直线的法向量和点法式方程
8.1.2 直线的点法式方程

05
分钟
(1) ;
(2) .
解:(1)直线 经过点 ,一个法向量是 ,一个方向向量是 ;
(2)直线 经过点 ,一个法向量是 ,一个方向向量是 .
例题5求过点 且与向量 垂直的直线方程.
解:由直线方程的点法式,得
.
故所求直线方程为 .
质疑
分析
讲解
质疑
分析
讲解
思考
回答
理解
思考
回答
理解
通过例题的讲解,帮助学生掌握根据直线方程求法向量与方向向量的方法与技巧.
通过例题的讲解,帮助学生掌握运用直线的点法式方程建立直线方程的常规方法.
25
分钟
数学学科教案设计(副页)
教学过程
教师
活动
学生
活动
设计
意图
教学
时间
*运用知识 跟踪练习
跟踪练习4写出下列直线经过的一个点和直线的一个法向量及方向向量:
(1) ;
(2) .
跟踪练习5求过点 且与向量 垂直的直线方程.
质疑
巡视
25分钟数学学科教案设计副页教学过程教师活动学生活动设计教师活动学生活动设计意图教学时间教学时间运用知识跟踪练习跟踪练习4运用知识跟踪练习跟踪练习4写出下列直线经过的一个点和直线的一个法向量及方向向量
数学学科教案设计(首页)
班级:课时:2授课时间:年月日
课题:§8.1.2直线的点法式方程
目的要求:
了解直线的点法式方程的推导过程,理解直线的点法式方程,会利用直线的点法式方程建立直线方程;通过数形结合的思想和转化的思想运用,培养学生分析问题和解决问题的能力.
*观察思考 探索新知
法向量
考研数学一大纲空间解析几何

考研数学一大纲空间解析几何空间解析几何是考研数学一科目的重要内容之一。
在考研数学一大纲中,空间解析几何包括平面方程与空间直线、平面及空间中的曲面方程、立体几何与相关计算方法等内容。
下面将对这些内容进行详细讨论。
一、平面方程与空间直线平面方程是空间解析几何的基础,在考研数学一大纲中要求掌握平面的一般方程、点法式方程、截距式方程以及向量法方程。
对于一般方程Ax+By+Cz+D=0,其中A、B、C为方程的系数,D为常数项,可以通过法向量的系数A、B、C来确定该平面的法向量。
点法式方程是通过平面上的一点和法向量来表示平面方程的形式,截距式方程是通过平面与坐标轴的截距来表示平面方程的形式。
向量法方程是通过平面上的一点和与平面垂直的一个向量来表示平面方程的形式。
空间直线也是空间解析几何的重点内容之一。
在考研数学一大纲中要求掌握空间直线的点向式方程、对称式方程以及向量式方程。
点向式方程是通过直线上的一点和方向向量来表示直线方程的形式,对称式方程是通过直线与坐标轴的截距来表示直线方程的形式。
向量式方程是通过直线上一点和与该直线平行的一个向量来表示直线方程的形式。
二、平面及空间中的曲面方程在考研数学一的大纲中,平面与空间中的曲面方程也是重要的内容。
常见的曲面方程包括二次曲面方程、柱面方程、圆锥曲线方程等。
二次曲面方程的一般形式为Ax^2+By^2+Cz^2+Dxy+Exz+Fyz+Gx+Hy+Kz+L=0,其中A、B、C、D、E、F、G、H、K、L为方程的系数。
不同的二次曲面有不同的特点和性质,例如椭球、单叶双曲面、双叶双曲面、椭圆抛物面等。
柱面方程是通过直线沿着某一方向无限延伸而形成的表面。
柱面方程的一般形式为Ax+By+C=0,其中A、B、C为方程的系数。
圆锥曲线方程是由一个点(焦点)和一个直线(准线)确定的曲线。
圆锥曲线方程的一般形式为(x-a)^2+(y-b)^2-(z-c)^2=0,其中(a, b, c)为焦点的坐标。
中等职业教育规划教材数学1-3册目录(人民教育出版社)

