专题7:函数与方程思想(理)

专题7:函数与方程思想(理)
专题7:函数与方程思想(理)

专题七:函数与方程思想

【思想方法诠释】

函数与方程都是中学数学中最为重要的内容.而函数与方程思想更是中学数学的一种基本思想,几乎渗透到中学数学的各个领域,在解题中有着广泛的应用,是历年来高考考查的重点.

1.函数的思想

函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决.函数思想是对函数概念的本质认识,用于指导解题就是善于利用函数知识或函数观点观察、分析和解决问题.经常利用的性质是单调性、奇偶性、周期性、最大值和最小值、图象变换等.

2.方程的思想

方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决.方程的教学是对方程概念的本质认识,用于指导解题就是善于利用方程或方程组的观点观察处理问题,方程思想是动中求静,研究运动中的等量关系.

3.函数思想与方程思想的联系

函数思想与方程思想是密切相关的,如函数问题可以转化为方程问题来龙去脉解决;方程问题也可以转化为函数问题加以解决,如解方程f (x)=0,就是求函数y= f (x)的零点,解不等式f (x)>0(或f (x)<0),就是求函数y= f (x)的正负区间,再如方程f (x)=g(x)的交点问题,也可以转化为函数y= f (x)-g(x)与x轴交点问题,方程f (x)= a有解,当且仅当a属于函数f (x)的值域,函数与方程的这种相互转化关系十分重要.

4.函数与方程思想解决的相关问题

(1)函数思想在解题中的应用主要表现在两个方面:

①借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;

②在问题研究中通过建立函数关系式或构造中间函数;把研究的问题化为讨论函数的有关性质,达到化难为易,化繁为简的目的.

(2)方程思想在解题中的应用主要表现在四个方面:

①解方程或解不等式;

②带参变数的方程或不等式的讨论,常涉及一元二次方程的判别式、根与系数的关系、区间根、区间上恒成立等知识应用;

③需要转化为方程的讨论,如曲线的位置关系;

④构造方程或不等式求解问题.

【核心要点突破】

要点考向1:运用函数与方程的思想解决字母或式子的求值或取值范围问题

例1若a、b是正数,且满足ab=a+b+3,求ab的取值范围.

思路精析:用a表示b→根据b>0,求a的范围→把ab看作a的函数→求此函数的值域.解析:方法一:(看成函数的值域)

即a>1或a<-3,

又a>0,∴a>1,故a-1>0.

当且仅当a-1=

4

1

a-

,即a=3时取等号.

又a>3时,a-1+

4

1

a-

+5是关于a的单调增函数,

∴ab的取值范围是[9,+∞).

方法二:(看成不等式的解集)

∵a、b为正数,∴a+b ab= a+b+3,∴ab.

解得

注:(1)求字母(或式子)的值问题往往要根据题设条件构建以待求字母(式子)为元的方程(组),然后由方程(组)求得.

(2)求参数的取值范围是函数、方程、不等式、数列、解析几何等知识中的重要问题.解决这类问题一般有两条途径,其一,充分挖掘题设条件中的不等关系,构建以待求字母为元的不等式(组)求解;其二,充分应用题设的等量关系,将待求参数表示成其他变量的函数,然后,应用函数知识求值域.(3)当问题中出现两数积与这两数和时,是构建一元二次方程的明显信号,构造方程后再利用方程知识可使问题巧妙解决.

(4)当问题中出现多个变量时,往往要利用等量关系去减少变量的个数,如最后能把其中一个变量表示成关于另一个变量的表达式,那么就可用研究函数的方法将问题解决.

例 2 已知函数2

11

()2cos cos

cos 2,222

x f x x x =+-2()cos (1cos )cos 3.g x x a x =++--且()y f x =与()y g x =的图象在(0,)π内至少有一个公共点,试求a 的取值范围.

思路精析:化简()f x 的解析式→令()f x =()g x →分离a →求函数的值域→确定a 的范围. 解析:2

221111()2cos cos cos 2cos (cos 1)(2cos 1)22222

2cos cos 1.

x f x x x x x x x x =+-=++--=+- ()y f x =与()y g x =的图象在(0,)π内至少有一个公共点,

即()

()

y f x y g x =??

=?有解,即令()f x =()g x ,

当且仅当

,即cos x =0时“=”成立.

∴当a ≥2时,()y f x =与()y g x =所组成的方程组在(0,)π内有解, 即()y f x =与()y g x =的图象至少有一个公共点.

注:(1)本例中把两函数图象至少有一个公共点问题转化为方程有解问题.即把函数问题用方程的思想去解决.

(2)与本例相反的一类问题是已知方程的解的情问题,求参数的取值范围.研究此类含参数的三角、指数、对数等复杂方程解的问题的,通常有两种处理思路:一是分离参数构建函数,将方程有解转化为求函数的值域;二是换元,将复杂方程问题转化为熟悉的二次方程;进而利用二次方程解的分布情况构建不等式(组)或构造函数加以解决.

例3(1)已知且那么()

(2)设不等式对满足m∈[-2,2]的一切实数m都成立,求x的取值范围.

思路精析:(1)先把它变成等价形式再构造辅助函数利用函数单调性比较.

(2)此问题常因为思维定势,易把它看成关于x的不等式讨论,若变换一个角度,以m为变量,使f (m)=,则问题转化为求一次函数(或常函数)f (m)的值在[-2,2]内恒负时,参数x应满足的条件.

解析:(1)选B.设因为均为R上的增函数,所以是R上的增函数.又由,即,即x+y>0.(2)设f (m)=,则不等式2x-1>m恒成立恒成立.

∴在时,

解得,

故x的取值范围是.

注:1.在解决值的大小比较问题时,通过构造适当的函数,利用函数的单调性或图象解决是一种重要思想方法;

2.在解决不等式恒成立问题时,一种最重要的思想方法就是构造适当的函数利用函数的图象和性质解决问题.同时要注意在一个含多个变量的数学问题中,需要确定合适的变量和参数,从而揭示函数关系,使问题更明朗化,一般地,已知存在范围的量为变量而待求范围的量为参数.

例4 图1是某种称为“凹槽”的机械部件的示意图,图2是凹槽的横截面(阴影部分)示意图,其中四边形ABCD 是矩形,弧CmD 是半圆,凹槽的横截面的周长为4.已知凹槽的强度与横截面的面积成正比,比例

AB =2x ,BC =y .

(Ⅰ)写出y 关于x 函数表达式,并指出x 的取值范围; (Ⅱ)求当x 取何值时,凹槽的强度最大. 解析:(Ⅰ)易知半圆CmD 的半径为x ,

故半圆CmD 的弧长为x π. 所以 422x y x π=++,

得4(2)2

x

y π-+=

. 依题意知:0x y <<,得4

04x π

<<+ 所以,4(2)2x y π-+=

(4

04x π

<<+). (Ⅱ)依题意,设凹槽的强度为T ,横截面的面积为S ,则有

2

)

2x T xy π=-

2

4(2))

22x x x ππ-+=?-

23(2)]

2x x π

=-+

24)43x π=-++ 因为44

0434ππ

<

<

++, 所以,当4

43x π

=+时,凹槽的强度最大. 答: 当4

43x π

=+时,凹槽的强度最大.

