第一章 运筹学绪论和线性规划
运筹学第一章线性规划

0
X1
约束条件所组成的可行 域为空集,无可行解。
《运筹学》 第一章 线性规划
Slide 19
二、线性规划的标准形式
1、目标函数:max z c1x1 c2x2 cnxn
a x11 1 a x12 2 a x1n n b1 a x21 1 a x22 2 a x2n n b2
《运筹学》 第一章 线性规划
Slide 9
方案 根数
ABC
下料
3m 2 3 0
4m 1 0 2
合计 (m)
10
9
8
料头 (m)
0
1
2
P70 习题1-1: 设按这三种方案下料的原材料
根数分别为x1、x2、x3 。 min x1+x2+x3 S.t. 2x1+3x2>=90 x1+2x3>=60 Xi>=0
minz=2X1+3X2+5X3
s.t. X1+X2-X3>=-5 -6X1+7X2-9X3=15 ︱19X1-7X2+5X3︱<=13
X1>=0, X2>=0
令X3=X3`-X3`` -X1-X2+X3 `-X3`` +X4=5 -6X1+7X2-9X3`+9X3``=15 19X1-7X2+5X3`-5X3``+X5=13 -19X1+7X2-5X3 `+5X3``+X6=13 maxz=-2X1-3X2-5X3 `+5X3`` +0X4+0X5+0X6 X1,X2,X3`,X3``,X4,X5,X6>=0 三、线性规划的解的概念(参考P12例1.7) 1、可行解和最优解:满足约束条件的解(X1,X2, …,Xn)T称为线性规划的可行解。而使得目标函数达到 最优值的可行解称为最优解。 2、基:(注意课本P15的定义对“基”的定义有误) 设A是约束方程组m×n维的系数矩阵,其秩为m,B是 矩阵A中m×m阶非奇异子矩阵(B的行列式│B│≠0),则 称B是线性规划问题的一个基。
管理运筹

管理运筹学(一)管理运筹学绪论线性规划(运输问题)整数规划动态规划存储论排队论对策论决策分析第一章绪论运筹学(Operational Research) 直译为“运作研究”运筹学是应用分析、试验、量化的方法,对经济管理系统中的人力、物力、财力等资源进行统筹安排,为决策者提供有依据的最优方案,以实现最有效的管理。
运筹学有广泛应用运筹学的产生和发展§1 决策、定量分析与管理运筹学决策过程(问题解决的过程):1)提出问题:认清问题2)寻求可行方案:建模、求解3)确定评估目标及方案的标准或方法、途径4)评估各个方案:解的检验、灵敏性分析等5)选择最优方案:决策6)方案实施:回到实践中7)后评估:考察问题是否得到完满解决1)2)3):形成问题;4)5)分析问题:定性分析与定量分析。
构成决策。
§2 运筹学的分支线性规划非线性规划整数规划图与网络模型存储模型排队论排序与统筹方法决策分析动态规划预测§3运筹学在工商管理中的应用生产计划:生产作业的计划、日程表的编排、合理下料、配料问题、物料管理等库存管理:多种物资库存量的管理,库存方式、库存量等运输问题:确定最小成本的运输线路、物资的调拨、运输工具的调度以及建厂地址的选择等人事管理:对人员的需求和使用的预测,确定人员编制、人员合理分配,建立人才评价体系等市场营销:广告预算、媒介选择、定价、产品开发与销售计划制定等财务和会计:预测、贷款、成本分析、定价、证券管理、现金管理等*** 设备维修、更新,项目选择、评价,工程优化设计与管理等运筹学方法使用情况(美1983)运筹学的推广应用前景据美劳工局1992年统计预测: 运筹学应用分析人员需求从1990年到2005年的增长百分比预测为73%,增长速度排到各项职业的前三位.结论:运筹学在国内或国外的推广前景是非常广阔的工商企业对运筹学应用和需求是很大的在工商企业推广运筹学方面有大量的工作要做第二章线性规划的图解法在管理中一些典型的线性规划应用合理利用线材问题:如何下料使用材最少配料问题:在原料供应量的限制下如何获取最大利润投资问题:从投资项目中选取方案,使投资回报最大产品生产计划:合理利用人力、物力、财力等,使获利最大劳动力安排:用最少的劳动力来满足工作的需要运输问题:如何制定调运方案,使总运费最小线性规划的组成:目标函数 Max f 或 Min f约束条件 s.t. (subject to) 满足于决策变量用符号来表示可控制的因素§1问题的提出例1. 某工厂在计划期内要安排甲、乙两种产品的生产,已知生产单位产品所需的设备台时及A、B两种原材料的消耗以及资源的限制,如下表:问题:工厂应分别生产多少单位甲、乙产品才能使工厂获利最多?