平面直角坐标系常见题型

合集下载

初中数学函数之平面直角坐标系经典测试题附答案

初中数学函数之平面直角坐标系经典测试题附答案

初中数学函数之平面直角坐标系经典测试题附答案一、选择题1.如果点P (m +3,m +1)在x 轴上,则点P 的坐标为( )A .(0,2)B .(2,0)C .(4,0)D .(0,﹣4)【答案】B【解析】【分析】根据点P 在x 轴上,即y =0,可得出m 的值,从而得出点P 的坐标.【详解】根据点P 在x 轴上,即y =0,可得出m 的值,从而得出点P 的坐标.解:∵点P (m +3,m +1)在x 轴上,∴y =0,∴m +1=0,解得:m =﹣1,∴m +3=﹣1+3=2,∴点P 的坐标为(2,0).故选:B .【点睛】本题考查了点的坐标,注意平面直角坐标系中,点在x 轴上时纵坐标为0,得出m 的值是解题关键.2.在平面直角坐标系中,长方形ABCD 的三个顶点()(32),(12),1,1,A B C ---,,则第四个顶点D 的坐标是( ).A .()2,1-B .(3,1)-C .()2,3-D .(3,1)-【答案】B【解析】【分析】根据矩形的性质(对边相等且每个角都是直角),由矩形ABCD 点的顺序得到CD ⊥AD ,可以把D 点坐标求解出来.【详解】解:根据矩形ABCD 点的顺序可得到CD ⊥AD , 又∵()(32),(12),1,1,A B C ---,, ∴A 、B 纵坐标相等,B 、C 横坐标相等,∴A 、D 横坐标相等,即3;D 、C 纵坐标相等,即-1,因此(31)D -,【点睛】本题主要考查了矩形的性质和直角坐标系的基本概念,利用矩形四个角都是直角、对边相等是解题的关键.3.若点A (a+1,b ﹣2)在第二象限,则点B (﹣a ,1﹣b )在( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】D【解析】分析:直接利用第二象限横纵坐标的关系得出a ,b 的符号,进而得出答案.详解:∵点A (a+1,b-2)在第二象限,∴a+1<0,b-2>0,解得:a <-1,b >2,则-a >1,1-b <-1,故点B (-a ,1-b )在第四象限.故选D .点睛:此题主要考查了点的坐标,正确记忆各象限内点的坐标符号是解题关键.4.如果点P (),3m 在第二象限,那么点Q ()3,m -在( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【解析】【分析】根据第二象限的横坐标小于零可得m 的取值范围,进而判定Q 点象限.【详解】解:由点P (),3m 在第二象限可得m <0,再由-3<0和m <0可知Q 点在第三象限, 故选择C.【点睛】本题考查了各象限内坐标的符号特征.5.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y轴于点N ,再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧在第二象限交于点P .若点P 的坐标为(2a ,b+1),则a 与b 的数量关系为( )A .a=bB .2a+b=﹣1C .2a ﹣b=1D .2a+b=1【答案】B【解析】试题分析:根据作图方法可得点P 在第二象限角平分线上,则P 点横纵坐标的和为0,即2a+b+1=0,∴2a+b=﹣1.故选B .6.如图,动点P 从()0,3出发,沿箭头所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角.当点P 第2018次碰到矩形的边时,点P 的坐标为( )A .()1,4B .()5,0C .()7,4D .()8,3【答案】C【解析】【分析】 理解题意,由反射角与入射角的定义作出图形,观察出反弹6次为一个循环的规律,解答即可.【详解】如图,经过6次反弹后动点回到出发点(0,3),∵2018÷6=336…2,∴当点P 第2018次碰到矩形的边时为第336个循环组的第2次反弹,点P 的坐标为(7,4).故选C .【点睛】本题考查了平面直角坐标系中点的坐标规律,首先作图,然后观察出每6次反弹为一个循环,据此解答即可.7.在平面直角坐标系中,点P(x ﹣3,x+3)是x 轴上一点,则点P 的坐标是( )A.(0,6) B.(0,﹣6) C.(﹣6,0) D.(6,0)【答案】C【解析】【分析】根据x轴上的点的纵坐标为0列式计算即可得解.【详解】∵点P(x﹣3,x+3)是x轴上一点,∴x+3=0,∴x=﹣3,∴点P的坐标是(﹣6,0),故选:C.【点睛】本题考查了点的坐标,是基础题,熟记x轴上的点的纵坐标为0是解题的关键.8.平面直角坐标系中,P(-2a-6,a-5)在第三象限,则a的取值范围是()A.a>5 B.a<-3 C.-3≤a≤5D.-3<a<5【答案】D【解析】【分析】根据第三象限的点的坐标特点:x<0,y<0,列不等式组,求出a的取值范围即可.【详解】∵点P在第三象限,∴26050aa--<⎧⎨-<⎩,解得:-3<a<5,故选D.【点睛】本题考查了象限点的坐标的符号特征以及解不等式,该知识点是中考的常考点,常与不等式、方程结合起来求一些字母的取值范围,比如本题中求a的取值范围.9.如图,正方形ABCD的顶点A(1,1),B(3,1),规定把正方形ABCD“先沿x轴翻折,再向左平移1个单位”为一次变换,这样连续经过2019次变换后,正方形ABCD的顶点C的坐标为()A.(﹣2018,3)B.(﹣2018,﹣3)C .(﹣2016,3)D .(﹣2016,﹣3)【答案】D【解析】【分析】 首先由正方形ABCD ,顶点A (1,1)、B (3,1)、C (3,3),然后根据题意求得第1次、2次、3次变换后的点C 的对应点的坐标,即可得规律:第n 次变换后的点C 的对应点的为:当n 为奇数时为(3-n ,-3),当n 为偶数时为(3-n ,3),继而求得把正方形ABCD 连续经过2019次这样的变换得到正方形ABCD 的点C 的坐标.【详解】∵正方形ABCD ,顶点A (1,1)、B (3,1),∴C (3,3).根据题意得:第1次变换后的点C 的对应点的坐标为(3﹣1,﹣3),即(2,﹣3), 第2次变换后的点C 的对应点的坐标为:(3﹣2,3),即(1,3),第3次变换后的点C 的对应点的坐标为(3﹣3,﹣3),即(0,﹣3),第n 次变换后的点C 的对应点的为:当n 为奇数时为(3﹣n ,﹣3),当n 为偶数时为(3﹣n ,3),∴连续经过2019次变换后,正方形ABCD 的点C 的坐标变为(﹣2016,﹣3). 故选D .【点睛】此题考查了对称与平移的性质.此题难度较大,属于规律性题目,注意得到规律:第n 次变换后的点C 的对应点的坐标为:当n 为奇数时为(3-n ,-3),当n 为偶数时为(3-n ,3)是解此题的关键.10.在平面直角坐标系中,以原点为中心,把点()2,3A 逆时针旋转180︒,得到点B ,则点B 的坐标为( )A .()2,3-B .()2,3--C .(2,3)-D .(3,2)--【答案】B【解析】【分析】根据中心对称的性质解决问题即可.【详解】由题意A ,B 关于O 中心对称,∵A (2,3),∴B (-2,-3),故选:B .【点睛】此题考查中心对称,坐标与图形的变化,解题的关键是熟练掌握基本知识,属于中考常考题型.11.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“炮”和“車”的点的坐标分别为(1,2),(2,0)-,则表示棋子“馬”的点的坐标为( )A .(4,2)B .(2,4)C .(3,2)D .(2, 1)【答案】A【解析】【分析】 根据棋子“炮”和“車”的点坐标,推断出原点位置,进而可得出“馬”的点的坐标.