注:解析几何、立体几何及实际应用问题中的最优化问题,一般是利用函数的思想解决,思路是先选择恰当的变量建立目标函数,然后再利用有关知识,求函数的最值.

一、选择题(每小题5分,共30分)

1.已知正数x,y满足xy=x+9y+7,则xy的最小值为()

(A)32 (B)43 (C)49 (D)60

2.方程有解,则m的最大值为()

(A)1 (B)0 (C)-1 (D)-2

3.一个高为h O,满缸水量为Vo的鱼缸的轴截面如图所示,

其底部有一个小洞,满缸水从洞中流出,当鱼缸口高出水面

的高度为h时,鱼缸内剩余水的体积为V,则函数V=f (h)的

大致图象可能是()

(A) (B)(C) (D)

4.对任意a∈[-1,1],函数f (x)=x2+(a-4)x+4-2a的值总大于零,则x的取值范围是()

(A)13 (C)12

5.若正实数a,b满足a b=b a,且a<1,则有()

(A)a>b(B)a

6.已知圆上任意一点P(x,y)都使不等式恒成立,则m的取值范围是()

二、填空题(每小题5分,共15分)

7.的定义域和值域都是[1,k],则k= .

8.已知数列中,,若数列的前30项中最大项是,最小项是,则m= ,n= .9.设f (x),g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f ′(x)·g(x)+f(x)g′(x)>0,且g(-3)=0,则不等式f (x)g(x)<0的解集是.

10.(2006年福建文)已知()f x 是二次函数,不等式()0f x <的解集是(0,5),且()f x 在区间[]1,4-上的最大值是12.

(I )求()f x 的解析式;

(II )是否存在自然数,m 使得方程37

()0f x x

+

=在区间(,1)m m +内有且只有两个不等的实数根?若存在,求出m 的取值范围;若不存在,说明理由.

11.某地区要在如图所示的一块不规则用地规划建成一个矩形商业楼区,余下的作为休闲区,已知AB ⊥BC ,OA ∥BC ,且AB=BC=2OA=4 km ,曲线OC 段是以O 为顶点且开口向上的抛物线的一段,如果矩形的两边分别落在AB 、BC 上,且一个顶点在曲线OC 段上,应当如何规划才能使矩形商业楼区的用地面积最大?并求出最大的用地面积.

(1)若对定义域的任意x ,都有f (x )≥f (1)成立,求实数b 的值; (2)若函数f (x )在定义域上是单调函数,求实数b 的取值范围; (3)若b = - 1,证明对任意的正整数n ,不等式3

33

1

1

(312)

1

1)1(n

<k f n

k +++

+∑= 都成立 .

(1)求函数)(x f 的单调区间;

(2)若0)(≤x f 恒成立,试确定实数k 的取值范围;

(3)证明:① ),2(2)1ln(+∞-<-在x x 上恒成立; ② ∑=+>∈-<

+n

i n N n n n i i

2

)1,(,4

)

1())1(ln (. 14.

【参考答案】

1.C 2.A

3.【解析】选A.设鱼缸底面积为S,则V=f (h)=Sh o-Sh,故V=f (h)是一次函数且是减函数.4.【解析】选B.由f(x)=x2+(a-4)x+4-2a>0得a(x-2)+x2-4x+4>0,

令g(a)=a(x-2)+x2-4x+4,由不等式f(x)>0恒成立,即g(a)>0在[-1,1]上恒成立.

5.

6.

7.

8.

10.解:(I )因为()f x 是二次函数,且()0f x <的解集是(0,5),

所以可设()(5)(0).f x ax x a =->

由()()[]2

25255,1,424f x a x x a x a x ?

?=-=--∈- ??

?,

因为在区间51,2??-???

?上,函数()f x 是减函数,在区间5,42

?? ???

上, 函数()f x 是增函数.

所以,()f x 在区间[]1,4-上的最大值是(1)6.f a -= 由已知,得612, 2.a a ==

所以, ()f x 的解析式为2()2(5)210().f x x x x x x =-=-∈R (II )方程37

()0f x x

+

=等价于方程32210370.x x -+= 设32()21037,h x x x =-+则2'()6202(310).h x x x x x =-=- 当100,

3x ??

∈ ???

时,'()0,()h x h x <是减函数; 当10,3x ??

∈+∞

???

时,'()0,()h x h x >是增函数. 因为101(3)10,0,(4)50,327h h h ??

=>=-<=>

?

??

所以方程()0h x =在区间10103,,,433????

? ?????

内分别有唯一的实数根,而在区间(0,3),(4,)+∞内没有实数根,

所以存在唯一的自然数3,m =使得方程37

()0f x x

+

=在区间(,1)m m +内有且只有两个不同的实数根. 11.【解析】以点O 为原点,OA 所在的直线为x 轴,建立直角坐标系, 设抛物线的方程为x 2=2py ,由C(2,4)代入得:p=, 所以曲线段OC 的方程为:y=x 2(x ∈[0,2]). A(-2,0),B(-2,4),设P(x ,x 2)(x ∈[0,2]),

过P 作PQ ⊥AB 于Q ,PN ⊥BC 于N ,故PQ=2+x ,PN=4-x 2, 则矩形商业楼区的面积S=(2+x)(4-x 2)(x ∈[0,2]).

12.解:(1)由x + 1>0得x > – 1

∴f(x)的定义域为( - 1,+ ∞) 对x ∈( - 1,+ ∞),都有f(x)≥f(1), ∴f(1)是函数f(x)的最小值,故有f / (1) = 0,

,02

2,12)(/=+∴++

=b

x b x x f 解得b= - 4. (2)∵,1

2212)(2/

+++=++

=x b

x x x b x x f 又函数f(x)在定义域上是单调函数,

∴f / (x) ≥0或f /(x)≤0在( - 1,+ ∞)上恒成立. 若f / (x) ≥0,∵x + 1>0,

∴2x 2 +2x+b ≥0在( - 1,+ ∞)上恒成立, 即b ≥-2x 2 -2x = 21)21(22++

-x 恒成立,由此得b ≥2

1

; 若f / (x ) ≤0, ∵x + 1>0, ∴2x 2 +2x+b ≤0,即b ≤-(2x 2+2x)恒成立, 因-(2x 2+2x) 在( - 1,+ ∞)上没有最小值, ∴不存在实数b 使f(x) ≤0恒成立. 综上所述,实数b 的取值范围是??

????+∞,21

. (3)当b= - 1时,函数f(x) = x 2 - ln(x+1),

令函数h(x)=f(x) – x 3 = x 2 – ln(x+1) – x 3,

2

3

∴当[)+∞∈,0x 时,h /(x)<0所以函数h(x)在[)+∞∈,0x 上是单调递减.