线性规划模型一般形式目标函数: Max (Min) z = c1 x1 + c2 x2 + … + cn xn约束条件: s.t. a11 x1 + a12 x2 + … + a1n xn ≤( =, ≥)b1a21 x1 + a22 x2 + … + a2n xn ≤( =, ≥)b2…………am1 x1 + am2 x2 + … + amn xn≤( =, ≥)bmx1 ,x2 ,…,xn ≥ 0标准形式目标函数: Max z = c1 x1 + c2 x2 + … + cn xn约束条件: s.t. a11 x1 + a12 x2 + … + a1n xn = b1a21 x1 + a22 x2 + … + a2n xn = b2…………am1 x1 + am2 x2 + … + amn xn = bmx1 ,x2 ,…,xn ≥ 0§2 图解法例1.目标函数:Max z = 50 x1 + 100 x2约束条件:s.t.x1 + x2 ≤ 300 (A)2 x1 + x2 ≤ 400 (B)x2 ≤ 250 (C)x1 ≥ 0 (D)x2 ≥ 0 (E)得到最优解:x1 = 50, x2 = 250最优目标值 z = 27500进一步讨论线性规划的标准化内容之一:——引入松驰变量(含义是资源的剩余量)例1 中引入 s1, s2, s3 模型化为目标函数:Max z = 50 x1 + 100 x2 + 0 s1 + 0 s2 + 0 s3约束条件:s.t. x1 + x2 + s1 = 3002 x1 + x2 + s2 = 400x2 + s3 = 250x1 , x2 , s1 ,s2 , s3 ≥ 0对于最优解 x1 =50 x2 = 250 , s1 = 0 s2 =50 s3 = 0说明:生产50单位甲产品和250单位乙产品将消耗完所有可能的设备台时数及原料B,但对原料A则还剩余50千克。
第一章运筹学绪论和线性规划

The srandard Form of the Model:
max(min) s.t. z =c1x1 + c2x2 +…+ cnxn (1.1) a11x1 + a12x2 +…+ a1nxn ( = , ) b1 a21x1 + a22x2 +…+ a2nxn ( = , ) b2 … … (1.2) am1x1 + am2x2 +…+ amnxn ( = , ) bm x1,x2,…,xn 0 (1.3)
(3)An very effective method of finding the optimal distribution under the scarcity, to obtain the maximum profit or minimum cost
1.1The simplification of Prototype Example: The WYNDOR GLASS CO. produces a high-quality glass products and wants to launch two new products. It has 3 plants and product 1 need plants 1 and 3, while products 2 needs plants 2 and 3.All the products (1 and 2) can be sold and table 3.1 on page 27 summarizes the data gathered by the OR team. The goal of the company is to get the maximum profit from the sold products 1 and 2.
运筹学-1绪论及线性规划

运筹学的解决步骤
运筹学解决步骤
建立 模型
求解
解的 检验
解的 控制
运筹学的发展趋势
• 成熟的学科分支向纵深发展
• 新的研究领域产生
• 与新的技术结合
• 与其他学科的结合加强
• 传统优化观念不断变化
第一章 线性规划( Linear Programming,LP)
线性规划的发展简史
1939年,苏联学者康托洛维奇,在《生产组织与计划中的数学方 法》一书中提出了线性规划问题,并给出了相应的求解方法。 1947年,美国数学家丹捷格(G.B.Dantizg)(1947-2005)发表了 关于线性规划的研究成果,给出了求解线性规划问题的单纯形算法, 称为“线性规划之父”;同时,冯•诺伊曼提出了线性规划对偶理论。 1960年,康托洛维奇出版了《最佳资源利用的经济计算》一书, 1975获得了诺贝尔经济学奖。 1979年,苏联数学家哈奇扬,发明了求解线性规划“椭球法” ; 1984年,美国贝尔实验室的印度数学家卡马卡,发明了“内点算 法”。
它所做的事,可以简单归结为:“依照 给定的条件和目标,从众多方案中选择 最优方案”。
具体案例:物流优化管理
成都新都物流中心
运筹学教什么?
