压铸成形工艺及模具设计-文献综述
模具文献综述

模具文献综述一、模具中的机械设计制造业的发展推动了模具业的发展,模具业的发展给制造业以有力的支撑。
创新能力是模具企业生存的关键。
模具制造的首要问题是模具材料。
为了响应模具行业对模具材料不断创新、改进的需要,国内外模具材料供应商在模具材料的技术水平和新材料开发方面做了大量的工作,也取得了不少成就。
二、我国模具产业概况模具是工业生产的基础装备,被称为“工业之母”。
75%的粗加工工业产品零件、50%的精加工零件由模具成型,绝大部分塑料制品也由模具成型。
作为国民经济的基础工业,模具涉及机械、汽车、轻工、电子、化工、冶金、建材等各个行业,应用范围十分广泛。
模具技术水平的高低,在很大程度上决定着产品的质量、效益和新产品的开发能力,因此模具工业的发展水平标志着一个国家工业水平及产品开发能力。
虽然这些年来,中国模具工业一直以15% 左右的增长速度发展,年模具生产总量仅次于日、美之后位居世界第三位。
2007 年上半年模具进口量和出口量分别为9. 47 亿美元和5. 95 亿美元。
我国模具生产点多数是自产自用的模具车间( 分厂) ,商品化模具仅占1 /3 左右。
从模具市场来看,国内的模具生产仍供不应求,约20%左右靠进口,特别是精密、大型复杂和长寿命的高档模具进口比例高达到40% 由此可见,虽然我们模具总量目前达到相当规模,模具水平也有很大提高,但在模具产品和生产工艺水平总体上要比德、美、日、法、意等发达国家至少落后十年,也比英国、加拿大、西班牙、葡萄牙韩国、新加坡等国落后此外,模具的标准化、专业化、商品化程度低,模具配料及模具相关技术比较落后,也是造成与国外先进水平差距大的重要原因CAD/CAE/CAM 一体化先进技术已经在国内部分模具企业得到应用,但要得到推广和普及还要很长一段时间。
综上所述,虽然中国模具工业在过去十多年中取得了令人瞩目的发展.。
但许多方面与工业发达国家相比仍有较大的差距。
特别在大型、精密、复杂和长寿命模具技术上存在明显差距,这些类型模具的生产能力也不能满足国内需求,因而需要大量从国外进口。
模具设计文献综述

燕山大学本科毕业设计(论文)文献综述一、课题国内外现状模具生产技术水平的高低,已成为衡量一个国家产品制造水平高低的重要标志[1]。
因为模具在很大程度上决定着产品的质量、效益和新产品的开发能力。
在电子、汽车、电机、电器、仪器、仪表、家电和通信等产品中60%—80%的零部件都要依靠模具成型。
用模具生产部件所具备的高精度、高复杂程度、高一致性、高生产率和代消耗,是其他加工制造方法所不能比拟的。
模具又是“效益扩大器”,用模具生产的最终产品的价值,往往是模具自身价值的几十倍、上百倍。
目前,全世界模具年产值约为600亿美元,日、美等工业发达国家的模具工业产值已超过机床工业。
我国的模具工业的发展,也日益受到人们的关注和重视。
近几年,我国模具工业一直以每年15%左右的增长速度发展。
二、发展趋势据相关专业人士分析,未来十年,中国模具工业和技术的主要发展方向将主要集中在以下十个方面。
(1)模具结构日趋大型、精密、复杂及寿命日益提高随着零件微型化和模具结构发展的要求(如多工位级进模工位数的增加,其步距精度的提高),模具精度已由原来的5μm 提高到2~3μm,今后有些模具加工精度公差更是要求在1μm 以下,这必将促进超精密加工的发展。
(2)CAD/CAE/CAM 技术在模具设计制造中的广泛应用模具制造是设计的延续,推行模具设计与制造一体化可达到优化设计的要求。