又h(0)=0,∴当()+∞∈,0x 时,恒有h(x) <h(0)=0,即x 2 – ln(x+1) <x 3恒成立. 故当()+∞∈,0x 时,有f(x) <x 3.

∵(),,01,+∞∈∴

∈+k N k 取,1

k

x =则有,1)1(3k k f <

∴3331

1

......31211)1(n <k f n

k ++++∑=,故结论成立.

13.解:(I )函数k x x f x f --=+∞1

1

)('),,1()(的定义域为 当0≤k 时01

1

)('>--=

k x x f ,则),1()(+∞在x f 上是增函数; 当0>k 时,若)11,1(k x +∈时有01

1

)('>--=

k x x f . 若),11(+∞+∈k x 时有011)('<--=k x x f 则)11,1()(k x f +在上是增函数,在),1

1(+∞+k

上是减函数.

(Ⅱ)由(I )知0≤k ,时),1()(+∞在x f 递增,而0)(,01)2(≤>-=x f k f 不成立, 故0>k 又由(I )知k k

f y ln )1

1(max -=+=,要使0)(≤x f 恒成立,

则0ln )1

1(max ≤-=+

=k k

f y 即可.由10ln ≥≤-k k 得. (Ⅲ)由(Ⅱ)知,当1=k 时有),1(0)(+∞≤在x f 恒成立,且),2[)(+∞在x f 上是减函数,0)2(=f ,

0)(),,2(≤+∞∈∴x f x 恒成立,即),2(2)1ln(+∞-<-在x x 上恒成立. 令2

1n x =-,则1ln 2

2

-

2

1

1ln -<+n n n , 所以,4

)

1(212322211ln 54ln 43ln 32ln -=-++++<+++++n n n n n 成立. 14.

高考数学函数与方程的思想方法

高考数学函数与方程的 思想方法 Last revised by LE LE in 2021

第4讲 函数与方程的思想方法 一、知识整合 函数与方程是两个不同的概念,但它们之间有着密切的联系,方程f(x)=0的解就是函数y =f(x)的图像与x 轴的交点的横坐标,函数y =f(x)也可以看作二元方程f(x)-y =0通过方程进行研究。 就中学数学而言,函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的.许多有关方程的问题可以用函数的方法解决,反之,许多函数问题也可以用方程的方法来解决。函数与方程的思想是中学数学的基本思想,也是历年高考的重点。 1.函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图像和性质去分析问题、转化问题,从而使问题获得解决。函数思想是对函数概念的本质认识,用于指导解题就是善于利用函数知识或函数观点观察、分析和解决问题。 2.方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决。方程的数学是对方程概念的本质认识,用于指导解题就是善于利用方程或方程组的观点观察处理问题。方程思想是动中求静,研究运动中的等量关系. 3.(1) 函数和方程是密切相关的,对于函数y =f(x),当y =0时,就转化为方程f(x)=0,也可以把函数式y =f(x)看做二元方程y -f(x)=0。函数问题(例如求反函数,求函数的值域等)可以转化为方程问题来求解,方程问题也可以转化为函数问题来求解,如解方程f(x)=0,就是求函数y =f(x)的零点。 (2) 函数与不等式也可以相互转化,对于函数y =f(x),当y>0时,就转化为不等式f(x)>0,借助于函数图像与性质解决有关问题,而研究函数的性质,也离不开解不等式。 (3) 数列的通项或前n 项和是自变量为正整数的函数,用函数的观点处理数列问题十分重要。 (4) 函数f(x)=n b ax )( (n ∈N *)与二项式定理是密切相关的,利用这个函数用赋值法和比较系数法可以解决很多二项式定理的问题。 (5) 解析几何中的许多问题,例如直线和二次曲线的位置关系问题,需要通过解二元

函数与方程思想在高中的应用

函数与方程思想在高考中的应用 组长:潘云鹏 12033034 组员:夏炎 12304177 杨岑 12304154 张瑶 12304184 孙雪 12304013 高清华 12304196 谭博闻 12304159 郭志岩 12304143 刘春旭 12304009 函数与方程思想在高考中的应用

摘要本文阐述了函数思想与方程思想的概念、二者之间的相互转换及在转换时需要注意的一些问题.用典型的例题阐明用函数与方程思想方法能够轻易解决数学学科中不等式、数列、二项式定理、三角函数、平面向量、解析几何、立体几何、概率与统计、导数、实际问题等难以突破的部分,并且它也应用在其他学科领域中.并结合中学数学教学,提出教师应该在教学中有意培养学生的函数与方程思想,并且给出了具体可行性的建议. 一.函数与方程思想的概念 1.函数思想 函数思想是一种通过构造函数从而应用函数图象、性质解题的思想方法,即用运动变化的思想观点,分析和研究具体问题中的数量关系,通过函数的形式把这种数量关系表示出来,并加以研究其内在的联系,使问题获解.应用函数思想解题的基础是:常见函数的单调性、奇偶性、周期性、最值和图象变换等;熟练掌握一次函数、二次函数、指对数函数等具体特征;应用函数思想解题的关键是:善于观察题目的结构特征,揭示内在联系,挖掘隐含条件,从而恰当地构造函数和利用函数性质去解题.. 2.方程思想 方程思想是若干变量关系是通过解析式表示的,则可以把解析式看成一个等式,然后通过方程的讨论从而使问题获解.许多问题中含有常量、变量和参量,可以通过适当方式,运用方程的观点去观察、

深入分析问题的结构特点,抓住某一个关键变量,构造出这种等式来处理.两种思想方法是相辅相成的,有关方程、不等式、最值等问题,利用函数、方程观点加以分析,常可以使问题“明朗化”,从而易于找到适当解题途径. 3.函数与方程思想的相互转化 很明显,只有在对问题的观察、分析、判断等一系列的思维过程中,具备有标新立异、独树一帜的深刻性、独创性思维,才能构造出函数原型,化归为方程的问题,实现函数与方程的互相转化接轨,达到解决问题的目的. 方程与函数是中学数学的重点内容,占了相当多的份量,其中某些内容既是重点又是难点.例如,列方程(组)解应用题,函数的定义和性质,反函数的概念,平面解几里曲线的方程,方程的曲线的概念等等.方程的思想和函数的思想是处理常量数学与变量数学的重要思想,在解决一般数学问题中具有重大的方法论意义.在中学数学里,对各类代数方程和初等超越方程都作了较为系统的研究.对一个较为复杂的问题,常常先通过分析等量关系,列出一个或几个方程或函数关系式,再解方程(组)或研究这函数的性质,就能很好地解决问题.函数知识涉及到的知识点多,面广,在概念性、应用性、理解性上能达到一定的要求,有利于检测学生的深刻性、独创性思维. 二.函数思想在解题中的应用分析 函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的