中等职业教育规划教材数学1-3册目录(人民教育出版社)目录第一章集合(第一册)1.1集合及其表示1.1.1集合1.1.2集合的表示方法1.2集合之间的关系1.3集合的基本运算1.3.1交集1.3.2并集1.3.3补集1.4充要条件第二章方程与不等式2.1一元一次方程2.2不等式2.2.1不等式的基本性质2.2.2不等式的解集与区间2.2.3含有绝对值的不等式2.2.4一元二次不等式第三章函数3.1函数的概念3.2函数的表示方法3.3函数的单调性3.4函数的奇偶性3.5二次函数的图像和性质3.6函数的应用第四章指数函数与对数函数4.1实数指数4.2指数函数4.3对数及其运算4.3.1对数4.3.2对数的运算4.4对数函数4.5幂函数4.6指数函数与对数函数的应用第五章数列5.1数列5.2等差数列5.2.1等差数列的概念5.2.2等差数列的前n项和5.3等比数列5.3.1等比数列的概念5.3.2等比数列的前n项和5.4等差数列与等比数列的应用第六章空间几何体6.1认识空间几何体6.1.1认识多面体与旋转体6.1.2棱柱、棱锥6.1.3圆柱、圆锥、球6.2空间几何体的表面积与体积6.2.1空间几何体的表面积6.2.2空间几何体的体积第七章三角函数(第二册)7.1任意角的概念与弧度制7.1.1任意角的概念7.1.2弧度制7.2任意角的三角函数7.2.1任意角的三角函数的定义7.2.2单位圆与正弦、余弦线7.2.3利用计算器求三角函数值7.2.4三角函数值在各象限的符号7.3同角三角函数的基本关系式7.4三角函数的诱导公式7.5正弦、余弦函数的图像和性质7.5.1正弦函数的图像和性质7.5.2余弦函数的图像和性质7.6已知三角函数值求角第八章平面向量8.1向量的概念8.2向量的线性运算8.2.1向量的加法8.2.2向量的减法8.2.3数乘向量8.3平面向量的的直角坐标系8.3.1平面向量的直角坐标及其运算8.3.2平面向量平行的坐标表示8.3.3向量的长度公式和中点公式8.4向量的内积8.4.1向量的内积8.4.2向量内积的直角坐标运算第九章直线与圆的方程9.1直线的方程9.1.1直线的方向向量与点向式方程9.1.2直线的斜率与点斜式方程9.1.3直线的法向量与点法式方程9.1.4直线的一般式方程9.2两条直线的位置关系9.2.1两条直线的平行9.2.2两条直线的交点与垂直9.3点到直线的距离9.4圆的方程9.4.1圆的标准方程9.4.2圆的一般方程第十章立体几何初步10.1平面的基本性质10.2空间两条直线的位置关系10.3直线与平面的位置关系10.4平面与平面的位置的关系第十一章概率与统计初步11.1计数的基本原理11.2概率初步11.2.1随机事件与样本空间11.2.2古典概率11.3随机抽样11.3.1简单随机抽样11.3.2系统抽样11.3.3分层抽样11.4用样本估计总体11.4.1用样本的频率分布估计总体的分布11.4.2用样本的数字特征估计总体的数字特征11.5一元线性回归分析第十二章三角计算及其应用(第三册) 12.1和角公式12.1.1两角和与差的余弦12.1.2两角和与差的正弦12.1.3两角和与差的正切12.2倍角公式12.3正弦函数)sin(?ω+=x A y 的图像和性质 12.4解三角形12.4.1余弦定理12.4.2三角形的面积12.4.3正弦定理12.5三角计算及应用举例第十三章圆锥曲线与方程13.1椭圆13.1.1椭圆的标准方程13.1.2椭圆的几何性质13.2双曲线13.2.1双曲线的标准方程13.2.2双曲线的几何性质13.3抛物线13.3.1抛物线的标准方程13.3.2抛物线的几何性质第十四章坐标变换与参数方程14.1坐标变换14.1.1坐标轴的平移14.1.2利用坐标轴的平移化简二元二次方程14.1.3坐标轴的旋转14.1.4利用坐标轴的旋转化简二元二次方程14.2一般二元二次方程的讨论14.2.1化一般二元二次方程为标准式14.2.2一般二元二次方程的讨论14.3参数方程14.3.1曲线的参数方程14.3.2圆的参数方程14.3.3直线的参数方程14.3.4圆锥曲线的参数方程14.4参数方程的应用举例第十五章逻辑代数基础15.1常用逻辑用语15.1.1命题15.1.2量词15.1.3逻辑联结词15.2数制15.2.1十进制与二进制15.2.2十进制与二进制之间的转换15.3逻辑代词15.3.1基本概念与基本逻辑运算15.3.2逻辑代数的运算律和基本定理15.3.3逻辑函数15.3.4逻辑函数的表示方法15.3.5逻辑函数的化简15.3.6逻辑图第十六章算法与程序框图16.1算法的概念16.2程序框图与算法的基本逻辑结构16.2.1程序框图的基本图例16.2.2顺序结构及其框图16.2.3条件分支结构及其框图16.2.4循环结构及其框图16.3条件判断16