【详解】如图所示,根据“車”的点坐标为()2,0-,可知x 轴在“車”所在的横线上,又根据“炮”的点坐标()1,2,可推出原点坐标如图所示,进而可知“馬”的点的坐标为()4,2,故选:A .【点睛】本题综合考查点的坐标位置的确定.解答本题的关键是由“炮”和“車”的点坐标确定出原点的坐标.12.如果点P 在第三象限内,点P 到x 轴的距离是4,到y 轴的距离是5,那么点P 的坐标是( )A .(﹣4,﹣5)B .(﹣4,5)C .(﹣5,4)D .(﹣5,﹣4)【答案】D【解析】【分析】根据第三象限内点的横坐标是负数,纵坐标是负数以及点到x 轴的距离等于纵坐标的绝对值,到y 轴的距离等于横坐标的绝对值解答.解:∵第三象限的点P 到x 轴的距离是4,到y 轴的距离是5,∴点P 的横坐标是﹣5,纵坐标是﹣4,∴点P 的坐标为(﹣5,﹣4).故选:D.【点睛】本题考查了点的坐标,熟记点到x 轴的距离等于纵坐标的绝对值,到y 轴的距离等于横坐标的绝对值是解题的关键.13.若点(24,24)P m m -+在y 轴上,那么m 的值为( )A .2B .2-C .2±D .0【答案】A【解析】【分析】依据点P (2m-4,2m+4)在y 轴上,其横坐标为0,列式可得m 的值.【详解】∵P (2m-4,2m+4)在y 轴上,∴2m-4=0,解得m=2,故选:A .【点睛】此题考查点的坐标,解题关键在于掌握y 轴上点的横坐标为0.14.如图,在平面直角坐标系中.四边形OABC 是平行四边形,其中()()2,03,1,A B 、将ABCD Y 在x 轴上顺时针翻滚.如:第一次翻滚得到111,AB C O Y 第二次翻滚得到1122B AO C Y ,···则第五次翻滚后,C 点的对应点坐标为( )A .(622,2+B .2,622+ C .2,622- D .(622,2- 【答案】A【解析】ABCD Y 在x 轴上顺时针翻滚,四次一个循环,推出第五次翻滚后,点A 的坐标,再利用平移的性质求出C 的对应点坐标即可.【详解】连接AC ,过点C 作CH ⊥OA 于点H ,∵四边形OABC 是平行四边形,A(2,0)、B(3,1),∴C(1,1),∴∠COA=45°,OC=AB=2, ∴OH= OC÷2=1,∴AH=2-1=1,∴OA=AH ,∴OC=AC ,∴∆OAC 是等腰直角三角形,∴AC ⊥OC ,∵ABCD Y 在x 轴上顺时针翻滚,四次一个循环,∴第五次翻滚后点,A 的坐标为(6+22,0),把点A 向上平移2个单位得到点C , ∴第五次翻滚后,C 点的对应点坐标为()622,2+.故选:A .【点睛】本题主要考查图形与坐标,涉及平行四边形的性质,等腰直角三角形的性质以及平移的性质,找到点的坐标的变化规律,是解的关键.15.如图所示,长方形BCDE 的各边分别平行于x 轴或y 轴,物体甲和物体乙分别由点A(2, 0)同时出发,沿长方形BCDE 的边作环绕运动,物体甲按逆时针方向以1个单位长度秒匀速运动,物体乙按顺时针方向以2个单位长度秒匀速运动,则两个物体运动后的第2020次相遇点的坐标是( )A .(2,0)B .(-1,-1)C .( -2,1)D .(-1, 1)【答案】D【解析】【分析】 利用行程问题中的相遇问题,由于长方形的边长为4和2,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答;【详解】∵A (2,0),四边形BCDE 是长方形,∴B (2,1),C (-2,1),D (-2,-1),E (2,-1),∴BC=4,CD=2,∴长方形BCDE 的周长为()2422612⨯+=⨯=,∵甲的速度为1,乙的速度为2,∴第一次相遇需要的时间为12÷(1+2)=4(秒),此时甲的路程为1×4=4,甲乙在(-1,1)相遇,以此类推,第二次甲乙相遇时的地点为(-1,-1),第三次为(2,0),第四次为(-1,1),第五次为(-1,-1),第六次为(2,0),L L ,∴甲乙相遇时的地点是每三个点为一个循环,∵202036733÷=L ,∴第2020次相遇地点的坐标为(-1,1);故选D.【点睛】本题主要考查了规律型:点的坐标,掌握甲乙运动相遇时点坐标的规律是解题的关键.16.如图,在平面直角坐标系中,四边形OABC 是菱形,点C 的坐标为()2,3,则菱形OABC 的面积是( )A .6B .13C .3132D .313【答案】D【解析】【分析】 作CH ⊥x 轴于点H ,利用勾股定理求出OC 的长,根据菱形的性质可得OA =OC ,即可求解.【详解】如图所示,作CH ⊥x 轴于点H ,∵四边形OABC 是菱形,∴OA =OC ,∵点C 的坐标为()2,3,∴OH =2,CH =3,∴OC =22OH CH +=2223+=13∴菱形OABC 的面积=OA·CH =313 故选:D【点睛】本题考查菱形的性质、勾股定理、坐标与图形的性质、菱形的面积公式,解题的关键是学会添加辅助线,构造直角三角形.17.在平面直角坐标系中,对于平面内任一点(a ,b ),若规定以下三种变换:①f (a ,b )=(-a ,b ),如f (1,2)=(-1,2);②g (a ,b )=(b ,a ),如g (1,2)=(2,1);③h (a ,b )=(-a ,-b ),如h (1,2)=(-1,-2);按照以上变换有:g (h (f (1,2)))=g (h (-1,2))=g (1,-2)=(-2,1),那么h (f (g (3,-4)))等于A .(4,-3)B .(-4,3)C .(-4,-3)D .(4,3)【答案】C【解析】【分析】根据f (a ,b )=(-a ,b ).g (a ,b )=(b ,a ).h (a ,b )=(-a ,-b ),可得答案.【详解】由已知条件可得h (f (g (3,-4)))= h (f (-4,3))= h (4,3)=(-4,-3) 故选:C【点睛】本题考查了点的坐标,利用f (a ,b )=(-a ,b ).g (a ,b )=(b ,a ).h (a ,b )=(-a ,-b )是解题关键.18.预备知识:线段中点坐标公式:在平面直角坐标系中,已知A (x 1,y 1),B (x 2,y 2),设点M 为线段AB 的中点,则点M 的坐标为(122x x +,122y y +)应用:设线段CD 的中点为点N ,其坐标为(3,2),若端点C 的坐标为(7,3),则端点D 的坐标为( )A .(﹣1,1)B .(﹣2,4)C .(﹣2,1)D .(﹣1,4) 【答案】A【解析】【分析】根据线段的中点坐标公式即可得到结论.【详解】设D (x ,y ), 由中点坐标公式得:7+x 2=3,3+y 2=2, ∴x =﹣1,y =1,∴D (﹣1,1),故选A .【点睛】此题考查坐标与图形性质,关键是根据线段的中点坐标公式解答.19.在直角坐标系中,若点P(2x -6,x -5)在第四象限,则x 的取值范围是( )A .3<x <5B .-5<x <3C .-3<x <5D .-5<x <-3【答案】A【解析】【分析】点在第四象限的条件是:横坐标是正数,纵坐标是负数.解:∵点P(2x-6,x-5)在第四象限,∴260 {50xx->-<,解得:3<x<5.故选:A.【点睛】主要考查了平面直角坐标系中第四象限的点的坐标的符号特点.20.已知平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为( )A.﹣3 B.﹣5 C.1或﹣3 D.1或﹣5【答案】A【解析】分析:根据点A(a+2,4)和B(3,2a+2)到x轴的距离相等,得到4=|2a+2|,即可解答.详解:∵点A(a+2,4)和B(3,2a+2)到x轴的距离相等,∴4=|2a+2|,a+2≠3,解得:a=−3,故选A.点睛:考查点的坐标的相关知识;用到的知识点为:到x轴和y轴的距离相等的点的横纵坐标相等或互为相反数.。