函数与方程思想的典型例题

函数与方程思想的典型例题 [例1]设函数)(x f 的定义域为R ,对任意实数βα,有 ,且21)3(=πf ,0)2(=πf . (1)求证:)()()(x f x f x f --==-π; (2)若20π <≤x 时,0)(>x f ,求证:)(x f 在],0[π上单调递减; (3)求)(x f 的最小周期并*证明. [解析](1)),0()3(2)3()3(f f f f πππ=+ 且2 1)3(=πf ,1)0(=∴f . 又)()0(2)()(x f f x f x f =-+,)()(x f x f -=∴. )2()2(2)()(πππ-=-+x f f x f x f ,且0)2(=π f ,)()()(x f x f x f --=-=∴π. (2))()(x f x f =- 且20π<≤x 时,0)(>x f ,∴当2 2ππ<<-x 时,0)(>x f . 设π≤<≤210x x , 则)()()()(2121x f x f x f x f -+=-π)2()2( 22121ππ-+-+=x x f x x f . 222,2202121πππππ<-+<-<+-≤x x x x ,0)2 (,0)2(2121>-+>-+∴ππx x f x x f . )()(21x f x f >∴,即)(x f 在],0[π上单调递减. (3)由(1))()(x f x f --=-π得)()(x f x f +-=π,)2()(x f x f +-=+ππ, )()2(x f x f =+∴π,说明π2是原函数的一个周期. 假设0T 也是原函数的一个周期,且)2,0(0π∈T ,则由)()(0x f x T f =+得)()0(0T f f =. 但若],0(0π∈T 时,因原函数是单调递减函数,所以)()0(0T f f >,两者矛盾; 若)2,(0ππ∈T 时,),0(20ππ∈-T ,从而)()()2()0(000T f T f T f f =-=->π,两

函数的零点与方程的解教学讲义

函数的零点与方程的解教学讲义 必备知识·探新知 基础知识 知识点1 函数的零点 (1)函数f (x )的零点是使f (x )=0的__实数x __. (2)函数的零点、函数的图象、方程的根的关系. 思考1:(1)函数的零点是点吗? (2)函数的零点个数、函数的图象与x 轴的交点个数、方程f (x )=0根的个数有什么关系? 提示:(1)不是,是使f (x )=0的实数x ,是方程f (x )=0的根. (2)相等. 知识点2 函数的零点存在定理 (1)条件:函数y =f (x )在区间[a ,b ]上的图象是__连续不断的曲线__,f (a )f (b )<0; (2)函数y =f (x )在区间(a ,b )上有零点,即存在c ∈(a ,b )使f (c )=0,这个c 也就是f (x )=0的根. 思考2:(1)函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,f (a )f (b )<0时,能否判断函数在区间(a ,b )上的零点个数? (2)函数y =f (x )在区间(a ,b )上有零点,是不是一定有f (a )f (b )<0? 提示:(1)只能判断有无零点,不能判断零点的个数. (2)不一定,如f (x )=x 2在区间(-1,1)上有零点0,但是f (-1)f (1)=1×1=1>0. 基础自测 1.函数f (x )=4x -6的零点是( C ) A .2 3 B .(3 2,0) C .3 2 D .-32 [解析] 令4x -6=0,得x =32,∴函数f (x )=4x -6的零点是3 2 . 2.(2020·广州荔湾区高一期末测试)函数f (x )=x -2+log 2x ,则f (x )的零点所在区间为( B )

函数与方程思想简单应用

数学思想方法的简单应用(1) 一、函数与方程思想 函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。有时,还需要函数与方程的互相转化、接轨,达到解决问题的目的。 函数描述了自然界中数量之间的关系,函数思想通过提出问题的数学特征,建立函数关系型的数学模型,从而进行研究。它体现了“联系和变化”的辩证唯物主义观点。一般地,函数思想是构造函数从而利用函数的性质解题,经常利用的性质是:y=f (x)的单调性、奇偶性、周期性、最大值和最小值、图像变换等,要求我们熟练掌握的是一次函数、二次函数、幂函数、指数函数、对数函数、三角函数的具体特性。在解决问题中,善于挖掘题目中的隐含条件,构造出函数解析式和妙用函数的性质,是应用函数思想的关键。对所给的问题观察、分析、判断比较深入、充分、全面时,才能产生由此及彼的联系,构造出函数原型。另外,方程问题、不等式问题、集合问题、数列问题和某些代数问题也可以转化为与其相关的函数问题,即用函数思想解答非函数问题。 1.证明:若 则为整数. 解析:若x+y+z+t=0,则由题设条件可得 ,于是此时(1)式的值等于-4. 若x+y+z+t≠0,则 由此可得x=y=z=t.于是(1)式的值等于4. 2.已知:函数g(x)=ax2﹣2ax+1+b(a≠0,b<1),在区间[2,3]上有最大值4,最小值1,设函数f(x)=. (1)求a、b的值及函数f(x)的解析式; (2)若不等式f(2x)﹣k?2x≥0在x∈[﹣1,1]时恒成立,求实数k的取值范围;

中考专题--方程思想

方程应用试题 姓名___________ 应用方程思想解题时应注意:①要具备用方程思想解题的意识;②要具有正确列出方程的能力;(正确的找到等量关系)③要掌握运用方程思想解决问题的要点 一.方程思想在代数问题中的应用 (1)整式与方程思想 1.已知25A x mx n =-+,2 321B y x =-+-,若A B +中不含有一次项和常数项,则222m mn n -+的值为 2.单项式2343m n m n x y ++与422y x -是同类项,则m n 的值为 (2)函数与方程思想 3.若函数2 1 5m m y mx --=+是一次函数,且y 随x 的增大而减小,则m = 4.已知反比例函数k y x = 与一次函数2y x k =+的图像的一个交点的纵坐标是4-,则k 的值为 5.已知点(1,)P m 在正比例函数2y x =的图像上,那么点P 的坐标为 二.方程思想在几何问题中的应用 在解答几何问题中经常会①运用勾股定理建立方程;②运用相似三角形对应边成比例建立方程;③运用锐角三角函数的意义建立方程 (1)三角形和四边形与方程思想 通常解决等腰三角形相关问题时要列出方程 6.如图,矩形纸片ABCD 中,AB=4,AD=3,折叠纸片使AD 边与对角线BD 重合,折痕为DG ,则AG 的长为( ) A .1 B . 34 C .2 3 D .2 7.如图,如图,矩形ABCD 中,AB =2,BC =3,对角线AC 的垂直平分线分别交AD ,BC 于点E 、F ,连接CE , 则CE 的长________. 8.如图,已知等腰△ABC 中,顶角∠A=36°,BD 为∠ABC 的平分线,则 AD AC 的值为( ) . A . 1 2 B .51- C .1 D .51+ 9.如图,在△ABC 中,∠C=45°,BC=10,高AD=8,矩形EFPQ 的一边QP 在边上,E 、F 两点分别在AB 、AC 上,AD 交EF 于点H 。设EF=x ,当x 为何值时,矩形EFPQ 的面积最大?并求其最大值 (3)圆与方程思想 通常以半径相等或者切线长相等为突破口 以“勾股定理”为等量关系列出方程 10.如图,ABC Rt ?中,?=∠90ACB ,4=AC ,3=BC ,以BC 上一点O 为圆心作⊙O,与AC 、AB 分别相切于C 点、E 点,则⊙O 的半径为 11.如图,已知AB 是⊙O 的弦,P 是AB 上一点,若AB =10cm ,PB =4cm ,OP =5cm ,则⊙O 的半径等于______________cm 。 A ′ G D C 6题 第7题 F A D O E B C E B O 第10题 O B A P D 第11题 第8题