.4算法案例第十七章数据表格信息处理17.1数组、数据表格的概念17.2数组的代数运算17.3用软件处理数据表格17.4数据表格的图示第十八章编制计划的原理与方法18.1编制计划的有关概念18.2关键路径法18.3统筹图18.3.1网络图18.3.2横道图18.4进度计划的编制18.4.1网络图的时间参数18.4.2时间优化的方法第十九章线性规划初步19.1线性规划问题19.2二元一次不等式表示的区域19.3线性规划问题的图解法19.4线性规划问题的应用举例19.5用Excel解线性规划问题第二十章复数20.1复数的概念20.1.1复数的有关概念20.1.2复数的几何意义20.2复数的运算20.2.1复数的加法和减法20.2.2复数的乘法和除法20.3实系数一元二次方程的解法20.4复数的三角形式20.4.1复数的三角形式20.4.2复数三角形式的乘法与乘方运算20.4.3复数三角形式的除法运算20.4.4复数的开方运算20.5复数的指数形式20.6复数的应用第二十一章概率分布初步21.1排列与组合21.1.1排列与排列数公式21.1.2组合与组合数公式21.2二项式定理21.2.1二项式定理21.2.2二项式系数的性质21.3离散型随机变量及其分布21.3.1离散型随机变量21.3.2二项分布21.4正态分布。
中等职业教育规划教材数学1-3册目录(人民教育出版社)

目录第一章集合(第一册)1.1集合及其表示1.1.1集合1.1.2集合的表示方法1.2集合之间的关系1.3集合的基本运算1.3.1交集1.3.2并集1.3.3补集1.4充要条件第二章方程与不等式2.1一元一次方程2.2不等式2.2.1不等式的基本性质2.2.2不等式的解集与区间2.2.3含有绝对值的不等式2.2.4一元二次不等式第三章函数3.1函数的概念3.2函数的表示方法3.3函数的单调性3.4函数的奇偶性3.5二次函数的图像和性质3.6函数的应用第四章指数函数与对数函数4.1实数指数4.2指数函数4.3对数及其运算4.3.1对数4.3.2对数的运算4.4对数函数4.5幂函数4.6指数函数与对数函数的应用第五章数列5.1数列5.2等差数列5.2.1等差数列的概念5.2.2等差数列的前n项和5.3等比数列5.3.1等比数列的概念5.3.2等比数列的前n项和5.4等差数列与等比数列的应用第六章空间几何体6.1认识空间几何体6.1.1认识多面体与旋转体6.1.2棱柱、棱锥6.1.3圆柱、圆锥、球6.2空间几何体的表面积与体积6.2.1空间几何体的表面积6.2.2空间几何体的体积第七章三角函数(第二册)7.1任意角的概念与弧度制7.1.1任意角的概念7.1.2弧度制7.2任意角的三角函数7.2.1任意角的三角函数的定义7.2.2单位圆与正弦、余弦线7.2.3利用计算器求三角函数值7.2.4三角函数值在各象限的符号7.3同角三角函数的基本关系式7.4三角函数的诱导公式7.5正弦、余弦函数的图像和性质7.5.1正弦函数的图像和性质7.5.2余弦函数的图像和性质7.6已知三角函数值求角第八章平面向量8.1向量的概念8.2向量的线性运算8.2.1向量的加法8.2.2向量的减法8.2.3数乘向量8.3平面向量的的直角坐标系8.3.1平面向量的直角坐标及其运算8.3.2平面向量平行的坐标表示8.3.3向量的长度公式和中点公式8.4向量的内积8.4.1向量的内积8.4.2向量内积的直角坐标运算第九章 直线与圆的方程9.1直线的方程9.1.1直线的方向向量与点向式方程9.1.2直线的斜率与点斜式方程9.1.3直线的法向量与点法式方程9.1.4直线的一般式方程9.2两条直线的位置关系9.2.1两条直线的平行9.2.2两条直线的交点与垂直9.3点到直线的距离9.4圆的方程9.4.1圆的标准方程9.4.2圆的一般方程第十章 立体几何初步10.1平面的基本性质10.2空间两条直线的位置关系10.3直线与平面的位置关系10.4平面与平面的位置的关系第十一章 概率与统计初步11.1计数的基本原理11.2概率初步11.2.1随机事件与样本空间11.2.2古典概率11.3随机抽样11.3.1简单随机抽样11.3.2系统抽样11.3.3分层抽样11.4用样本估计总体11.4.1用样本的频率分布估计总体的分布11.4.2用样本的数字特征估计总体的数字特征 