课程内容:介绍运筹学一些主要分支体系的基本模 型、求解方法;引导并锻练运用运筹学知识进行定 量分析与解决实际问题的能力。
教学方法 以各种实际问题为背景,引出各分支基本概念、 基本模型和基本方法,侧重各种方法及应用。 配合软件教学,让大家熟练应用软件解决问题。 小组案例分析与讨论
同理,对营养B、营养C,可得到不等式:
5 x1+5 x2 ≥ 20 2 x1+6 x2 ≥ 12 食物的重量不可能为负的,于是有 x1 ≥ 0,x2 ≥ 0
《运筹学》第一章 线性规划

③
约束方程②的系数矩阵
2 2 1 0 0 0
A 1 4
2 0
0 0
1 0
0 1
0 0
p1
p2
p3
p4
p5
p6
0 4 0 0 0 1
确定初始基B
1 0 0 0
产量分别为 x1、x2
项目
Ⅰ
设备 A(h) 0
设备 B(h) 6 调试工序(h) 1 利润(元) 2
Ⅱ 每天可用能力
5
15
2
24
1
5
1
问:应如何安排生产计划,才 能使总利润最大?
2.目标函数:设总利润为z,则
max z = 2 x1 + x2 3.约束条件:
5x2 ≤ 15
s.t.
6x1+ 2x2 ≤ 24 x1+ x2 ≤ 5
凸集
顶点
凸集
不是凸集
顶点:如果凸集C中不存在任何两个不同的点X1, X2,使X成为这两个点连线上的一个点。
(三)基本定理
定理1 若线性规划问题存在可行解,则问题的 可行域是一个凸集。
定理2 线性规划的基可行解对应线性规划问题 可行域(凸集)的顶点。
定理3 若线性规划问题有最优解,一定存在一个 基可行解是最优解。
(2)常数项bi<0的转换:约束方程两边乘以(-1)。 (3) 约束方程的转换:由不等式转换为等式 。
aij xj bi aij xj bi
aij x j xni bi
xni 0 称为松弛变量
aij x j xni bi
xni 0 称为剩余变量
(4) 变量的变换
若存在取值无约束的变量 x,j可令
2x1
《运筹学》课件 第一章 线性规划

10
解:令
xi=
1, Si被选中
min z= ci xi i 1 10
0, Si没被选中
xi 5
i 1
x1 x8 1 x7 x8 1
称为技术系数
b= (b1,b2, …, bm) 称为资源系数
2、非标准型
标准型
(1)Min Z = CX
Max Z' = -CX
(2)约束条件
• “≤”型约束,加松弛变量;
松弛变量
例如: 9 x1 +4x2≤360
9 x1 +4x2+ x3=360
• “≥”型约束,减松弛变量;
例、将如下问题化为标准型
数据模型与决策 (运筹学)
课程教材:
吴育华,杜纲. 《管理科学基础》,天津大学出版社。
绪论
一、运筹学的产生与发展
运筹学(Operational Research) 直译为“运作研究”。
• 产生于二战时期 • 60年代,在工业、农业、社会等各领域得到广泛应用 • 在我国,50年代中期由钱学森等引入
Min z x1 2x2 3x3
x1 x2 x3 7
s.t
.
x1 x2 x3 3x1 x2 2
x3
2
5
x1, x2 , x3 0
解:令 Min z Max z' (z' z) ,第一个约束加松弛变量x5,
第二个约束减松弛变量x6,得标准型:
Max z' x1 2x2 +3x3
x1 x2 x3 x4 7
s.t .