高考数学二轮专题复习-函数与方程思想

第1讲函数与方程思想 1.函数与方程思想的含义 (1)函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,是对函数概念的本质认识,建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决.经常利用的性质是单调性、奇偶性、周期性、最大值和最小值、图象变换等.(2)方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决.方程的教学是对方程概念的本质认识,用于指导解题就是善于利用方程或方程组的观点观察处理问题.方程思想是动中求静,研究运动中的等量关系. 2.和函数与方程思想密切关联的知识点 (1)函数与不等式的相互转化,对函数y=f(x),当y>0时,就化为不等式f(x)>0,借助于函数的图象和性质可解决有关问题,而研究函数的性质也离不开不等式. (2)数列的通项与前n项和是自变量为正整数的函数,用函数的观点去处理数列问题十分重要. (3)在三角函数求值中,把所求的量看作未知量,其余的量通过三角函数关系化为未知量的表达式,那么问题就能化为未知量的方程来解. (4)解析几何中的许多问题,例如直线与二次曲线的位置关系问题,需要通过解二元方程组才能解决.这都涉及二次方程与二次函数的有关理论. (5)立体几何中有关线段、角、面积、体积的计算,经常需要运用列方程或建立函数表达式的方法加以解决,建立空间直角坐标系后,立体几何与函数的关系更加密切.

热点一 函数与方程思想在不等式中的应用 例1 (1)f (x )=ax 3-3x +1对于x ∈[-1,1]总有f (x )≥0成立,则a =________. (2)设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (-3)=0,则不等式f (x )g (x )<0的解集是__________. 答案 (1)4 (2)(-∞,-3)∪(0,3) 解析 (1)若x =0,则不论a 取何值,f (x )≥0显然成立; 当x >0即x ∈(0,1]时,f (x )=ax 3-3x +1≥0可化为 a ≥3x 2-1x 3. 设g (x )=3x 2-1 x 3,则g ′(x )=3(1-2x )x 4 ,所以g (x )在区间????0,12上单调递增,在区间????12,1上单调递减, 因此g (x )max =g ???? 12=4,从而a ≥4; 当x <0即x ∈[-1,0)时, f (x )=ax 3-3x +1≥0可化为a ≤3x 2-1x 3, 设g (x )=3x 2-1 x 3,且g (x )在区间[-1,0)上单调递增, 因此g (x )min =g (-1)=4,从而a ≤4,综上a =4. (2)设F (x )=f (x )g (x ),由于f (x ),g (x )分别是定义在R 上的奇函数和偶函数,得F (-x )=f (-x )g (-x )=-f (x )g (x )=-F (x ),即F (x )在R 上为奇函数. 又当x <0时,F ′(x )=f ′(x )g (x )+f (x )g ′(x )>0, 所以x <0时,F (x )为增函数. 因为奇函数在对称区间上的单调性相同, 所以x >0时,F (x )也是增函数. 因为F (-3)=f (-3)g (-3)=0=-F (3). 所以,由图可知F (x )<0的解集是(-∞,-3)∪(0,3). 思维升华 (1)在解决不等式问题时,一种最重要的思想方法就是构造适当的函数,利用函数的图象和性质解决问题;(2)函数f (x )>0或f (x )<0恒成立,一般可转化为f (x )min >0或f (x )max <0;已知恒成立求参数范围可先分离参数,然后利用函数值域求解. 已知函数f (x )=1 2 x 4-2x 3+3m ,x ∈R ,若f (x )+9≥0恒成立,则实数m 的取值范

专题7:函数与方程思想(理)

专题七:函数与方程思想 【思想方法诠释】 函数与方程都是中学数学中最为重要的内容.而函数与方程思想更是中学数学的一种基本思想,几乎渗透到中学数学的各个领域,在解题中有着广泛的应用,是历年来高考考查的重点. 1.函数的思想 函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决.函数思想是对函数概念的本质认识,用于指导解题就是善于利用函数知识或函数观点观察、分析和解决问题.经常利用的性质是单调性、奇偶性、周期性、最大值和最小值、图象变换等. 2.方程的思想 方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决.方程的教学是对方程概念的本质认识,用于指导解题就是善于利用方程或方程组的观点观察处理问题,方程思想是动中求静,研究运动中的等量关系. 3.函数思想与方程思想的联系 函数思想与方程思想是密切相关的,如函数问题可以转化为方程问题来龙去脉解决;方程问题也可以转化为函数问题加以解决,如解方程f (x)=0,就是求函数y= f (x)的零点,解不等式f (x)>0(或f (x)<0),就是求函数y= f (x)的正负区间,再如方程f (x)=g(x)的交点问题,也可以转化为函数y= f (x)-g(x)与x轴交点问题,方程f (x)= a有解,当且仅当a属于函数f (x)的值域,函数与方程的这种相互转化关系十分重要. 4.函数与方程思想解决的相关问题 (1)函数思想在解题中的应用主要表现在两个方面: ①借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题; ②在问题研究中通过建立函数关系式或构造中间函数;把研究的问题化为讨论函数的有关性质,达到化难为易,化繁为简的目的. (2)方程思想在解题中的应用主要表现在四个方面: ①解方程或解不等式; ②带参变数的方程或不等式的讨论,常涉及一元二次方程的判别式、根与系数的关系、区间根、区间上恒成立等知识应用; ③需要转化为方程的讨论,如曲线的位置关系; ④构造方程或不等式求解问题.