初一数学《平面直角坐标系》选择题题型大全100题

初一数学《平面直角坐标系》选择题题型大全100题
A.(-5,4)
B.(4,3)
A.1010B. C.1008D.
23.点P(x,y),且xy<0,则点P在()
A.第一象限或第二象限B.第一象限或第三象限
C.第一象限或第四象限D.第二象限或第四象限
24.平面坐标系中,点A(n,1-n)不可能是()
A.第一象限B.第二象限C.第三象限D.第四象限
25.如图是某市地图简图的一部分,图中“故宫”、“鼓楼”所在的区域分别是()
A.(7,1)B.B(1,7)C.(1,1)D.(2,1)
21.在平面直角坐标系xOy中,点P在第四象限,且点P到x轴的距离为1,到y轴的距离为3,则点P的坐标为()
A.(3, 1)B.( 3,1)C.(1, 3)D.( 1,3)
22.如图,在一个单位面积为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,……是斜边在x轴上,且斜边长分别为2,4,6,……的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,-1),A3(0,0),则依图中所示规律,点A2019的横坐标为( )
12.如图,在直角坐标系中, , ,第一次将 变换成 , , ;第二次将 变换成 , , ,第三次将 变换成 , ,则 的横坐标为
A. B. C. D.
13.已知点A(a,﹣b)在第二象限,则点B(a﹣3,b﹣2)在( )
A.第一象限B.第二象限C.第三象限D.第四象限
14.如果P(a+b,ab)在第二象限,那么点Q (a,-b)在( ).
A.一B.二C.三D.四
33.如图是利用平面直角坐标系画出的故宫博物院的主要建筑分布图,若这个坐标系分别以正东、正北方向为x轴、y轴的正方向,表示太和门的点的坐标为(0,-1),表示九龙壁的点的坐标为(4,1),则表示下列宫殿的点的坐标正确的是( )

平面直角坐标系重难点题型(四大题型)(原卷版)

平面直角坐标系重难点题型(四大题型)(原卷版)