11.5一元线性回归分析第十二章 三角计算及其应用 (第三册) 12.1和角公式12.1.1两角和与差的余弦12.1.2两角和与差的正弦12.1.3两角和与差的正切12.2倍角公式12.3正弦函数)sin(ϕω+=x A y 的图像和性质 12.4解三角形12.4.1余弦定理12.4.2三角形的面积12.4.3正弦定理12.5三角计算及应用举例第十三章圆锥曲线与方程13.1椭圆13.1.1椭圆的标准方程13.1.2椭圆的几何性质13.2双曲线13.2.1双曲线的标准方程13.2.2双曲线的几何性质13.3抛物线13.3.1抛物线的标准方程13.3.2抛物线的几何性质第十四章坐标变换与参数方程14.1坐标变换14.1.1坐标轴的平移14.1.2利用坐标轴的平移化简二元二次方程14.1.3坐标轴的旋转14.1.4利用坐标轴的旋转化简二元二次方程14.2一般二元二次方程的讨论14.2.1化一般二元二次方程为标准式14.2.2一般二元二次方程的讨论14.3参数方程14.3.1曲线的参数方程14.3.2圆的参数方程14.3.3直线的参数方程14.3.4圆锥曲线的参数方程14.4参数方程的应用举例第十五章逻辑代数基础15.1常用逻辑用语15.1.1命题15.1.2量词15.1.3逻辑联结词15.2数制15.2.1十进制与二进制15.2.2十进制与二进制之间的转换15.3逻辑代词15.3.1基本概念与基本逻辑运算15.3.2逻辑代数的运算律和基本定理15.3.3逻辑函数15.3.4逻辑函数的表示方法15.3.5逻辑函数的化简15.3.6逻辑图第十六章算法与程序框图16.1算法的概念16.2程序框图与算法的基本逻辑结构16.2.1程序框图的基本图例16.2.2顺序结构及其框图16.2.3条件分支结构及其框图16.2.4循环结构及其框图16.3条件判断16.4算法案例第十七章数据表格信息处理17.1数组、数据表格的概念17.2数组的代数运算17.3用软件处理数据表格17.4数据表格的图示第十八章编制计划的原理与方法18.1编制计划的有关概念18.2关键路径法18.3统筹图18.3.1网络图18.3.2横道图18.4进度计划的编制18.4.1网络图的时间参数18.4.2时间优化的方法第十九章线性规划初步19.1线性规划问题19.2二元一次不等式表示的区域19.3线性规划问题的图解法19.4线性规划问题的应用举例19.5用Excel解线性规划问题第二十章复数20.1复数的概念20.1.1复数的有关概念20.1.2复数的几何意义20.2复数的运算20.2.1复数的加法和减法20.2.2复数的乘法和除法20.3实系数一元二次方程的解法20.4复数的三角形式20.4.1复数的三角形式20.4.2复数三角形式的乘法与乘方运算20.4.3复数三角形式的除法运算20.4.4复数的开方运算20.5复数的指数形式20.6复数的应用第二十一章概率分布初步21.1排列与组合21.1.1排列与排列数公式21.1.2组合与组合数公式21.2二项式定理21.2.1二项式定理21.2.2二项式系数的性质21.3离散型随机变量及其分布21.3.1离散型随机变量21.3.2二项分布21.4正态分布。
直线的法向量与点法式方程

r 1、已知直线的一个法向量 n , r 求它的一个方向向量 v 。 r r
3、(1)直线的一个方向向量为 r v = (2, 2) ,则它的斜率k = r 它的一个法向量n = 。 r (2)直线的一个法向量为n = (1,1), r 则它的一个方向向量 v = 它的斜率 k = 。
热 身 练 习
点向式方程: v2 ( x − x0 ) − v1 ( y − y0 ) = 0
x − x0 y − y0 = (v1 ≠ 0, v2 ≠ 0) v1 v2
点斜式方程: ( y − y0 ) = k ( x − x0 ) 斜截式方程: y = kx + b
直线的法向量 与点法式方程
r 与直线平行的非零向量, 平行的非零向量 直线的方向向量: 与直线平行的非零向量,用 v 表示 直线的方向向量:
不唯一,互相平行(共线) 不唯一,互相平行(共线)