方程的根与函数的零点题型及解析

方程的根与函数的零点 题型及解析 标准化管理部编码-[99968T-6889628-J68568-1689N]

方程的根与函数的零点题型及解析1.求下列函数的零点 (1)f(x)=x3+1;(2)f(x)=;(3)y=﹣x2+3x+4;(4)y=x2+4x+4. 分析:根据函数零点的定义解f(x)=0,即可得到结论. 解:(1)由f(x)=x3+1=0得x=﹣1,即函数的零点为﹣1;(2)由f(x)==0 得x2+2x+1=0得(x+1)2=0,得x=﹣1,即函数的零点为﹣1.(3)由y=﹣x2+3x+4=0,可得(x﹣4)(x+1)=0,所以函数的零点为4,﹣1;(4)y=x2+4x+4,可得(x+2)2=0,所以函数的零点为﹣2. 2.①求函数f(x)=2x+x﹣3的零点的个数;②求函数f(x)=log 2 x﹣x+2的零点的个数;③求函数的零点个数是多少? 分析:①由题意可判断f(x)是定义域上的增函数,从而求零点的个数;②由题意可 得,函数y=log 2 x 的图象和直线y=x﹣2的交点个数,数形结合可得结论.③由函数 y=lnx 的图象与函数y=的图 象只有一个交点,可得函数f(x)=lnx-(1/x)的零点个数. 解:①∵函数f(x)=2x+x﹣3单调递增,又∵f(1)=0,故函数f(x)=2x+x﹣3 有且只有一个零点 ②函数f(x)=log 2x﹣x+2的零点的个数,即函数y=log 2 x 的图象和直线y=x﹣2 的交点个数,如图所示:故函数y=log 2 x 的图象(红色部分)和直线y=x﹣2(蓝 色部分)的交点个数为2,即函数f(x)=log 2 x﹣x+2的零点的个数为2;③函数 f(x)=lnx-(1/x)的零点个数就是函数y=lnx的图象与函数y=1/x的图象 的 交点的个数,由函数y=lnx 的图象与函数y=1/x的图象只有一个交点,如图 所示, 可得函数f(x)=lnx-(1/x)的零点个数是1 3.①已知方程x2﹣3x+a=0在区间(2,3)内有一个零点,求实数a的取值范围 ②已知a是实数,函数f(x)=﹣x2+ax﹣3在区间(0,1)与(2,4)上各有一个 零点,求a的取值. ③已知函数f(x)=x2﹣2ax+4在区间(1,2)上有且只有一个零点,求a的取值范围 分析:①由已知,函数f(x)在区间(2,3)内有一个零点,它的对称轴为x=3/2,得出不等式组,解出即可; ②若函数f(x)=﹣x2+ax﹣3在区间(0,1)与(2,4)上各有一个零点,则f(0)<0,f(1)>0,f(2)>0,f(4)<0,解得答案;③若函数f(x)=x2﹣2ax+4只有一个零点,则△=0,经检验不符合条件;则函数f(x)=x2﹣2ax+4有两个零点,进而f (1)f(2)<0,解得答案 解:①若函数f(x)=﹣x2+ax﹣3在区间(0,1)与(2,4)上各有一个零点,则f (0)<0,f(1)>0,f(2)>0,f(4)<0,即-3<0,a-4>0,2a-7>0,4a-19<0,解得:a∈(4,19/4);②∵令f(x)=x2﹣3x+a,它的对称轴为x=3/2,∴函数f (x)在区间(2,3)单调递增,∵方程x2﹣3x+a=0在区间(2,3)内有一个零点,∴函数f(x)在区间(2,3)内与x轴有一个交点,根据零点存在性定理得出:f(2)<0,f(3)>0,即a-2<0,9-9+a>0,解得0<a<2;③解:若函数f(x)=x2﹣2ax+4只有

函数与方程思想总结(很好很全面)

函数与方程思想 函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的。函数与方程的思想是中学数学的基本思想,也是历年高考的重点。 1.函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图像和性质去分析问题、转化问题,从而使问题获得解决。 2.方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决。方程思想是动中求静,研究运动中的等量关系; 3.函数方程思想的几种重要形式 (1)函数和方程是密切相关的,对于函数y=f(x),当y=0时,就转化为方程f(x)=0,也可以把函数式y=f(x)看做二元方程y-f(x)=0。 (2)函数与不等式也可以相互转化,对于函数y=f(x),当y>0时,就转化为不等式f(x)>0,借助于函数图像与性质解决有关问题,而研究函数的性质,也离不开解不等式; (3)数列的通项或前n项和是自变量为正整数的函数,用函数的观点处理数列问题十分重要; (4)函数f(x)=(1+x)^n (n∈N*)与二项式定理是密切相关的,利用这个函数用赋值法和比较系数法可以解决很多二项式定理的问题; (5)解析几何中的许多问题,例如直线和二次曲线的位置关系问题,需要通过解二元方程组才能解决,涉及到二次方程与二次函数的有关理论; (6)立体几何中有关线段、角、面积、体积的计算,经常需要运用布列方程或建立函数表达式的方法加以解决。 【例1】. 关于x的方程(x2-1)2-|x2-1|+k=0,给出下列四个命题: ①存在实数k,使得方程恰有2个不同的实根; ②存在实数k,使得方程恰有4个不同的实根; ③存在实数k,使得方程恰有5个不同的实根; ④存在实数k,使得方程恰有8个不同的实根. 其中真命题是_____________ 解答:根据题意可令|x2-1|=t(t≥0),则方程化为t2-t+k=0,(*) 作出函数t=|x2-1|的图象,结合函数的图象可知①当t=0或t>1时,原方程有两上不

高中数学竞赛专题一 函数与方程思想

高中数学竞赛专题一函数与方程思想 函数是中学数学的一个重要概念,它渗透在数学的各部分内容中,它主要包括函数的概念、图象和性质以及几类典型的函数,函数思想是对函数内容在更高层次上的抽象、概括与提炼,是从函数各部分内容的内在联系和整体角度来考虑问题,研究问题和解决问题。函数思想贯穿于高中代数的全部内容,它是在学习指数函数、对数函数以及三角函数的过程中逐渐形成,并为研究这些函数服务的,如研究方程、不等式、数列、解析几何等其他内容,一直是高考的热点、重点内容。函数的思想,就是用运动变化的观点,分析和研究具体问题中的数量关系,建立函数关系,运用函数的知识,使问题得到解决.这种思想方法在于揭示问题的数量关系的本质特征,重在对问题的变量的动态研究,从变量的运动变化,联系和发展角度拓宽解题思路. 和函数有必然联系的是方程,方程是初中代数的主要内容,初中阶段主要学习了几类方程和方程组的解法,方程的思想就是突出研究已知量与未知量之间的等量关系,通过设未知数、列方程或方程组,解方程或方程组等步骤,达到求值目的的解题思路和策略。 一、考点回顾 函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的。比如,对于满足0≤p≤4的一切实数,不等式x2+px>4x+p-3恒成立,试求x的取值范围一例,我们习惯上把x当作自变量,构造函数y=x2+(p-4)x+3-p,于是问题转化为:当p∈[0,4]时,y>0恒成立,求x的取值范围.解决这个等价的问题需要应用二次函数以及二次方程的区间根原理,可想而知,这是相当复杂的. 如果把p看作自变量,x视为参数,构造函数y=(x-1)p+(x2-4x+3),则y是p的一次函数,就非常简单.即令 f(p)=(x-1)p+(x2-4x+3).函数f(p)的图象是一条线段,要使f(p)>0恒成立,当且仅当f(0)>0,且f(4)>0,解这个不等式组即可求得x的取值范围是(-∞,-1)∪(3,+∞).本题看上去是一个不等式问题,但是经过等价转化,我们把它化归为一个非常简单的一次函数,并借助于函数的图象建立了一个关于x的不等式组来达到求解的目的 在函数的学习和复习中,要做到熟练掌握基础知识,充分理解各知识点间的内在联系,如数列中的an、Sn都可以看作是n的函数而应用函数思想以获得新的解法。要总结、归纳运用