专题05 平面直角坐标系重难点题型(四大题型)【题型1 两点间距离】【题型2 求平面直角坐标系中动点问题的面积】【题型3 平面直角坐标系中规律题探究】【题型4 等腰三角形个数讨论问题】【题型1 两点间距离】1.在平面直角坐标系中,有A(﹣2,a+1),B(a﹣1,4),C(b﹣2,b)三点.(1)当AB∥x轴时,求A、B两点间的距离;(2)当CD⊥x轴于点D,且CD=1时,求点C的坐标.2.已知平面直角坐标系内的三点:A(a﹣1,﹣2),B(﹣3,a+2),C(b﹣6,2b).(1)当直线AB∥x轴时,求A,B两点间的距离;(2)当直线AC⊥x轴,点C在第二、四象限的角平分线上时,求点A和点C 的坐标.3.先阅读一段文字,再回答下列问题:已知在平面内两点坐标P1(x1,y1),P2(x2,y2),其两点间距离公式为P1P2=,同时,当两点所在的直线在坐标轴上或平行于x轴或垂直于x轴时,两点距离公式可简化成|x1﹣x2|或|y2﹣y1|.(1)已知A(3,5),B(﹣2,﹣1),试求A,B两点的距离;(2)已知A,B在平行于y轴的直线上,点A的纵坐标为6,点B的纵坐标为﹣4,试求A,B两点的距离;(3)已知一个三角形各顶点坐标为A(0,6),B(﹣3,2),C(3,2),找出三角形中相等的边?说明理由.4.先阅读一段文字,再回答下列问题:已知在平面内两点坐标P1(x1,y1),P2(x2,y2),其两点间距离公式为:p1p2=,例如:点(3,2)和(4,0)的距离为.同时,当两点所在的直线在坐标轴上或平行于x轴或平行于y轴距离公式可简化成:p1p2=|x1﹣x2|或p1p2=|y1﹣y2|.(1)已知A、B在平行于y轴的直线上,点A的纵坐标为5,点B的纵坐标为2,则A,B两点的距离为;(2)线段AB平行于x轴,且AB=3,若点B的坐标为(2,4),则点A的坐标是;(3)已知A(3,5),B(﹣4,4),A,B两点的距离为;(4)已知△ABC三个顶点坐标为A(3,4),B(0,5),C(﹣1,2),请判断此三角形的形状,并说明理由.5.先阅读下列一段文字,再解答问题:已知在平面内有两点P1(x1,y1),P2(x2,y2),其两点间的距离公式为;同时,当两点所在的直线在坐标轴上或平行于坐标轴或垂直于坐标轴时,两点距离公式可简化为|x2﹣x1|或|y2﹣y1|.(1)已知点A(2,4),B(﹣2,1),则AB=;(2)已知点C,D在平行于y的直线上,点C的纵坐标为3,点D的纵坐标为﹣2,则CD=;(3)已知点M和(1)中的点A有MA∥x轴,且MA=3,则点M的坐标为;(4)已知点P(3,1)和(1)中的点A,B,则线段P A,PB,AB中相等的两条线段是.6.先阅读下列一段文字,再回答后面的问题:已知在平面直角坐标系内两点P1(x1,y1),P2(x2,y2),其两点间的距离P1P2=,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x2﹣x1|或|y2﹣y1|.(1)已知A(1,3),B(﹣3,﹣5),试求A,B两点间的距离;(2)已知线段MN∥y轴,MN=4,若点M的坐标为(2,﹣1),试求点N 的坐标.7.先阅读下列一段文字,再回答后面的问题.已知在平面内两点P1(x1,y1),P2(x2,y2),这两点间的距离P1P2=,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x2﹣x1|或|y2﹣y1|.(1)已知A(2,4),B(﹣3,﹣8),试求A,B两点间的距离;(2)已知A,B在平行于y轴的直线上,点A的纵坐标为5,点B的纵坐标为﹣1,试求A,B两点间的距离.8.阅读材料:两点间的距离公式:如果平面直角坐标系内有两点A(x1,y1)、B(x2,y2),那么A、B两点的距离AB=,则AB2=(x1﹣x2)2+(y1﹣y2)2.例如:若点A(4,1),B(3,2),则AB=,若点A(a,1),B(3,2),且AB=,则.根据实数章节所学的开方运算即可求出满足条件的a的值.根据上面材料完成下列各题:(1)若点A(﹣2,3),B(1,2),则A、B两点间的距离是.(2)若点A(﹣2,3),点B在x轴上,且A、B两点间的距离是5,求B 点坐标.9.在平面直角坐标系中,有A(﹣2,a+1),B(a﹣1,4),C(b﹣2,b)三点.(1)当点C在y轴上时,求点C的坐标;(2)当AB∥x轴时,求A,B两点间的距离;(3)当CD⊥x轴于点D,且CD=1时,求点C的坐标.10.先阅读下列一段文字,在回答后面的问题.已知在平面内两点P1(x1,y1)、P2(x2,y2),其两点间的距离公式,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x2﹣x1|或|y2﹣y1|.(1)已知A(2,4)、B(﹣3,﹣8),试求A、B两点间的距离;(2)已知A、B在平行于y轴的直线上,点A的纵坐标为5,点B的纵坐标为﹣1,试求A、B两点间的距离.(3)已知一个三角形各顶点坐标为A(0,6)、B(﹣3,2)、C(3,2),你能判定此三角形的形状吗?说明理由.【题型2 求平面直角坐标系中动点问题的面积】11.如图所示,在平面直角坐标系中,已知A(0,1),B(2,0),C(4,3).(1)在平面直角坐标系中画出△ABC,则△ABC的面积是;(2)若点D与点C关于原点对称,则点D的坐标为;(3)已知P为x轴上一点,若△ABP的面积为4,求点P的坐标.12.如图,在平面直角坐标系中,已知A(a,0),B(b,0),其中a,b满足.(1)填空:a=,b=;(2)若在第三象限内有一点M(﹣2,m),用含m的式子表示△ABM的面积;(3)在(2)条件下,线段BM与y轴相交于C(0,﹣),当时,点P是y轴上的动点,当满足△PBM的面积是△ABM的面积的2倍时,求点P的坐标.13.如图,在平面直角坐标系内,已知点A的坐标为(3,2),点B的坐标为(3,﹣4),点P为直线AB上任意一点(不与A、B重合),点Q是点P 关于x轴的对称点.(1)在方格纸中标出A、B,并求出△ABO的面积;(2)设点P的纵坐标为a,求点Q的坐标;(3)设△OP A和△OPQ的面积相等,且点P在点Q的上方,求出此时P点坐标.14.如图,在平面直角坐标系中,已知A(a,0),B(b,0),其中a,b满足a2+2a+1+|3a+b|=0.(1)填空:a=,b=;(2)若存在一点M(﹣2,m)(m<0),点M到x轴距离,到y轴距离,求△ABM的面积(用含m的式子表示);(3)在(2)条件下,当m=﹣1.5时,在y轴上有一点P,使得△MOP的面积与△ABM的面积相等,请求出点P的坐标.15.如图,在平面直角坐标系中,已知A(0,a),B(b,0),C(3,c)三点,其中a、b、c满足关系式:|a﹣2|+(b﹣3)2+=0.(1)求a、b、c的值;(2)如果在第二象限内有一点P(m,),请用含m的式子表示四边形ABOP 的面积;(3)在(2)的条件下,是否存在负整数m,使四边形ABOP的面积不小于△AOP面积的两倍?若存在,求出所有满足条件的点P的坐标,若不存在,请说明理由.16.如图,已知在平面直角坐标系中,点A在y轴上,点B、C在x轴上,S△ABO =8,OA=OB,BC=10,点P的坐标是(﹣6,a),(1)求△ABC三个顶点A、B、C的坐标;(2)连接P A、PB,并用含字母a的式子表示△P AB的面积(a≠2);(3)在(2)问的条件下,是否存在点P,使△P AB的面积等于△ABC的面积?如果存在,请求出点P的坐标;若不存在,请说明理由.17.如图,在平面直角坐标系中,A(a,0),B(b,0),C(﹣1,2),且|a+2|+=0.(1)求a,b的值;(2)①在x轴的正半轴上存在一点M,使△COM的面积=△ABC的面积,求出点M的坐标;②在坐标轴的其它位置是否存在点M,使△COM的面积=△ABC的面积恒成立?若存在,请直接写出符合条件的点M的坐标.18.如图,直线AB与x轴,y轴分别相交于点A(6,0),B(0,8),M是OB上一点,若将△ABM沿AM折叠,则点B恰好落在x轴上的点B'处.求:(1)点B'的坐标;(2)△ABM的面积.19.如图在直角坐标系中,已知A(0,a),B(b,0)C(3,c)三点,若a,b,c满足关系式:|a﹣2|+(b﹣3)2+=0.(1)求a,b,c的值.(2)求四边形AOBC的面积.(3)是否存在点P(x,﹣x),使△AOP的面积为四边形AOBC的面积的两倍?若存在,求出点P的坐标,若不存在,请说明理由.20.已知:在平面直角坐标系中,A(0,1),B(2,0),C(4,3)(1)求△ABC的面积;(2)设点P在x轴上,且△ABP与△ABC的面积相等,求点P的坐标.21.如图,在平面直角坐标系中,A(2,2),B(﹣1,0),C(3,0)(1)求△ABC面积;(2)在y轴上存在一点D,使得△AOD的面积是△ABC面积的2倍,求出点D的坐标;(3)在平面内有点P(3,m),是否存在m值,使△AOP的面积等于△ABC 面积的2倍?若存在,直接写出m的值;若不存在,请说明理由.22.在平面直角坐标系中,△ABC的顶点坐标分别为A(2,0),B(0,4),C(﹣3,2).(1)如图1,求△ABC的面积.(2)若点P的坐标为(m,0),①请直接写出线段AP的长为(用含m的式子表示);②当S△P AB =2S△ABC时,求m的值.(3)如图2,若AC交y轴于点D,直接写出点D的坐标为.23.如图,在平面直角坐标系中,点A(﹣3b,0)为x轴负半轴上一点,点B (0,4b)为y轴正半轴上一点,其中b满足方程:3(b+1)=6.(1)求点A、B的坐标;(2)点C为y轴负半轴上一点,且△ABC的面积为12,求点C的坐标;(3)在(2)的条件下,在x轴上是否存在点P,使得△PBC的面积等于△ABC的面积的一半?若存在,求出相应的点P的坐标;若不存在,请说明理由.【题型3 平面直角坐标系中规律题探究】24.如图,动点P按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次运动到点(2,0),第3次运动到点(3,2),…,按这样的运动规律,则第2021次运动到点()A.(2021,1)B.(2021,2)C.(2020,1)D.(2021,0)25.有一组数,按照下列规律排列:1,2,3,6,5,4,7,8,9,10,15,14,13,12,11,16,17,18,19,20,21,……数字5在第三行左数第二个,我们用(3,2)点示5的位置,那点这组成数里的数字100的位置可以表示为()A.(14,9)B.(14,10)C.(14,11)D.(14,12)26.如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).把一条长为2012个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣A﹣…的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是()A.(1,﹣1)B.(﹣1,1)C.(﹣1,﹣2)D.(1,﹣2)27.如图,在平面直角坐标系上有个点P(1,0),点P第一次向上跳动1个单位至P1(1,1),紧接着第二次向左跳动2个单位至点P2(﹣1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,…,依此规律跳动下去,点P第100次跳动至点P100的坐标是()A.(﹣24,49)B.(﹣25,50)C.(26,50)D.(26,51)28.如图,一个机器人从O点出发,向正东方向走3m到达A1点,再向正北方向走6m到达A2点,再向正西方向走9m到达A3点,再向正南方向走12m到达A4点,再向正东方向走15m到达A5点.按如此规律走下去,当机器人走到A6点时,离O点的距离是()A.10m B.12m C.15m D.20m29.如图,将正整数按有图所示规律排列下去,若用有序数对(n,m)表示n 排从左到右第m个数.如(4,3)表示9,则(10,3)表示.30.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(0,1),(0,2),(1,2),(1,3),(0,3),(﹣1,3)…,根据这个规律探索可得,第90个点的坐标为.31.如图所示点A0(0,0),A1(1,2),A2(2,0),A3(3,﹣2),A4(4,0),…根据这个规律,探究可得点A2017坐标是.32.如图所示,一个机器人从O点出发,向正东方向走3m到达A1点,再向正北方向走6m到达A2点,再向正西方向走9m到达A3点,再向正南方向走12m 到达A4点,再向正东方向走15m到达A5点,按如此规律走下去,相对于点O,机器人走到A6时是位置.33.如图,在平面直角坐标系上有点A(1,0),点A第一次跳动至点A1(﹣1,1),第四次向右跳动5个单位至点A4(3,2),…,依此规律跳动下去,点A第100次跳动至点A100的坐标是.【题型4 等腰三角形个数讨论问题】34.如图,在平面直角坐标系中,点A的坐标是(6,6),点B在坐标轴上,且△OAB是等腰直角三角形,则点B的坐标不可能是()A.(0,6)B.(6,0)C.(12,0)D.(0,﹣6)35.如图,在平面直角坐标系中,A,B两点的坐标分别为(﹣4,0),(0,3),连接AB,点P在第二象限,以点P,A,B为顶点的等腰直角三角形有个,任意写出其中一个点P坐标为.36.如图,在平面直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3.(1)观察每次变换前后的三角形的变化规律,若将△OA3B3变换成△OA4B4,则A4的坐标是,B4的坐标是.(2)若按第(1)题找到的规律将△OAB进行n次变换,得到△OA n B n,比较每次变换中三角形顶点坐标有何变化,找出规律,推测A n的坐标是,B n的坐标是.(3)若按第(1)题找到的规律将△OAB进行n次变换,得到△OA n B n,则△OA n B n的面积S为37.如图,方格纸中小正方形的边长均为1个单位长度,A、B均为格点.(1)在图中建立直角坐标系,使点A、B的坐标分别为(3,3)和(﹣1,0);(2)在(1)中x轴上是否存在点C,使△ABC为等腰三角形(其中AB为腰)?若存在,请直接写出所有满足条件的点C的坐标.38.如图,在平面直角坐标系中,已知点A(﹣2,0),B(2,0).(1)画出等腰三角形ABC(画一个即可);(2)写出(1)中画出的三角形ABC的顶点C的坐标.。