r 直线的法向量:与直线垂直的非零向量, 直线的法向量:与直线垂直的非零向量, 用 n 表示 垂直的非零向量
不唯一,互相平行(共线) 不唯一,互相平行(共线)
y
r n = ( A
r r uuuu n p0 p = 0
作 业
课本86页 —第6题 练习册62页 —B组第3题
r 3、已知直线 l 的法向量为 n = (2, −3) , 且与两坐标轴围成的三角形的面积为3, 求直线 l 的方程。 解:设直线 l与 x 轴相交于( a, 0) , 由点法式方程,得
典 题
2( x − a ) + (−3)( y − 0) = 0
A( x − x0 ) + B ( y − y0 ) = 0 1、求过点 P (1, 2),且一个法向量为 r n = (3, 4) 的直线方程。 解:由直线的点法式方程,得
第二节 直线方程的点向式与点斜式

典例解析
【举一反三3】 已知直线l的法向量n=(-3,2),并且与 x轴、y轴围成的三角形的面积为12,求直线l的方程.
解:∵直线l的法向量n=(-3,2), ∴可设直线l的方程为-3x+2y+C=0, 又∵直线l与x轴、y轴围成的三角形的面积为12, ∴ 1 | C | | C | =12,解得C=±12,
它的一个法向量为_(_-__2_,__1_) . 8.直线ax-y+a=0(a≠0)在两坐标轴上截距之和是
___a_-__1__.
【提示】 分别令x=0,y=0得直线在y轴、x轴上的 截距分别为a,-1,所以直线在两坐标轴上的截距之和 为a-1.
同步精练
9.经过点A(2,1),且与直线2x+3y-10=0垂直的直线l 的方程为__3_x_-__2_y-__4_=__0_.
典例解析
【例1】 求过点P(-1,2),一个法向量为n=(2,1)的直 线的方程.
2x+y=0
【解析】 此题可由直线的点法式方程求得,也 可以由一般式用待定系数法求得.
方法一:将点P(-1,2)代入直线的点法式方程A(x -x0)+B(y-y0)=0,整理可得直线方程为2x+y=0.
方法二:由于法向量为n=(2,1),可设直线方程为 2x+y+C=0,代入点P(-1,2)可得C=0,即直线方程 为2x+y=0.
典例解析
【例2】 已知点A(-1,2),B(-1,4),求线段AB的垂
直平分线方程.
y=3
【解析】 由题意可知线段AB所在的直线的斜率不
存在,∴线段AB的垂直平分线的斜率为0,∵线段AB的
中点为
1 1 2
,
2
2
4
,即其垂直平分线经过点(-1,3),
直线的方向向量和法向量

量常用 n k , 1 ,当斜率不存在时的法向量常用 n 1,0 。 3、若直线方程是 Ax By C 0 ,则其法向量常用 n A, B ,向量常用 a B, A 。
例 1、 (1)直线 l 的倾斜角是 150 ,则该直线的一个方向向量是
例 3、 直线 l1 : px qy 3 0, l2 : sx ty 3 0, 相交于点 M (3 4) , 求过点 P 1 ( p, q), Q( s, t ) 的直线方程。
直线的方向向量和法向量 点法式方程
直线的方向向量与法向量 1、 与一条直线平行或在直线上的非零向量叫该直线的方向向量,有无数多,当直线斜率存
在时的方向向量常用 a 1, k ,当斜率不存在时的方向向量常用 a 0,1 。
2、 与一条直线垂直的非零向量叫该直线的方向向量,有无数多,当直线斜率存在时的法向
Байду номын сангаас
(2)直线 l 的方向向量是 a (3, 3sin ) ,则该直线的倾斜角的取值范围是 (3)直线 l1 , l2 的方向向量分别是 a (2,1), b (3,1) ,则这两直线的夹角是 (4)直线 l 上两点 P ,斜率= 1 1,2 , P 2 2, a ,其方向 a 1,0 ,则 a
。
直线的点法式方程:直线过点 P( x0 , y0 ) ,法向量 a=(A,B) ,则直线方程是
A x x0 B y y0 0
例 2、 (1)写出直线 x 2 y 3 0 的一个方向向量和法向量; (2)直线 l 过点 P(3,8) ,且与直线 x 2 y 3 0 平行,求该直线。垂直呢?