x1 x2 3x1
x3 x2
x5 2 2x3 5
x1 , , x5 0
运筹学第1章-线性规划
下一页 返回
图解法步骤:
(1)建立坐标系; (2)将约束条件在图上表示; (3)确立满足约束条件的解的范围; (4)绘制出目标函数的图形 (5)确定最优解
用图解法求解下列线性规划问题
max z 2x1 3x2
4x1 0x2 16
s.t
10xx11
4x2 2x2
12 8
x1, x2 0
1. 1.1问题举例
(1)生产计划问题。 生产计划问题是典型的已知资源求利润最大化的问题,对于此类
问题通常有三个假设:①在某一计划期内对生产做出的安排;②生产 过程的损失忽略不计;③市场需求无限制,即假设生产的产品全部 卖出。
下一页 返回
1.一般线性规划问题的数学模型
例1 用一块连长为a的正方形铁皮做一个容 器,应如何裁剪,使做成的窗口的容积为最 大?
解:设 x1, x2分别表示从A,B两处采购的原油量(单
位:吨),则所有的采购方案的最优方案为:
min z 200x1 290x2
0.15x1 0.50x2 150000
s.t
0.20x1 0.50x1
0.30x2 0.15x2
120000 120000
x1 0, x2 0
1. 1线性规划问题与模型
也可以写成模型(1-6)和模型(1-7)的形式,其中模型(1-7)较为常用。
《运筹学》管理运筹学1
目标函数
z = 50 x1 + 100 x2
在 z = x2 (x2 = z 斜率为0 ) 到 z = x1 + x2 (x2 = -x1 + z 斜率为-1 )之间时,
原最优解 x1 = 50,x2= 100 仍是最优解。
• 一般情况:
z = c1 x1 + c2 x2 写成斜截式 x2 = - (c1 / c2 ) x1 + z / c2
x2 + s3 = 250
x1 , x2 , s1 , s2 , s3 ≥ 0
对于最优解 x1 =50 x2 = 250 , s1 = 0 s2 =50 s3 = 0
说明:生产50单位甲产品和250单位乙产品将消耗完所有可能的设备台时
数及原料B,但对原料A则还剩余50千克。
解的性质:
1 线性规划的最优解如果存在,则必定有一个顶点(极点)是最优解; 2 有的线性规划问题存在无穷多个最优解的情况; 3 有的线性规划问题存在无有限最优解的情况,也称无解; 4 有的线性规划问题存在无可行解的情况。
• 作业:P24---6,பைடு நூலகம்,8
16
第三章 线性规划问题的计算机求解(1)
• 管理运筹学软件1.0版使用说明:(演示例1) 一、系统的进入与退出:
1、在WINDOWS环境下直接运行main.exe文件,或者在DOS下UCDOS中文平台环 境下运行,也可直接运行各可执行程序。
2、退出系统的方法可以在主菜单中选退出项,也可按Ctrl+Break键直接退出。 3、在WINDOWS环境下直接运行软件,如果出现乱码,那是因为启用了全屏幕方
s.t. a11 x1 + a12 x2 + … + a1n xn ≤ ( =, ≥ )b1 a21 x1 + a22 x2 + … + a2n xn ≤ ( =, ≥ )b2 …… …… am1 x1 + am2 x2 + … + amn xn ≤ ( =, ≥ )bm x1 ,x2,… ,xn ≥ 0
运筹学概论目录
