由项代入力法方程,得
解得
其中X1为负值,说明C支座竖向反力的实际方向与假设相反,即应向上。

(5)根据叠加原理作M图,如图f所示。

相关文档
最新文档