平面直角坐标系题型讲解

平面直角坐标系题型讲解
x O
题型2.对称点的坐标特征: 1.若点P(m,2)与点Q(3,n)关于原点对称, 则的值分别是_______ 2. 点A(-3,2))关于Y轴对称点的坐标是______
3.若点A(x,y)在第三象限,则点B(-x,-y)关于 X轴的对称点在_______象限. 4.若点P(a-1, 5)与点Q(2,b-1)关于X轴对 称,(a+b)2003的值是_______
一点,则:
.O
P1(a,-b)
x 点P关于X轴的对称点
.
的坐标是_______.
P3(-a,-b)点P关于Y轴的对称点
的坐标是_______.
点P关于原点的对称点 的坐标是_______.
题型1:坐标平面内点的坐标特征:
1.已知点P(m,1)在第二象限内,则点 Q(-m,0)在_______.
2.在平面直角坐标系中, 点P(-1,m2+1)一 定在________. 3.已知点P(1-a,a+2)在第二象限内,则a 的取值范围是________.
10.在同一个直角坐标系中,对于函数(1)y=-x-1 (2)y=x+1 (3)y=-x+1 (1)y=-2(x+1)的图象,下列 说法正确的是( )
A.通过点(-1,0)上午是(1)和(2) B.交点在y轴上的是(2)和(4) C.相互平行的是(1)和(3) D.关于x对称的是(2)和(3)
11.如图是函数y=-1/2x+5的一部分图象,结 合图象回答:
5.已知点P(a+b限.
6.已知点P在第二象限,它的横坐标与纵坐 标的和为1,点P的坐标是_______(写出符 合条件的一个点即可) 7.点P在第二象限,若该点到X轴的距离为3, 到Y轴的距离为1,则点P的坐标为_____. 8.在直角坐标系中,射线OX绕原点逆时针旋 转330度到OA的位置,若OP=4,则点P的坐 标为_____

平面直角坐标系题型总结

平面直角坐标系题型总结

题型一 各个象限点的符号特征1、如果a -b <0,且ab <0,那么点(a ,b)在( )A 、第一象限B 、第二象限C 、第三象限,D 、第四象限.2、如果xy <0,那么点P (x ,y )在( ) (A) 第二象限 (B) 第四象限 (C) 第四象限或第二象限 (D) 第一象限或第三象限3、若点P(m -1, m )在第二象限,则下列关系正确的是 ( )A.10<<mB.0<mC.0>mD.1>m4、点(x ,1-x )不可能在 ( )A.第一象限B.第二象限C.第三象限D.第四象限5、已知点P(102-x ,x -3)在第三象限,则x 的取值范围是 ( )A .53<<x B.3≤x ≤5 C.5>x 或3<x D.x ≥5或x ≤36、点P (x ,y )在第四象限,且|x|=3,|y|=2,则P 点的坐标是 。

7、点 A 在第二象限 ,它到 x 轴 、y 轴的距离分别是 3 、2,则坐标是 ;8、若点P(x ,y )的坐标满足xy ﹥0,则点P在第 象限;若点P(x ,y )的坐标满足xy ﹤0,且在x 轴上方,则点P在第 象限.若点P (a ,b )在第三象限,则点P '(-a ,-b +1)在第 象限;9、已知点A (m ,n )在第四象限,那么点B (n ,m )在第 象限10、若点P(3a-9,1-a)是第三象限的整数点(横、纵坐标都是整数),那么a=11、已知点P (2a -1 , 3+a ),若P 点在x 轴上方,则a 的范围是 ;若P点在x 轴下方,则a 的范围是 ;若P 点在y 轴左侧,则a 的范围是 ;若P 点在y 轴右侧,则a 的范围是 ;12、已知m 为实数,则点P +1 , ︱-m ︱+1)只可能在第 象限。

13、如果点M (a+b,ab )在第二象限,那么点N(a,b)在第 象限。

14、已知点P (3a -9 , 1-a )是第三象限的点,且横坐标、纵坐标均为整数,若P 、Q 关于原点对称,求Q 点坐标。

平面直角坐标系(考题猜想,易错必刷30题14种题型)(原卷版)—八年级数学上学期期中(沪科版)

平面直角坐标系(考题猜想,易错必刷30题14种题型)(原卷版)—八年级数学上学期期中(沪科版)