实践证明,模具CAD/CAM/CAE 技术是当代最合理的模具生产方式,既可用于建模、为数控加工提供NC 程序,也可针对不同的模具类型,以相应的基础理论,通过数值模拟方法达到预测产品成型(形)过程的目的,改善模具结构。
从CAD/CAE/CAM 一体化的角度分析,其发展趋势是集成化、三维化、智能化和网络化,其中心思想是让用户在统一的环境中实现CAD/CAE/CAM 协同作业,以便充分发挥各单元的优势和功效[1]。
因此,应大力进行ANSYS、MSC、Moldflow、Dynaform 等高端辅助设计制造软件的培训、推广和应用。
压铸工艺与模具设计

压铸工艺与模具设计压铸是一种常见的金属成型工艺,通过将熔融金属注入到预先设计的模具中,经过冷却与固化,得到所需形状的金属制品。
压铸工艺具有高效、精度高、生产周期短等优点,广泛应用于汽车、机械、电子等领域。
而模具设计是实现压铸工艺的关键环节,决定了产品的质量和生产效率。
下面将从压铸工艺和模具设计两个方面进行详细阐述。
一、压铸工艺1.压铸工艺流程:首先,将金属加热至熔点,并注入到模具中;然后,通过高压注射机构,将熔融金属迅速注入模具中,并保持一段时间;待金属冷却并固化后,打开模具,取出成品。
2.压铸工艺特点:①高效、精度高:压铸通过模具的高速填充和快速冷却,能够实现高效率、高精度的生产;②生产周期短:相比其他金属成型工艺,压铸生产周期较短,适用于大批量生产;③生产成本低:压铸可以实现自动化生产,减少人工成本;④可复杂成型:压铸可以实现复杂形状、薄壁、高强度的金属制品成型。
二、模具设计模具设计是实现压铸工艺的关键环节,影响产品的质量和生产效率的重要因素。
以下是模具设计的主要考虑因素:1.模具材料选择:模具材料要具有耐磨性、耐腐蚀性、热传导性和高温强度,常用的模具材料包括铸钢、合金钢等。
2.模具结构设计:模具结构设计要考虑产品的形状、尺寸及要求,尽可能减少产品缺陷和铸件结构应力,提高生产效率和产品质量。
3.模具冷却系统设计:模具冷却系统的设计直接影响到成品的质量和生产效率。
合理的冷却系统设计可以加快铸件凝固速度,减少缺陷的产生。
4.模具排气系统设计:排气系统的设计对于排除铸件中的气体孔洞和缺陷非常重要,合理的排气系统设计能够提高产品质量。
5.模具表面处理:模具表面处理可以提高成品的表面质量和延长模具寿命,常见的表面处理方式包括硬镀铬、熔融硬化、电镀等。
总结:综上所述,压铸工艺与模具设计是密切相关的。
压铸工艺具有高效、精度高、生产周期短等优点,模具设计是实现压铸工艺的关键环节,包括模具材料选择、模具结构设计、模具冷却系统设计、模具排气系统设计和模具表面处理。
压铸工艺与模具设计毕业论文

压铸工艺与模具设计毕业论文一、选题的依据及意义本课题来源于江铃汽车集团公司骨干企业,江铃汽车集团公司车厢饰件厂的全资子公司,江铃有色金属压铸厂。
该公司成立于2002年5月。
工厂总投入资金为四千万元人民币,自建立起就本着高起点,现代化的原则,工厂以生产铝合金压铸件及其加工为主,已为江铃汽车、奇瑞汽车及中华汽车配套生产变速器及发动机零部件,产品已出口欧洲,工厂还可生产路灯灯罩、电梯踏板、电机壳体等其它铝合金压铸件。
产品图如下所示:压力铸造是近代金属加工工艺中发展较快的一种少无切削的特种铸造方法。
它是将熔融金属在高压高速下充填铸型,并在高压下结晶凝固形成铸件的过程。
高压高速是压力铸造的主要特征。