直线的法向量与点法式方程

的直线的方程。
练习1:已知直线的一个法向量,求它的一个方向向量 1.
n 3 ,5
2.
n3 , 5
3.
n 3,0
4. n 0,5
4. 0,-2
练习2:已知直线的一个方向向量,求它的一个法向量
1. 7,2
2 . -7,-2
3. 7,0
练习3:求通过点P,且一个法向量为 的直线方程。
1.P (1, 2), n 3,4
2.P ( 1 , 2),n3 , 4
课堂小结
1、直线的法向量; 2、直线的点法式方程; 3、直线的法向量与方向向量的关系; 4、向量是研究解析几何的重要工具; 5、平面坐标系建立了代数与几何 联系的桥梁,实现了数形结合。
布置作业
书面作业 1.巩固本节所学知识点; 2.课本P85练习9-3
课外阅读----感知伟人魅力
拓展作业
勒奈〃笛卡尔是伟大的哲学家、物 理学家、数学家、生理学家,解析几 何的创始人,被誉为“近代科学的始 祖”。请查阅他在数学方面做出的贡 献,下节课以小组为单位进行展示。
§9.1.3
直线的法向量和点法式方程
2016.5
温故知新
一、直线的点向式方程
已知直线过点P(x0,y0),方向向量V=(v
v2 ( x x0 ) v1 ( y y0 ) 0
二、直线的点斜式方程
已知直线过点P(x0,y0),斜率k
) v 1 2 ,
y y0 k ( x x0 )
动手实验
实践问题:
一条直线可以由直线上一点P(x0,y0),和与直线 平行的方向向量 V=(v1 , v2 )确定,试动手画一下, 一条直线是否可以通过直线上一点和与直线垂直的一个 向量确定呢?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A(x-x0)+B(y-y0)=0
记⑴ 公⑵ 式
2(x-3)+4(y-5)=0
P 0 (3,5)
n (2, 4)
2(x+3)-4(y-5)=0
P0 (3,5) n (2, 4)
n (2, 4)
⑶ -2(x-3)- 4(y+5)=0 P0 (3, 5)
A(x-x0)+B(y-y0)=0
布 置 作 业
补充(附加)
A
三角形ABC,A(1,-3),B(-2,4),C(0,-2)
求(1)BC边中垂线方程
(2) BC边高线方程
(3)BC边中线方程
B B E C
解: (1) 线段AC中点E (2,4) BE (2, 3)是l BE的一个方向向量 x4 y 1 AC中线所在直线方程为: 即3x 2 y 14 0 2 3 (2) d (1 , 5)是BC中位线的一个方向向量 x2 y4 BC 中位线所在直线方程为: 即5x y 14 0 1 5 5 3 1 5 或AB中点F ( , ), FE ( , )是l FE的一个方向向量 2 2 2 2 x2 y4 l FE的点方向式方程是:
口
答 练 习
n
(2,3)
v
(4,5)
画出符合要求的直线
1、经过点P0
y
P0
o
图1
x
画出符合要求的直线
2、垂直于非零向量 n
y
n
o
图2
x
画出符合要求的直线 3、既经过点P0又垂直于非零向量 y
n
P0
n
x
o
图3
公 式 推 导
P0(x0 , y0)
y
l
已知直线经过点P0(x0 ,y0 ), 一个法向量n=(A,B), 求直线的方程
(1)直线 l 的方向向量不唯一.
已知点A( x1,y1 )和B( x2,y2 )是直线 l 上不同 两点( x1 x2且y1 y2 ),求直线 l 的方向向量.