平面直角坐标系(易错必刷30题6种题型专项训练)➢平面直角坐标系➢点的坐标➢用坐标表示地理位置➢点的坐标变化规律➢图形平移规律➢求图形面积一.平面直角坐标系(共3小题)1.(2024·山东临沂·模拟预测)已知a +b <0,ab >0,则在如图所示的平面直角坐标系中,小手盖住的点的坐标可能是( )A .(a,b )B .(―a,b )C .(―a,―b )D .(a,―b )2.(2024八年级上·全国·专题练习)如下所示的图形中,平面直角坐标系的画法正确的有( ).3.(22-23八年级下·山西临汾·期末)笛卡尔是法国著名数学家,他于1637年发明了现代数学的基础工具——平面直角坐标系.平面直角坐标系的引入,使得我们可以用代数的方法研究几何问题,又可以用几何的方法研究代数问题.这种研究方法体现的数学思想是( )A .类比思想B .分类讨论思想C .建模思想D .数形结合思想二.点的坐标(共8小题)4.(23-24七年级下·全国·单元测试)在平面直角坐标系中,点P (―3,2)位于( )A .第一象限B .第二象限C .第三象限D .第四象限5.(23-24七年级下·全国·期中)已知点(),N a b 位于第四象限,则点M (b,a )位于( )A .第一象限B .第二象限C .第三象限D .第四象限6.(23-24八年级下·云南昆明·阶段练习)已知两点A (3,5),()1,B b -且直线AB ∥x 轴,则( )A .1b =-B .b 可取任意实数C .b =5D .b ≠57.(22-23八年级下·山东青岛·开学考试)在平面直角坐标系中,第一象限内的点P (a +3,a )到y 轴的距离是5,则a 的值为( )A .―4B .2或―8C .2D .88.(23-24八年级上·广东佛山·期中)已知A 点的坐标为(3,a +3),B 点的坐标为(a,a ―4),AB ∥y 轴,则线段AB = .9.(23-24七年级下·广东汕头·期末)已知点A(m,n)在第二象限, 则点(2,)--+在第象限.B n m n m10.(24-25八年级上·湖南长沙·开学考试)己知平面直角坐标系中有一点M(3―2m,3m+2).(1)存在点N(2,―3),当MN平行于y轴时,求点M的坐标:(2)当点M在x轴下方,且到x轴的距离是到y轴距离的两倍时,求点M的坐标.11.(22-23七年级下·山东临沂·期中)在平面直角坐标系中,已知点P(6―3m,m+1).(1)若P到y轴的距离为2,求m的值;(2)若点P的横纵坐标相等,求点P的坐标;(3)在(2)的条件下,在第二象限内有一点Q,使PQ//x轴,且PQ=3,求点Q的坐标.三.用坐标表示地理位置(共412.(23-24七年级下·贵州黔东南·期中)如图是某学校的平面示意图,已知旗杆的位置是(―2,2),实验室的位置是(1,3).(1)根据所给条件在图中建立适当的平面直角坐标系;(2)用坐标表示位置:食堂是______,图书馆是______;(3)已知办公楼的位置是(0,2),教学楼的位置是(2,1),在图中标出办公楼和教学楼的位置;(4)如果1个单位长度表示30m,那么宿舍楼到教学楼的实际距离为______m.13.(2024七年级上·全国·专题练习)如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动,它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走为正,向下向左走为负.例如从A到B记为A→B(+1,+4),从D到C记为:D→C(―1,+2),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C(,),B C®(,),D→(―4,―2);(2)若这只甲虫从A处去P处的行走路线依次为+2,+2,+2,―1,―2,+3,―1,―2,请在图中标出P的位置;(3)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程.14.(23-24七年级下·浙江台州·期末)如图1是路桥区地图的一部分,其示意图如图2.分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,已知黄石公园A的坐标为(2,1).(1)分别写出路桥区政府B,街心公园C的坐标;(2)连接AC,平移线段AC,使点A和点B重合,在图2中画出点C的对应点D,并写出点D的坐标.15.(23-24七年级下·云南玉溪·期末)平面直角坐标系是数轴的拓展,是沟通几何与代数的桥梁,为发展大家的几何直观,感悟数形结合的思想,数学社团的同学们对校园进行了实地调查,作出了如图的平面示意图,已知旗杆的位置是(―2,3),实验室的位置是(1,4).(1)作出校园平面示意图所在的坐标系;(2)写出宿舍楼、食堂、图书馆的坐标.四.点的坐标变化规律(共5小题)16.(22-23七年级下·云南怒江·期中)将点A (―3,―2)向右平移5个单位长度,得到点A 1,再把点A 1向上平移4个单位长度得到点2A ,则点2A 的坐标为( )A .(―2,―2)B .(2,2)C .(―3,2)D .(3,2)17.(22-23七年级下·河北石家庄·期中)若m <0,在平面直角坐标系中,将点(m,―3)分别向左、向上平移5个单位,可以得到的对应点的位置在( )A .第一象限B .第二象限C .第三象限D .第四象限18.(2024·海南·中考真题)平面直角坐标系中,将点A 向右平移3个单位长度得到点A ′(2,1),则点A 的坐标是( )A .(5,1)B .(2,4)C .(1,1)-D .(2,―2)19.(23-24七年级上·四川南充·期中)将点P (m +2,3)向左平移4个单位长度到P ′,且P ′在y 轴上,那m 的值为 .20.(23-24八年级下·广东茂名·单元测试)已知点M (3a ―9,1―a ),将M 点向左平移6个单位长度后落在y 轴上,则M 的坐标是 .五.图形平移规律(共6小题)21.(24-25八年级上·福建福州·开学考试)△ABC 在平面直角坐标系中的位置如图所示.(1)点C的坐标是__________;(2)将△ABC先向左平移4个单位,再向下平移2个单位,得到△A′B′C′,画出平移后的△A′B′C′;(3)若△ABC内一点P经过上述平移后的对应点为Q(m,n),直接写出点P的坐标__________:(用含m,n的式子表示)22.(23-24七年级下·全国·单元测试)已知:如图,把△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A′B′C′.(1)写出A′(,)、B′(,)、C′(,)的坐标;(2)求出△ABC的面积= ;(3)点P在y轴上,且△BCP是△ABC的面积的2倍,求点P的坐标.23.(23-24八年级下·全国·期末)在平面直角坐标系中,A、B、C三点的坐标分别为(―6,7)、(―3,0)、(0,3).(1)画出△ABC;(2)在△ABC中,点C经过平移后的对应点为C′(5,4),将△ABC作同样的平移得到△A′B′C′,画出平移后的¢¢的坐标;△A′B′C′,并写出点,A B(3)P(―3,m)为△ABC中一点,将点P向右平移4个单位后,再向下平移6个单位得到点Q(n,―3),则m=,n=______.24.(24-25八年级上·全国·单元测试)三角形ABC与三角形A′B′C′在平面直角坐标系中的位置如图所示,三角形A′B′C′是由三角形ABC平移得到的.(1)分别写出点A′、B′、C′的坐标;(2)说明三角形A′B′C′是由三角形ABC经过怎样的平移得到的?(3)若点P a,b是三角形ABC内的一点,则平移后三角形A′B′C′内的对应点为P′,写出点P′的坐标.25.(23-24八年级上·江苏镇江·期末)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A (2,―1)、B(1,―2)、C(3,―3)(1)将△ABC向上平移4个单位长度得到△A1B1C1,请画出△A1B1C1;(2)请画出与△ABC关于y轴对称的△A2B2C2;(3)点A1的坐标为,点2A的坐标为;(4)若P(a,―b)是△ABC内一点,按照(1)(2)操作后点P1的坐标为,点P2的坐标为.26.(21-22七年级下·吉林松原·阶段练习)在平面直角坐标系中,点P的坐标为(2m+5,3m+3).(1)若点P在x轴上时,求点P的坐标;(2)若点P在过点A(―5,1)且与y轴平行的直线上时,求点P的坐标;(3)将点P向右平移2个单位,再向上平移3个单位后得到点M,若点M在第三象限,且点M到y轴的距离为7,求点M的坐标.六.求图形面积(共4小题)27.(22-23七年级下·全国·期末)如图,在平面直角坐标系xOy中,点A的坐标为(0,4),点B的坐标为(4,0),过点C(3,0)作直线CD x^轴,垂足为C,交线段AB于点D,过点A作AE⊥CD,垂足为E,连接BE.(1)求△ABE的面积;(2)点P为直线CD上一动点,当S△PAB=S△AOB时,求点P的坐标.28.(22-23七年级上·甘肃定西·开学考试)已知:在平面直角坐标系中,A(0,1),B(2,0),C(4,3).(1)求△ABC的面积;(2)设点P在x轴上,且△ABP与△ABC的面积相等,求点P的坐标.29.(23-24八年级上·江苏徐州·阶段练习)如图,长方形OABC在平面直角坐标系中,其中A(4,0),C(0,3),---运动,最终到达点E.若点P运动的点E是BC的中点,动点P从O点出发,以每秒1cm的速度沿O A B E时间为x秒,(1)当x=2秒时,求△OPE的面积;(2)当△OPE的面积等于25cm时,求P点坐标.30.(23-24七年级下·辽宁盘锦·期中)如图,已知A(―4,0),B(4,0),C(3,2),D(―2,4).(1)求四边形ABCD的面积;(2)在y轴上存在一点P,使三角形APB的面积等于四边形ABCD面积的一半,求P点的坐标.。