常用的压力为数十兆帕,填充速度(浇口速度)约为16~80米/秒,金属液填充模具型腔的时间极短,约为0.01~0.2秒。
压力铸造特点如下:一、优点:(1)可以制造形状复杂、轮廓清晰、薄壁深腔的金属零件。
(2)压铸件的尺寸精度较高,可达IT11~IT13级,有时可达IT9级,表面粗糙度达Ra0.8~3.2um,有时达Ra0.4um,互换性好。
(3)材料利用率高。
(4)可以将其他材料的嵌件直接嵌铸在压铸件上。
(5)压铸件组织致密,具有较高的强度和硬度。
(6)可以实现自动化生产。
二、缺点:(1)由于高速充填,快速冷却,形腔中气体来不及排出,致使压铸件常有气孔及氧化夹杂物存在,从而降低了压铸件质量。
(2)压铸机和压铸模质量昂贵,不适合小批量生产。
(3)压铸件尺寸受到限制。
(4)压铸合金种类受到限制。
在此之上还发展出多种特殊压铸工艺,以解决压铸件的气孔和疏松问题。
迄今为止主要有真空压铸、充氧压铸、精速密压铸、半固态压铸等。
由于用这种方法生产产品具有生产效率高,工序简单,铸件公差等级较高,表面粗糙度好,机械强度大,可以省去大量的机械加工工序和设备,节约原材料等优点,且其缺点可以通过特殊压铸得到有效的克服,所以现已成为我国铸造业中的一个重要组成部分。
铸造文献综述

本科毕业设计(论文)文献综述院(系):材料学院专业:材料成型及控制工程班级:2007级一班学生姓名:肖沅均2011 年 2 月15 日文献综述:球墨铸铁件铸造工艺设计中的新技术引言本文介绍球墨铸件具有的性质,研究球墨铸铁件浇注及凝固过程中的特性。
介绍球墨铸铁中微元素的作用和均衡凝固原理设计球墨铸铁件的铸造工艺,冒口设计及特种冒口运用。
研究了如今铸造仿真软件对设计工艺在实际生产中的运用。
1基于均衡凝固原理的铸造工艺1.1 球墨铸件使用特性我国从1950年起就开始生产球墨铸铁,最初作为一种新型的工程结构材料得到快速发展,球墨铸铁问世以来发展到今天,其应用领域在不断扩大。
[1]可以取代锻件、铸钢件、铸铁件,以及灰铸铁因其力学性能不足易被损坏的场合球墨铸铁作为一种独立的结构材料已越来越多地应用于各行各业,如汽车、机床、能源、冶金、石油化学、建筑、电力、海洋工程及核能工业等行业。
1.2 球墨铸件的凝固特性球铁在冷却和凝固过程中,既有液态收缩、凝固收缩,也有石墨析出产生的膨胀。
[2]别于非球墨铸件的凝固体积变化,图1显示出了非球墨铸件凝固过程中的体积变化。
宏观上,球墨铸件成型过程中所表现出来的体积变化是膨胀、收缩相抵的净结果。
图2表达了球墨铸件凝固过程中体积变化。
图1 非石墨铸铁凝固过程中体积变化图[3]图2 球铁(灰铁)铸件体积变化的一般模型[4]a)液态收缩,b)膨胀,c)二次收缩1.3 球墨铸件铸造工艺设计理论1.3.1 球墨铸铁微元素新工艺Si元素较高可以:Ⅰ、加强石墨化能力,消除自由渗碳体;Ⅱ、减少缩松,Si高有利于石墨析出,增加石墨化膨胀;Ⅲ、利于获得铁素体基体[5]。
S元素控制在0.008%~0.01%,用于去除铸件中的碳化物。
[6]锑元素,在球墨铸铁中只要加入0.002%的锑,就可以使石墨球数增多,厚大断面的球铁生产中加入微量元素Sb范围在0.002~0.005%.生产厚壁的铸件,加入0.005的Sb,经孕育处理后,可得到非常圆整的的石墨球,并且在单位面积上石墨球的数量与不加Sb相比增加一倍。
模具设计相关专业毕业论文之文献综述