2021新高考数学二轮总复习专题突破练2函数与方程思想数形结合思想含解析

专题突破练2 函数与方程思想、数形结合思想 一、单项选择题 1. (2020河南开封三模,理3)如图,在平行四边形OABC 中,顶点O ,A ,C 在复平面内分别表示复数0,3+2i,-2+4i,则点B 在复平面内对应的复数为( ) A.1+6i B.5-2i C.1+5i D.-5+6i 2.(2020山东聊城二模,2)在复数范围内,实系数一元二次方程一定有根,已知方程x 2+ax+b=0(a ∈R ,b ∈R )的一个根为1+i(i 为虚数单位),则a 1+i =( ) A.1-i B.-1+i C.2i D.2+i 3.(2020河北武邑中学三模,5)已知f (x )是定义在区间[2b ,1-b ]上的偶函数,且在区间[2b ,0]上为增函数,f (x-1)≤f (2x )的解集为( ) A.[-1,2 3] B.[-1,1 3] C.[-1,1] D.[1 3,1] 4.(2020广东江门4月模拟,理6)《周髀算经》中有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气,其日影长依次成等差数列,冬至、立春、春分日影长之和为31.5尺,前九个节气日影长之和为8 5.5尺,则小满日影长为( ) A.1.5尺 B.2.5尺 C.3.5尺 D.4.5尺 5.(2020安徽合肥二模,文5)在平行四边形ABCD 中,若DE ????? =EC ????? ,AE 交BD 于点F ,则AF ????? =( ) A.23AB ????? +13AD ????? B.23 AB ????? ?13AD ????? C.1 3 AB ????? ?2 3 AD ????? D.13 AB ????? +2 3 AD ????? 6.(2020安徽合肥二模,文7)若函数F (x )=f (x )-2x 4 是奇函数,G (x )=f (x )+(12) x 为偶函数,则 f (-1)= ( ) A.-5 2 B.-5 4 C.5 4 D.5 2 7.(2020河北衡水中学月考,文12)已知关于x 的方程[f (x )]2-kf (x )+1=0恰有四个不同的实数根,则当函数f (x )=x 2e x 时,实数k 的取值范围是( ) A.(-∞,-2)∪(2,+∞) B.(4 e 2+ e 24 ,+∞) C.(8 e 2,2) D.(2,4 e 2+e 2 4)

高中数学必修一 函数与方程的思想方法

函数与方程的思想方法 函数与方程的思想是中学数学的基本思想,也是历年高考的重点。 函数的思想,是用运动和变化的观点、集合与对应的思想,去分析和研究数学问题中的数量关系,建立函数关系或构造函数,再利用函数的图像和性质去分析问题、转化问题,从而使问题获得解决。函数思想的精髓就是构造函数。 方程的思想,是分析数学问题中变量间的等量关系,从而建立方程或方程组,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决。 方程的思想与函数的思想密切相关,函数与方程的思想方法,几乎渗透到中学数学的各个 领域,在解题中有着广泛的运用。对于函数 ) (x f y=,当0 = y时,就转化为方程0 ) (= x f, 也可以把函数式 ) (x f y=看做二元方程0 ) (= -x f y,函数与方程这种相互转化的关系十 分重要。 函数与表达式也可以相互转化,对于函数 ) (x f y=,当0 > y时,就转化为不等式 ) (> x f,借助与函数的图像与性质可以解决不等式的有关问题,而研究函数的性质,也离不开解不等式。 数列的通项或前n项和时自变量为自然数的函数,用函数观点去处理数列问题也是十分重要。 函数 ) ( ) ( ) (* N n bx a x f n∈ + =与二项式定理密切相关,利用这个函数,用赋值法和比 较系数法可以解决很多有关二项式定理的问题。 解析几何中的许多问题,例如直线与二次曲线的位置关系问题,需要通过解二元方程组才能解决,这都涉及二次方程与二次函数的有关理论。 立体几何中有关线段、角、面积、体积的计算,经常需要运用列方程或建立函数表达式的方法加以解决。建立空间向量后,立体几何与函数的关系就更加密切。 函数思想在解题中的应用主要表现在两个方面:一是借助初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关问题,达到化难为易、化繁为简的目的。 高考中的方程和不等式问题包括方程、不等式的求解及方程、不等式观点的应用,可以分成逐渐提高的四个层次。 第一层次:解方程或不等式,主要是指解代数(一次、二次等)方程或不等式,指数、对数方程或不等式,三角方程或不等式,复数方程等; 第二层次:对带参数的方程或不等式的讨论,常涉及二次方程的判别式、韦达定理、区间根、区间上恒成立的不等式等问题; 第三层次:转化为方程的讨论,如曲线的位置关系(包括点与曲线及直线与曲线的位置关系)、函数的性质、集合的关系等; 第四层次:构造方程或不等式求解问题。 其中第三、四层次(特别是第四层次)已经进入到方程、不等式观点应用的境界,即把方程、不等式作为基本数学工具去解决各个学科中的问题。 纵观中学数学,可谓是以函数为中心,以函数为纲,“纲举目张”,抓住了函数这个“纲”

方程的根与函数的零点》说课稿

《方程的根与函数的零点》说课稿 1教材分析 1.1地位与作用 本节内容为人教版《普通高中课程标准实验教科书》A版必修1第三章《函数的应用》第一节《函数与方程》的第一课时,主要内容是函数零点概念、函数零点与相应方程根的关系、函数零点存在性定理,是一节概念课. 新课标教材新增了二分法,也因而设置了本节课.所以本节课首先是为“用二分法求方程的近似解”打基础,零点概念与零点存在性定理的是二分法的必备知识. 之前的教材虽然没有设置本节内容,但方程的根与函数的关系从来是重要且无法回避的,所以将本节课直接编入教材很有必要.本节课也就不仅为二分法的学习做准备,而且为方程与函数提供了零点这个连接点,从而揭示了两者之间的本质联系,这种联系正是“函数与方程思想”的理论基础.用函数的观点研究方程,本质上就是将局部的问题放在整体中研究,将静态的结果放在动态的过程中研究,这为今后进一步学习函数与不等式等其它知识的联系奠定了坚实的基础. 从研究方法而言,零点概念的形成和零点存在性定理的发现,符合

从特殊到一般的认识规律,有利于培养学生的概括归纳能力,也为数形结合思想提供了广阔的平台. 1.2教学重点 基于上述分析,确定本节的教学重点是:了解函数零点概念,掌握函数零点存在性定理. 2学情分析 2.1学生具备必要的知识与心理基础. 通过前面的学习,学生己经了解一些基本初等函数的模型,具备一定的看图识图能力,这为本节课利用函数图象,判断方程根的存在性提供了一定的知识基础. 方程是初中数学的重要内容,用所学的函数知识解决方程问题,扩充方程的种类,这是学生乐于接受的,故而学生具备心理与情感基础. 2.2学生缺乏函数与方程联系的观点. 高一学生在函数的学习中,常表现出不适,主要是数形结合与抽象思维尚不能胜任.具体表现为将函数孤立起来,认识不到函数在高中数学中的核心地位. 例如一元二次方程根的分布问题,学生自然会想到韦达定理,而不是看二次函数的图象.函数与方程相联系的观点的建立,函数应用的意识的初步树立,就成