专题3.1平面直角坐标系【十大题型】-2024-2025学年八年级数学上册举一反三[含答案]

专题3.1平面直角坐标系【十大题型】-2024-2025学年八年级数学上册举一反三[含答案]
发到电视塔,他的路径表示错误的是(注:街在前,巷在后)(
)
A. 2, 2 ® 2,5 ® 5, 6
B. 2, 2 ® 2,5 ® 6,5
C. 2, 2 ® 6, 2 ® 6,5
2) ® (2,
3) ® (6,
3) ® (6,
5)

试卷第 6 页,共 11 页
【变式 7-2】(23-24 八年级·浙江宁波·阶段练习)
27.如图, A -1, 0 , C 1, 4 ,点 B 在 x 轴上,且 AB = 3 .
(1)求点 B 的坐标,并画出 V ABC ;
(2)求 V ABC 的面积;
(3)在 y 轴上是否存在点 P ,使以 A 、 B 、 P 三点为顶点的三角形的面积为10?若存在,请直
.点 A 关于 x 轴的对

【变式 6-2】(23-24 八年级·湖北武汉·期中)
- 3) ,
23.已知点 A 和点 B 关于直线 m (直线 m 上各点的纵坐标都是 2)对称,若点 A 的坐标是 (2,
则点 B 的坐标是

【变式 6-3】(23-24 八年级·福建莆田·期中)
24.如图,在平面直角坐标系中,V ABC 关于直线 m (直线 m 上各点的横坐标都为 1)对称,
【例 2】(23-24 八年级·上海长宁·期末)
5.已知 a 为实数,那么在平面直角坐标系中,下列各点中一定位于第四象限的点是(
A. 4, - a
2