模具设计文献综述1.前言模具是工业生产中的重要工艺装备,是国民经济各部门发展的重要基础,是衡量一个国家生产力发展水平的重要标志之一,模具已成为当代工业生产的重要手段和工艺发展方向。
随着改革开放和国民经济的高速发展,推动了模具技术和模具工业的新发展,在仪器仪表、家用电器、交通、通讯等各行业中,75%的粗加工工业产品零件、50%的精加工零件由模具成形,绝大部分塑料制品也由模具成形[1]。
模具设计水平的高低、模具制造能力强弱以及模具质量的优劣,直接影响各种产品的质量、经济效益的增长及整体工业水平的提高,现代工业产品的品种发展和生产效益的提高,在很大程度上取决于模具的发展和技术经济水平。
模具工业已成为高新技术产业的一个重要组成部分,现代模具是高技术背景下的工艺密集型工业。
模具技术水平的高低,在很大程度上决定着产品的质量、效益和新产品的开发能力。
同时,模具产业带动作用很强。
现在很多地方开始重视模具行业的发展了,他们认识到当地的产业优势如果要发展,不发展相应的模具产业就没有后劲。
模具是效益放大器,模具是供给制品产业的,可以使相关工业的效益比自身增加约一百倍,因此它的带动作用就大。
模具的发展,不光是带动了自己行业的发展,而且向全国各地方提供模具,实际上是支持了全国相关行业的发展。
模具技术涉及新技术、新工艺、新材料、新设备的开发与推广应用,是一门技术综合性强的精密基础工艺装备技术,是冶金、材料、理化、计量、摩擦与润滑、机电一体化、计算机等多门学科以及铸、锻、热处理、机加工、检测等诸多工种共同打造的系统工程[2]。
用模具生产制品所表现出来的高效率、低消耗、高一致性、高精度和高复杂程度是其他任何加工制造方法所不及的。
由此可见,模具制造业已成为与高新技术产业互为依托的产业,模具工业技术水平的高低已成为衡量国家制造业水平的重要标志之一[3]。
冲压是利用安装在冲压设备上的模具对材料施加压力,使其产生分离或塑性变形,从而获得所需零件的一种压力加工方法[4]。
压铸成型工艺与模具设计

压铸成型工艺与模具设计一、引言压铸成型工艺是一种常见的金属零件制造方法,它通过将熔融金属注入模具中,经过冷却凝固后获得所需形状的零件。
模具设计是压铸成型工艺的关键环节,合理的模具设计可以保证产品质量和生产效率。
本文将介绍压铸成型工艺的基本原理以及模具设计的要点。
二、压铸成型工艺原理压铸成型工艺是将金属材料加热至液态,然后通过高压将熔融金属注入模具中,待冷却后获得所需形状的零件。
压铸成型工艺具有以下特点:1. 精度高:压铸成型工艺可以制造出形状复杂、尺寸精确的零件,满足不同行业的需求。
2. 生产效率高:压铸成型工艺具有高度自动化的特点,可以实现连续生产,提高生产效率。
3. 材料利用率高:压铸成型工艺可以减少废料产生,提高材料利用率。
4. 表面质量好:压铸成型工艺可以制造出光滑平整的表面,减少后续加工工序。
三、模具设计要点1. 材料选择:模具的材料应具有良好的热导性和耐磨性,常用的材料有冷作工具钢、热作工具钢和硬质合金等。
根据零件的要求,选择合适的模具材料。
2. 模具结构设计:模具的结构设计应考虑到零件的形状、尺寸和工艺要求,确保零件的成型质量。
模具的结构主要包括模腔、模芯、导向机构和冷却系统等。
3. 浇注系统设计:浇注系统的设计直接影响到熔融金属的流动和充填情况,应合理布置浇口、冲压头和溢流槽等。
同时,应考虑熔融金属的冷却和凝固过程,避免产生缺陷。
4. 铸件脱模设计:铸件脱模设计应考虑到零件的形状、表面质量和模具的结构,以确保零件的完整性和光洁度。