第一章绪论(2学时)1.1运筹学起源1.2运筹学的发展1.3运筹学的应用1.4运筹学的性质和特点1.5运筹学的学习与研究方法第二章线性规划及单纯型法2.1线性规划问题及其模型(2学时)2.2.1线性规划图解法2.2.2 线性规划解的性质(2学时)2.3单纯形法原理习题课1 (2学时)2.4单纯形法计算步骤(2学时)习题课2 (2学时)2.5.1单纯形法的进一步讨论(2学时)习题课3 (2学时)2.5.2单纯形法的矩阵描述及改进单纯形法(2学时)2.6线性规划应用举例2.7习题课4 (2学时)第三章线性规划的对偶问题(2学时)3.1对偶问题的提出3.2原问题与对偶问题的数学模型3.3原问题与对偶问题的对应关系第四章运输问题(2学时)4.1 运输问题4.2 运输问题的表上作业法(2学时)习题课5 (2学时)第五章整数规划(2学时)5.1 整数规划的数学模型及解的特点5.2 分支定界法习题课6 (2学时)第六章图与网络6.1 图的基本概念(2学时)6.2 最优树问题6.3 最短(通)路问题(2学时)习题课7 (2学时)第七章决策分析7.1 决策系统(2学时)7.2 确定型决策7.3 不确定型决策7.4 风险型决策7.5 效用函数(2学时)7.6 贝叶斯(Bayes)决策习题课8 (2学时)第八章储存论8.1 存贮问题及其基本概念(2学时)8.2 确定型存贮模型8.3 单周期的随机型存贮模型(2学时)习题课9 (1学时)总复习(2学时)。
管理运筹学教案1绪论及线性规划模型PPT课件
体可行解的集合);
3.画出目标函数的等值线 ;
4.向着目标函数的优化方向平移等值线,直至得到等值线与 可行域的最后交点,这种点就对应最优解。
x2 4x1=16
max z = 2x1+ 3x2
s.t. x1 + 2 x2 8
(1 .1 ) ( 1 .2 ) (1 .3 )
求 解 线 性 规 划 问 题 的 任 务 是 : 在 满 足 ( 1 .2 )、 ( 1 .3 ) 的 所 有 ( x 1 , x 2 , … , x n ) ( 可 行 解 ) 中 求 出 使 ( 1 .1 ) 达 到 最 大 ( 小 ) z 值 的 决 策 变 量 值 ( x 1 * , x 2 * , … , x n * ) ( 最 优 解 ) 。
“运筹学是在实行管理的领域,运用数学方法,对需要进 行管理的问题统筹规划,作出决策的一门应用科学。” —— P.M.Morse与G.E.Kimball
运用科学方法来解决工业、商业、政府、国防等部门里有关
人力、机器、物资、资金等大型系统的指挥或管理中所出现的复 杂问题的一门学科。其目的是“帮助管理者以科学方法确定其方 针和行动”——英国运筹学会
《管理运筹学》
赵鹏 徐彬 电话:51687005 办公地点:8711 邮箱:
一、绪论
§1 运筹学的由来
运筹学的活动是从二次世界大战初期的军事任务开始的。 当时迫切需要把各项稀少的资源以有效的方式分配给各种不同 的军事经营及在每一经营内的各项活动。
鲍德西(Bawdsey)雷达站的研究(1935年)
研究的问题是:设计将雷达信息传送到指挥系统和武器系统的 最佳方式;雷达与武器的最佳配置;对探测、信息传递、作战指 挥、战斗机与武器的协调,作了系统的研究,并获得成功。 “Blackett马戏团”在秘密报告中使用了“Operational Research” ,即“运筹学”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x2 S = 1 S = −2 S = −3⇒ Nhomakorabea1
Unbounded feasible region
It has no optimal solution
o
x1
Conclusion: 4 probabilities for two decision variables LP model by graphical solution
Just one optimal solution, it must be a CPF solution; Multiple optimal solutions, at least two must be CPF solutions; Just has feasible solution but no optimal solution; No feasible solution.