B. a + 1, -4
2
C. a + 1, - 4

2
D. a , - 4
【变式 2-1】(23-24 八年级·浙江绍兴·期末)

(黄金题型)人教版七年级下册数学第七章 平面直角坐标系含答案

(黄金题型)人教版七年级下册数学第七章 平面直角坐标系含答案

人教版七年级下册数学第七章平面直角坐标系含答案一、单选题(共15题,共计45分)1、下列命题中:①若mn=0,则点A(m,n)在原点处;②点(2,-m2)一定在第四象限;③已知点A(m,n)与点B(-m,n),m,n均不为0,则直线AB平行x轴;④已知点A(2,-3),AB//y轴,且AB=5,则B点的坐标为(2,4);是真命题的有()A.1个B.2个C.3个D.4个2、如图,已知棋子“车”的坐标为(﹣2,﹣1),棋子“马”的坐标为(1,﹣1),则棋子“炮”的坐标为()A.(3,2)B.(﹣3,2)C.(3,﹣2)D.(﹣3,﹣2)3、如果m是任意实数,则点P(m-4,m+1)一定不在()A.第一象限B.第二象限C.第三象限D.第四象限4、以下是甲、乙、丙三人看地图时对四个坐标的描述:甲:从学校向北直走500米,再向东直走100米可到图书馆.乙:从学校向西直走300米,再向北直走200米可到邮局.丙:邮局在火车站西200米处.根据三人的描述,若从图书馆出发,判断下列哪一种走法,其终点是火车站()A.向南直走300米,再向西直走200米B.向南直走300米,再向西直走100米C.向南直走700米,再向西直走200米D.向南直走700米,再向西直走600米5、安徽省蒙城县板桥中学办学特色好,“校园文化”建设,主体鲜明新颖:“国学引领,教老敬亲,家校一体,爱满乡村”.如图所示,若用“C4”表示“孝”,则“A5﹣B4﹣C3﹣C5”表示()A.爱满乡村B.教老敬亲C.国学引领D.板桥中学6、下列哪个点位于平面直角坐标系的第二象限()A.(2,3)B.(2,﹣3)C.(﹣2,3)D.(﹣2,﹣3)7、在平面直角坐标系中,已知线段AB的两个端点分别是A(4,﹣1),B (1,1)将线段AB平移后得到线段A′B′,若点A的坐标为(﹣2,2),则点B′的坐标为()A.(﹣5,4)B.(4,3)C.(﹣1,﹣2)D.(﹣2,﹣1)8、已知点在第三象限,则点在()A.第一象限B.第二象限C.第三象限D.第四象限9、平面直角坐标系中,将点A(﹣3,﹣5)向上平移4个单位,再向左平移3个单位到点B,则点B的坐标为()A.(1,﹣8)B.(1,﹣2)C.(﹣6,﹣1)D.(0,﹣1)10、如右图,⊙M与x轴相切于原点,平行于y轴的直线交圆于P、Q两点,P 点在Q点的下方,若P点的坐标是(2,1),则圆心M的坐标是()A.(0,3)B.(0,)C.(0,2)D.(0,)11、线段CD是由线段AB平移得到的,点A(﹣1,5)的对应点为C(4,8),则点B(﹣4,﹣2)的对应点D的坐标为()A.(﹣9,﹣5)B.(﹣9,1)C.(1,﹣5)D.(1,1)12、直线y=﹣2x+m与直线y=2x﹣1的交点在第四象限,则m的取值范围是A.m>﹣1B.m<1C.﹣1<m<1D.﹣1≤m≤113、在平面直角坐标系xOy中,对于点P(x,y),我们把P1(y-1,-x-1)叫做点P的友好点,已知点A1的友好点为A2,点A2的友好点为A3,点A3的友好点为A4,,这样依次得到各点.若A2020的坐标为(-3,2),设A1(x,y),则x+y 的值是()A.-5B.-1C.3D.514、如图,一个粒子在第一象限内及x轴,y轴上运动,第一分钟内从原点运动到(1,0),第二分钟从(1,0)运动到(1,1),而后它接着按图中箭头所示的与x轴,y轴平行的方向来回运动,且每分钟移动1个长度单位.在第2020分钟时,这个粒子所在位置的坐标是( )A.(4,45)B.(45,4)C.(44,4)D.(4,44)15、如图,矩形OABC与矩形ODEF是位似图形,点O为位似中心,相似比为1:1.2,点B的坐标为(﹣3,2),则点E的坐标是()A.(3.6,2.4)B.(﹣3,2.4)C.(﹣3.6,2)D.(﹣3.6,2.4)二、填空题(共10题,共计30分)16、已知直角坐标系内有四个点O(0,0),A(3,0),B(1,1),C(x,1),若以O,A,B,C 为顶点的四边形是平行四边形,则x=________.17、如图,直线y=2x+4与x,y轴分别交于A,B两点,以OB为边在y轴右侧作等边三角形OBC,将点C向左平移,使其对应点C′恰好落在直线AB上,则点C′的坐标为________18、在平面直角坐标系中,△ABC的三个顶点的位置如图所示,点A′的坐标是(﹣1,1),现将△ABC平移,使点A变换为A′,点B′、C′分别是B、C的对应点,请画出平移后的△A′B′C′,并直接写出点B′、C′的坐标:B′(________)、C′(________).19、如图,一甲虫从原点出发按图示方向作折线运动,第1次从原点到A1(1,0),第2次运动到A2(1,1),第3次运动到A3(-1,1),第4次运动到A4(-1,-1),第5次运动到A5(2,-1)……则第2020次运动到的点A2020的坐标是________.20、如图,在平面直角坐标系中有一菱形OABC且∠A=120°,点O、B在y轴上,OA=1,现在把菱形向右无滑动翻转,每次翻转60°,点B的落点依次为B 1、B2、B3…,连续翻转2017次,则B2017的坐标为________.21、已知点A(3a+5,a﹣3)在二、四象限的角平分线上,则a=________.22、已知点是直线上的一个动点,若点到两坐标轴的距离相等,则点的坐标是________.23、如图,在平面直角坐标系中,函数和的图象分别为直线,过上的点A1(1,)作x轴的垂线交于点A2,过点A2作y轴的垂线交于点A3,过点A3作x轴的垂线交于点A4…,一次进行下去,则点的横坐标为________ .24、在平面直角坐标系中,如果一个图形向右平移1个单位,再向上平移3个单位,称为一个变换,已知点A(1,-2),经过一个变换后对应点为A1,经过2个变换后对应点为A2,…经过n个变换后对应点为An,则用含n的代数式表示点An的坐标为________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面直角坐标系常见题型
1.数轴上表示5的点与表示 – 1的点之间的距离是 ; 2.已知数轴上的点A 、B 所对应的实数分别是2.1-和
4
3
,那么A B = . 3.经过点Q (2,0)且垂直于x 轴的直线可以表示为直线 . 4.经过点P (-1,5)且垂直于y 轴的直线可以表示为直线 . 5.点(2,3)P -在第___________象限.
6.如果点A (a ,b )在第三象限,那么ab _____0 (填“<”,“=”或“>”) . 7.如果点A (2,n )在x 轴上,那么点B (2-n ,1+n )在第_________象限. 8. 在平面直角坐标系中,点P (3a -,2)到两坐标轴的距离相等,那么a 的值是 . 9.如果点P 在第二象限,且点P 到x 轴的距离是3,到y 轴的距离是5,那么点P 的坐标是 .
10.点A (–2,3)关于x 轴的对称点B 的坐标为 ; 11.点P (–1,0 )关于y 轴的对称点P ′的坐标是_____________. 12.点A (–3,2)关于原点的对称点A ′的坐标为 ;
13.已知点P (1-m ,2)与点Q (1,2)关于y 轴对称,那么m =____________. 14.在直角坐标平面内,将点(3,2)A -向下平移4个单位后,所得的点的坐标是
________________.
15在平面直角坐标系中,点M (-2,6)向下平移3个单位到达点N ,点N 在第______象限.
16.已知△ABC 的顶点坐标是A (-1,5)、
B (-5,5)、
C (-6,2).
(1)分别写出与点A 、B 、C 关于原点O 对称的点A ' 、B '、C '的坐标; A '____________, B '____________,
C ' ____________; (2)在坐标平面内画出 △C B A ''';(写结论) (3)△C B A '''的面积的 值等于____________.
B
A C 6
5 4 3
2
1
O 1 -6 2 3 4 5 6
x
y
-5 -4 -3 -2 -1 -1 -2 -3 -4 -5 -6
8
6
4
2
-2
-4
-6
-8
-5
5
10
x
y
O
17.在直角坐标平面内,描出点A (0,5)和点B (–2,–4),已知BC = 4,且BC //x 轴. (1)写出点C 的坐标;
(2)联结AB 、AC 、BC ,判断△ABC 的形
状,并求出它的面积.
18.在直角坐标平面内,已点A (3,0)、B (―5,3),
将点A 向左平移6个单位到达C 点, 将点B 向下平移6个单位到达D 点. (1)写出C 点、D 点的坐标:
C ____________,
D ____________;
(2)把这些点按A -B ―C ―D ―A 顺
次联结起来,这个图形的面积是 ____________.
19.如图,在平面直角坐标系中,已知OA =5.
(1)点
A 的坐标是 ;
(2)点A 关于原点O 的对称点A '的坐标是 ,
并在平面直角坐标系中画出点A ';
(3)如果点B 在x 轴上,且△A BO '是等腰三角
形,请写出两个符合条件的点B 的坐标: 1B ,2B ,那么
1
________A B O S '∆=,2
_______A B O S '∆=.
y
x
4-4
-2
-3123-4-34
21
3-2
-1-1A
O 第19题图
20.如图,在直角坐标平面内,已知点A 的坐标(-5,0), (1) 图中B 点的坐标是 ;
(2) 点B 关于原点对称的点C 的坐标是 ;
点A 关于y 轴对称的点D 的坐标是 ;
(3) △ABC 的面积是 ; (4) 在直角坐标平面上找一点E ,能满足ADE S ∆=ABC
S ∆的点E 有 个;
(5) 在y 轴上找一点F ,使ADF S ∆=ABC S ∆,
那么点F 的所有可能位置是 ;(用坐标表示,并在图中画出)
21.如图7,在直角坐标平面内,已知点
()2,3A --与点B ,将点A 向右
平移7个单位到达点C .
(1)点B 的坐标是 ;A 、B 两点之间距离等于 ;
(2)点C 的坐标是 ;△ABC 的形状是 ;
(3)画出△ABC 关于原点O 对称的△
111A B C .
23.已知点A 的坐标是(3,0),点B 的坐标是(-1,0),△ABC 是等腰三角形,且一边上的高为4,写出所有满足条件的点C 的坐标.(提示:先画图,再求解)
B
11
O
y
x
第20题图
24.如图,在△ABC 中,已知AB = AC = 2,点A 的坐标是(1,0),点B 、C 在y 轴上.试
判断在x 轴上是否存在点P ,使△P AB 、△P AC 和△PBC 都是等腰三角形.如果存在这样的点P 有几个?写出点P 的坐标;如果不存在,请说明理由.
25.如图11,在直角坐标平面内有两点()0,2A 、()2,0B -,且A 、B 两点 之间的距离等于a (a 为大于0的已知数),在不计算a 的数值条件下,完成下 列两题:
(1)以学过的知识用一句话说出a >2的理由;
(2)在x 轴上是否存在点P ,使△PAB 是等腰三角形,如果存在,请写出点P 的坐标,并求△PAB 的面积;如果不存在,请说明理由. 解:
B A
y
x
O
图11
x
y O 1
B C
A
-1
-1 1。

相关文档
最新文档