可以采用顶出机构、斜顶和分模等方式来实现铸件的脱模。
5. 冷却系统设计:冷却系统的设计对于模具寿命和零件质量有着重要影响。
应根据零件的形状和厚度,在模具中设置合适的冷却水路,以加快冷却速度,避免产生缺陷。
6. 模具加工工艺:模具的加工工艺应选用适当的加工方法和工艺参数,以确保模具的精度和表面质量。
常用的加工方法包括数控加工、电火花加工和线切割等。
7. 模具试模调试:模具制造完成后,需要进行试模调试,以验证模具的性能和调整工艺参数。
压铸成形工艺与模具设计

压铸成形工艺与模具设计压铸成形是一种常用的金属成形工艺,它通过将熔融金属注入模具中,经过冷却固化后得到所需的零件形状。
压铸成形工艺具有高精度、高生产效率和可自动化的特点,广泛应用于汽车、电子、家电等领域。
本文将介绍压铸成形工艺的基本步骤以及模具设计的要点。
压铸成形的基本步骤包括模具设计、模具制造、材料准备、操作调试、生产、清洁保养等。
其中,模具设计是整个过程中非常关键的一步。
模具设计的好坏直接影响到成品的质量和生产效率。
模具设计的要点包括以下几个方面:1.零件形状的设计:零件形状应符合成形工艺的要求,避免出现浇注不良、缩松、气泡等缺陷。
同时,还要考虑到零件的结构强度和使用功能。
2.模具结构设计:模具结构应具有足够的刚度和稳定性,能够承受来自注射压力和冷却介质的力。
另外,模具的排气和冷却系统也需要进行合理设计。
3.浇注系统设计:浇注系统包括浇注口、溢流道和冷却孔等。
这些部件的设计应能够实现均匀的材料充填和快速的冷却。
浇注口的位置和大小、溢流道的宽度和长度、冷却孔的分布和尺寸等都需要经过计算和优化。
4.模具材料的选择:模具材料应具有足够的强度和耐磨性,能够承受高温和高压的作用。
常用的模具材料有工具钢、硬质合金和热作钢等。
5.模具制造工艺:模具的制造工艺包括数控加工、电火花加工、抛光等。
这些工艺的选择和操作要符合模具设计的要求,确保模具质量和寿命。
总之,压铸成形工艺与模具设计是密不可分的,模具设计的好坏直接影响到产品的质量和生产效率。
要设计出性能良好的模具,需要综合考虑零件形状、模具结构、浇注系统、材料选择和制造工艺等方面的因素。
只有不断优化和改进,才能满足不同产品的要求,推动压铸成形工艺的发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
压铸成形工艺及模具摘要:本文简要的介绍了压铸的历史简要、压力铸造的基本理论、压铸工艺成型原理及特点、压铸件设计的形状结构要求、压铸件设计的壁厚要求、压铸件的加强筋/肋的设计要求、压铸件的圆角设计要求、压铸件设计的铸造斜度要求、压铸件的常用材料、压铸模具的常用材料以及常用压铸合金的性能和压铸合金的选取用要求。
关键字:压铸,模具,压铸件,压铸材料压铸的历史简要压力铸造是近代金属加工工艺中发展较快的一种少无切削的特种铸造方法。
最原始的压铸机于1856年问世,迄今已有近150年历史,从最早的手工压铸,到现在的全自动化计算机控制压铸,从最早的冷室压铸方法到现在的镁合金hot runner法,现代压铸已渗透到现代制造业的各个行业。
熔融金属是在高压、高速下充填铸型。
并在高压下结晶凝固形成铸件。
高压、高速是压力铸造的主要特征。
由于它具有生产效率高,工序简单。
铸件公差等级较高(常用锌合金为IT10-13,铝合金为IT11-13),表面粗糙度好(锌合金为Ra1.6-3.2,铝合金Ra3.2-6.3),机械强度大,可以省去大量的机械加工工序和设备,节约原材料等优点,现已成为世界铸造业中一个重要组成部分。