Feasible region
x2
3
x2 =3
Optimal solution
Isoline of the objective function
2 x1 + 5 x2 = 15
x1 + 2 x2 = 8
2 x1 + 5 x2 = 6
x1 = 4
o
4
Isoline of the objective function
x1
We can get:
x2 = 3 x1 = 2 ⇒ is the optimal solution of the LP, x1 + 2 x2 = 8 x2 = 3 The optimal value is max S = 19
Note: (1) This problem has just one optimal solution
x1 ≤ 4 3.constrains: 2 x 2 ≤ 12 3 x + 2 x ≤ 18 2 1
4.Nonnegative: x1 ≥ 0, x2 ≥ 0
To summarize, we get
Z = 3 x1 + 5 x2
x1 ≤ 4 2 x 2 ≤ 12
Objective function
WinQSB OR Tutor
Introduction to Linear Programming Basic characteristic:
(1)It is used in OR widely; (2)It’s a fundamental method, Goal programming Integer programming Dynamic programming are all derived from it. (3)An very effective method of finding the optimal distribution under the scarcity, to obtain the maximum profit or minimum cost
• The srandard Form of the Model: :
max(min) s.t. z =c1x1 + c2x2 +…+ cnxn (1.1) … a11x1 + a12x2 +…+ a1nxn ≤ ( = , ≥) b1 … a21x1 + a22x2 +…+ a2nxn ≤ ( = , ≥) b2 … (1.2) … … (1 2) am1x1 + am2x2 +…+ amnxn ≤ ( = , ≥) bm … x1,x2,…,xn ≥ 0 (1.3)
Overview of the OR modeling Approach Defining the problem and gathering data Formulating a mathematical model Deriving solutions from the model Testing the model Preparing to apply the model Implementation conclusion
运筹学的定义
运筹学是一门应用于管理有组织系统的科学,它为 掌握这类系统的人提供决策目标和数量分析的工 具(大英百科全书). 运筹学应用分析,试验,量化的方法,对经济管理系 , , , 统中的人,财,物等有限资源进行统筹安排,为决策 者提供有依据的最优方案,以实现最有效的管理 (中国企业管理百科全书). 运筹学是一种给出问题不坏答案的艺术,否则的 话问题的结果会更坏。
The solving of LP is:in the feasible solutions which satisfy both (1.2)and (1.3)(x1, x2,…, xn), finding the value of the decision * * * variable (x1 ,x2 ,…,xn )(optimal solution) to make Z get the ( ) max(min) value.。 。
Main contents
线性规划(Linear programming) 运输问题(Transportation problem) 目标规划(Goal programming) 整数规划(Integer programming) 分配问题(Assignment problem) 动态规划(Dynamic programming)
Max
st
3 x1 + 2 x 2 ≤ 18
constrains nonnegative
and
x1 ≥ 0, x2 ≥ 0
1.2 Graphical Solution to Example 1.1
max S = 2 x1 + 5 x2 x1 ≤ 4 x ≤3 2 s.t x1 + 2 x2 ≤ 8 x1 ≥ 0, x2 ≥ 0
Besides A and B, any points on AB are optimal solutions of this problem. So it has multiple optimal solutions.
1.4 Another examples for Graphical Solution
运筹学的定义
运筹学是一门新兴的边缘科学,它使用数方学 法,利用计算机等现代化工具,把复杂的研究对 象当作综合系统,进行定量分析,从整体最优出 发,提出一个最优的可行方案,提供给执行机构 作为决策的参考.
早期运筹学思想
齐王和田忌赛马的故事 丁渭修皇宫的故事(丁渭修宫,一举而三役济) 丹麦工程师A.K.Erlang研究电话占线问题 哥尼斯堡七桥问题 E.Zermelo用集合论研究下棋问题 美国Thomas Edison在第一次世界大战中研 究商船航行策略,防止敌潜艇的攻击.
Main contents
图和网络模型(Graph and network modeling) 存储论(Inventory theory) 博弈论(Game theory) 决策论(Decision theory) 排队论(Queueing theory)
Algorithms and OR courseware
Formulation as a linear programming problem (LP) 1.Define the decision variables;
x1 = number of batches of product 1 produced per week
x2 = number of batches of product 2 produced per 2.Find the objective function: Z = 3x1 + 5 x2
-------A linear programming problem (LP) is an optimization problem for which we do the following: 1 We attempt to maximize pr minimize a linear function of the decision variables. The function that is to be maximized is called the objective function. 2 The values of the decision variables must satisfy a set of constraints. Each constraint must be a linear equation or linear inequality. 3 A sign restriction is associated with each variable. For any variable x i , the sign restriction specifies either that x i must be nonnegative ( x ≥ 0 ) or that x i
1.1The simplification of Prototype Example: The WYNDOR GLASS CO. produces a high-quality glass products and wants to launch two new products. It has 3 plants and product 1 need plants 1 and 3, while products 2 needs plants 2 and 3.All the products (1 and 2) can be sold and table 3.1 on page 27 summarizes the data gathered by the OR team. The goal of the company is to get the maximum profit from the sold products 1 and 2.