函数方程思想

难点36 函数方程思想 函数与方程思想是最重要的一种数学思想,数学中所占比重较大,综合知识多、题型多、应用技巧多.函数思想简单,即将所研究的问题借助建立函数关系式亦或构造中间函数,结合初等函数的图象与性质,加以分析、转化、解决有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;方程思想即将问题中的数量关系运用数学语言转化为方程模型加以解决. ●难点磁场 1.(★★★★★)关于x 的不等式2·32x –3x +a 2–a –3>0,当0≤x ≤1时恒成立,则实数a 的取值范围为 . 2.(★★★★★)对于函数f (x ),若存在x 0∈R ,使f (x 0)=x 0成立,则称x 0为f (x )的不动点.已知函数f (x )=ax 2+(b +1)x +(b –1)(a ≠0) (1)若a =1,b =–2时,求f (x )的不动点; (2)若对任意实数b ,函数f (x )恒有两个相异的不动点,求a 的取值范围; (3)在(2)的条件下,若y =f (x )图象上A 、B 两点的横坐标是函数f (x )的不动点,且A 、B 关于直线y =kx + 1 212 +a 对称,求b 的最小值. ●案例探究 [例1]已知函数f (x )=log m 3 3 +-x x (1)若f (x )的定义域为[α,β],(β>α>0),判断f (x )在定义域上的增减性,并加以说明; (2)当0<m <1时,使f (x )的值域为[log m [m (β–1)],log m [m (α–1)]]的定义域区间为[α,β](β>α>0)是否存在?请说明理由. 命题意图:本题重在考查函数的性质,方程思想的应用.属★★★★级题目. 知识依托:函数单调性的定义判断法;单调性的应用;方程根的分布;解不等式组. 错解分析:第(1)问中考生易忽视“α>3”这一关键隐性条件;第(2)问中转化出的方程,不能认清其根的实质特点,为两大于3的根. 技巧与方法:本题巧就巧在采用了等价转化的方法,借助函数方程思想,巧妙解题. 解:(1) ?>+-03 3 x x x <–3或x >3. ∵f (x )定义域为[α,β],∴α>3 设β≥x 1>x 2≥α,有 0) 3)(3() (6333321212211>++-=+--+-x x x x x x x x 当0<m <1时,f (x )为减函数,当m >1时,f (x )为增函数. (2)若f (x )在[α,β]上的值域为[log m m (β–1),log m m (α–1)] ∵0<m <1, f (x )为减函数. ∴??? ???? -=+-=-=+-=) 1(log 33log )()1(log 33log )(ααααββββm f m f m m m m

中考专题方程思想

A .1 B . C . D .2 A .如图,已知等腰△8 A BC 中,顶角∠A=36°,BD 为∠ABC 的平分线,则 的值为( ) . A . B . C .1 D . 中考数学专题复习—方程思想 方程思想是指对所求问题通过列方程(组)求解的一种思想方法。方程思想在初中数学的多个知 识点中均有体现,并且应用其解题可以使问题由复杂变得简单,易懂,易于求解。方程思想也是解几 何计算题的重要策略。 应用方程思想解题时应注意:①要具备用方程思想解题的意识;②要具有正确列出方程的能力; ③要掌握运用方程思想解决问题的要点 一.方程思想在代数问题中的应用 (1)整式与方程思想 1.已知 A = 5 x 2 - mx + n , B = -3 y 2 + 2 x - 1 ,若 A + B 中不含有一次项和常数项, 则 m 2 - 2mn + n 2 的值为 2.单项式 3x m +2n y 3m +4n 与 -2 y 4 x 2 是同类项,则 n m 的值为 (2)函数与方程思想 3.若函数 y = mx m 2-m -1 + 5 是一次函数,且 y 随 x 的增大而减小,则 m = 4.已知反比例函数 y = k 与一次函数 y = 2 x + k 的图像的一个交点的纵坐标是 -4 ,则 k 的值为 x 5.已知点 P(1,m ) 在正比例函数 y = 2 x 的图像上,那么点 P 的坐标为 二.方程思想在几何问题中的应用 在解答几何问题中经常会①运用勾股定理建立方程; ②运用相似三角形对应边成比例建立方程;③运用锐角三角函数的意义建立方程 (1)三角形和四边形与方程思想 通常解决等腰三角形相关问题时要列出方程 6.如图,矩形纸片 ABCD 中,AB=4,AD=3,折叠纸片使 AD 边与对角线 BD 重合,折痕为 DG , 则 AG 的长为( ) 4 3 3 2 7.如图,如图,矩形 A BCD 中,AB =2,BC =3,对角线 AC 的垂直平分线分别交 AD ,BC 于点 E 、 F ,连接 CE ,则 CE 的长________. D C E D A ′ O A G 6 题 B B F C 第 7 题 第 8 题 AD AC 1 5 - 1 5 + 1 2 2 2 △9.如图,在 ABC 中,∠C=45°,BC=10,高 AD=8,矩形 EFPQ 的一边

函数与方程(零点问题)

§2.8 函数与方程 函数零点问题 学习目标;(1)理解函数零点定义,会应用函数零点存在性定理 (2)体会函数与方程的转化思想 一 知识导练 1. (必修1 P43练习3改编) 函数32()2f x x x x =-+的零点是____________. 解析:解方程x3-2x2+x =0得x =0或x =1,所以函数的零点是0或1. 导航:函数零点的求解 2.(必修1 P111复习13改编)已知函数()23x f x x =-,则函数f(x)的零点个数是____. 解析:解法1:令f(x)=0,则2x =3x ,在同一坐标系中分别作出y =2x 和y =3x 的图象,由图知函数y =2x 和y =3x 的图象有2个交点,所以函数f(x)的零点个数为2. 解法2:由f(0)>0,f(1)<0,f(3)<0,f(4)>0,…,所以有2个零点,分别在区间(0,1)和(3,4)内. 导航:函数零点个数的判定 3.给出以下三个结论:(1)0一定是奇函数的一个零点; (2)单调函数有且仅有一个零点; (3)周期函数一定有无穷多个零点. 其中正确的结论共有_____个。 4.(必修1 P97习题8)若关于x 的方程27(13)20x m x m -+--=的一个根在区间(0,1)上,另一个在区间(1,2)上,则实数m 的取值范围为_____________. 解析:设f(x)=7x2-(m +13)x -m -2,则???? ?f (0)>0,f (1)<0,f (2)>0,解得-41. 要点回顾:

相关文档
最新文档