锌合金压铸开始于1890年,铝合金压铸开始于1910年,铜合金压铸开始于1911年,镁合金压铸开始于1925年。
压力铸造的基本理论一、典型的填充理论国外在30年代初期已有一些著名专家对压铸过程中金属的流转作了系统的试验研究,比较公认的有三种。
1.喷射填充理论(第一种填充理论)。
它是由德国人学者L.Ffommel于1932年根据流体力学的定律,以理想流体为基础通过实验得出,在速度、压力均保持不变的前提下,金属液进入内浇口,冲击到正对面型壁处——冲击阶段,经撞击后,金属聚集呈涡流状态,向着内浇口一端反向填充——涡流阶段。
最终填充成形。
2.全壁厚填充理论(第二种填充理论)这种理论认为:金属液通过内浇口进入型腔后,即扩张到型壁,然后沿着整个型腔截面向前填充,直到整个型腔充满为止。
3.三阶段填充理论(第三种填充理论)第一阶段:液态金属射入型腔后,沿着型腔各方向扩展,在正常的传热条件下,与型腔壁面相接触的部位形成一层凝固层,亦即铸件的表面层。
第二阶段:铸件表面成壳后,型腔继续受到液体金属的填充,凝固层逐渐增厚,此时合金的粘度亦增,而处于中心部位的液体金属,在第二阶段结束时,尚处于液态,除了继续得到液体金属的补充外,仍可承受来自压室的压射压力。
第三阶段:金属液全部充满型腔,连同浇注系统及压室形成一个封闭的水力系统,在这个系统中各处的压力均等。
压射力仍可通过尚未凝固的内浇口作用于铸件,达到进一步增压的目的。
三阶段填充理论比较全面地考虑了填充的全过程中的传热条件及金属的流动特性。
二.当前国内外典型压力——时间变化的分析1.压射冲头从起始位置到金属进入内浇口之前这段时间。
由于冲头与压室之间的磨擦及水锤等作用,出现较低的压力,磨擦力越大则压力越大。
此阶段称为慢速封口阶段。
2.金属液到达内浇口前沿,内浇口为整个浇注系统中截面积最小,压射压力因而升高,出现一个峰值K,此阶段称为金属液积聚阶段。
3.金属液越过内浇口,变速填充型腔,通过内浇口的速度,称为浇口速度,此过程称为填充阶段。
4.型腔填充完毕,按照压射缸所调整的压力,使铸件在凝固阶段进一步致密的最终加压,其最终压力的大小,取决于压铸机压射系统的性能。
此过程称为增压阶段。
压铸工艺成型原理及特点压铸,即压力铸造,是将液态金属或半液态金属,在高压作用下,以高的速度填充到压铸模的型腔中,并在压力下快速凝固而获得铸件的一种方法。
压铸时常用压力是从几兆帕至几十兆帕,填充起始速度在0.5-70m/s;压铸时的熔料温度,铝合金一般是610-670℃,锌合金一般是400-450℃,模具温度一般为合金温度的三分之一。
压铸件设计的形状结构要求压铸件设计的形状结构要求就目前来说是比较重要的,合理的压铸件结构不仅能简化压铸模具的结构,降低制造成本,同时也能改善压铸件的质量。
应注意如下要求:a、避免内部侧凹或盲孔结构;b、避免或减少垂直于分型面的孔或外部盲孔结构;压铸件设计的壁厚要求同样的,压铸件设计的壁厚要求一样很重要。
压铸件壁厚度(通常称壁厚)是压铸工艺中的关键因素,如熔料填充时间的计算、凝固时间的计算、模具温度梯度的分析、压力(最终比压)的作用、留模时间的长短、压铸件顶出温度的高低及操作效率等等,都与壁厚有着直接的联系。