方向向量 d ( x2 x1,y2 y1 )
探究:已知直线 l 经过点P(x0,y0), l 的一个向量
d =(u,v) , 求这条直线 l 的方程.
x
n A, B
o
直 线 的 点 法 式 方 程
熟 记 公 式
P0(x0 , y0)
o
y
l
直线经过点P0(x0 ,y0 ),
n A, B
一个法向量n=(A,B), 则直线的点法式方程
x
A(x-x0)+B(y-y0)=0
直 线 的 点 法 式 方 程
公 式 推 导
P0(x0 , o y0 )
y
P(x, y)
n A, B
(1)向量P0 P 的坐标为:
(x-x0 , y-y0 )
(2)
P0 P
,
与n=(A,B)的位置关系
是: 垂直 ,
x (3)
P0 P 与n 垂直的充要条件是:
A(x-x0)+B (y-y0)=0 ,
根据直线 l 的方程,写出直线 l 经过的一个 熟 已知点P0和直线 l 的一个法向量 n 的坐标.
n
= (-3,2), P(1,-5),
n学 以 致 用来自例2:已知点A(3,2)和点B(-1,-4)求线段
AB的垂直平分线方程。 解:中点c的坐标 y 2 4 1, 1 3-1 分析: , l
2
o
B
c
x
1c 3, 4 2 4 , 6 点 法向量 AB
1.直线的方向向量
l
v1
v2
P2
P1 O
如图1中,非零向量 PP , P P , v , v 都是直线 l 的方向向量 1 2 2 1 1 2
图1
1.“直线的方向向量”的定义:与直线 l 平行的 非零向量 d 叫做直线 l 的一个方向向量;.
思考:
1、一条直线的方向向量是唯一的吗?
2、这些方向向量的位置关系是怎样的?
x 3 y 5 ① 3 4
②
答案:P(3,5), d (3, 4)
4( x 4) 7( y 6)
P(4,6), d (7, 4)
概 念 形 成
垂直 的非零向量叫做这 与一条直线 平行 法 条直线的方向向量 通常用 n 表示
思考:
1、一条直线的法向量是唯一的吗? 2、这些法向量的位置关系是怎样的? 3、同一条直线的方向向量 v 和 法向量 n 的位置关系是怎样的?
设直线 l 上任意一点Q( x , y ) 则P Q=( x-x0 , y-y0 ) // d =( u , v )
v(x x0 ) - u(y y0 ) = 0.
y
v (x-x0) = u(y-y0,) 当uv 0时,方程是: x x y y u v
0 0
Q
.
直线 l
o
P( x0 , y0 ) d = ( u,v )
中点坐标公式 代入直线的点法式方程 ,
x2 y1 y2 x1 得 , 2 2
法向量 AB
用 点 法 式求直线方程
2
x,y y x -4 (x-1)-6( y+1) =0
2 1 2 1
整理得
2x+3y+1 =0
学 以 致 用
练习:已知点A( ?, ?)和点B( ?, ?)
1 2 5 2
例1 .已知A(1, 2)、B(4, 1)、C(3, 6)为三角形三个顶点, (1)求AC中线所在直线的方程; (2)求BC中位线所在直线的方程.
l
o
的点向式方程为:
*当 u 0, v 0 时,直线 l 的方程是: *当 u 0, v 0 时,直线 l 的方程是:
x x0 y y 0 , (1) u v
x x0 y y0
(u,v中只有一个为零)
(4).观察下列方程,并指出各直线 必过的一点和它们的一个方向向量。
x
1.若直线 l 过点P(x0,y0),方向向量为 d (u,v).
则 v(x x0 ) = u(y y 0 ).
y P(x , y ) 0 0 d (u,v) x
v(x x0 ) - u(y y0 ) = 0.
*当 u v 0 时, 直线 l (u,V都不为零)
(2) Ax By C 0 一个方向向量: d ( B, A)
问 的充要条件是 a1b1 +a2b2 0 题 探 究
直线 的一个法向量n=(A,B),
两向量a(a1 ,a 2 ), b (b1 ,b2 )垂直
则直线 的一个方向向量v如何表示?
v (B, A)
或v (B, A)
学 以 的直线方程。 致 用
(x 0 , y 0)
(A,B)
例1:求过点P(1, 2),且一个法向量为n=(3,4)
解:代入直线的点法式方程, 得 3 (x-1)+ 4(y-2) =0 整理得 3x+ 4y-11 =0 练习1. 求过点p,且一个法向量为n 的直线方程. (1) p(-1,2), =(3,-4) (2)
求线段AB的垂直平分线方程。
反 思 小 结
1、理解一个概念—— 直线的法向量
——与直线垂直的非零向量
2、掌握一个方程—— 直线的点法式方程
A( x - x0 ) +B( y - y0 )=0
3、利用直线的点法式方程可以解决
(1)已知直线上一点和直线的法向量 (2)求线段的垂直平分线方程 (3)求三角形一边的高线所在直线方程