应注意如下要求:a、压铸件壁厚偏厚会使压铸件的力学性能明显下降,薄壁压铸件致密性好,相对提高了铸件强度及耐压性;b、压铸件壁厚不能太薄,太薄会造成铝合金熔液填充不良,成型困难,使铝合金熔液熔接不好,并给压铸工艺带来困难;c、压铸件随壁厚的增加,其内部气孔、缩孔等缺陷也随之增加;d、应尽量保持壁厚截面的厚薄均匀一致。
根据压铸件的表面积大小划分,锌铝合金压铸件的合理壁厚如下表所示:锌铝合金压铸件的合理壁厚压铸件的加强筋/肋的设计要求一般来说,压铸件常会用到加强筋/肋,加强筋/肋的作用是增加压铸件的强度和刚性,减少铸件收缩变形,避免工件从模具内顶出时发生变形,作为熔料填充时的辅助回路(熔料流动的通路)。
应注意如下要求:a.压铸件的加强筋/肋的厚度应小于所在壁的厚度,一般取该处壁厚的2/3~3/4;压铸件的圆角设计要求就一些压铸件而言,设计适当的工艺圆角,有利于压铸成型,避免应力及产生裂纹,并可延长压铸模具的寿命;当压铸件需要进行电镀或涂覆时,圆角处可防止镀(涂)料沉积,获得均匀镀(涂)层。
应注意如下要求:a. 压铸件上凡是壁与壁的连接处(模具分型面的部位除外)都应设计成圆角;b. 压铸件圆角一般取:1/2 壁厚≤R≤壁厚;压铸件设计的铸造斜度要求对于压铸件,我们还会关心它的脱模难易,所以在设计时常常要设计一定的铸造斜度,铸造斜度是在脱模时,减少压铸件与模具型腔的摩擦,使压铸件容易被取出;减少铸件表面被划伤;延长压铸模使用寿命。
锌铝合金压铸件的一般最小铸造斜度如下表所示:锌铝合金压铸件的一般最小铸造斜度压铸件的常用材料当前企业常用压铸铝合金一般有:ADC12、YL113、YL102、A380、A360 等;常用压铸锌合金一般有: 3#Zn;目前,珠江三角洲地区比较普遍的铝合金材料是ADC12,它在压铸成型性、切削性、机械性能等各方面均有较好的表现。
压铸模具的常用材料一般来说,压铸模具型腔材料要求具有较高的冷热疲劳抗力、良好的断裂韧性及热稳定性。
常用压铸模具型腔材料牌号常用压铸合金的性能一、物理性能见下表:目前常用压铸合金的物理性能熔点名称密度(克/厘米3)液相线固相线铝合金 2.5~2.9 575~630 545~579锌合金 6.7 386~387 380~381镁合金 1.8~1.81 607~492 26.4铜合金8.5~8.85 885~900二、机械性能合金的机械性能是指它抵抗外力作用而表现出来的特性,也称为力学性能。
一般以抗拉强度、屈服强度、塑性、延伸率、断面收缩率、硬度来衡量和反映金属和合金的机械性能。
三、工艺性能1.流动性合金的流动性,即指合金液充填型腔的能力,通常流动性好的合金有利于压铸结构复杂的薄壁铸件,获得尺寸精确,轮廓清晰的优质压铸件,在选择材料时,我们需要时常考虑材料流动性。
一般来说,合金的物理性质及结晶特点是决定流动性好坏的内因,合金的结晶潜热及热容量小而导热率大,且保持液态时间短,合金的凝固温度范围大,则使合金液的流动阻力大;这都会降低其流动性。
从压铸工艺特点来讲,铸型的导热能力俞差,合金液在型腔中的流动阻力俞小,则合金液充填铸型的能力就俞强。
反之,型腔导热系数俞大合金液冷却俞快,充型性能就下降,采用模具(铸型)温控装置及导热系数小的涂料,相对来说,均能提高合金的流动性。
从浇注条件来讲,提高浇注温度可使合金液的热容量增大,延长了保持液态合金的时间,粘度减小,充型能力增强。
但浇注温度过高,合金液吸气增多,氧化严重,铸件的一次结晶组织粗大,容易产生缩孔、缩松、粘模等缺陷。
第二,采用较高的压射速度,可以改善合金液的充型能力。
但是,应该防止因速度过高而造成涡流包气,影响铸件质量。
第三,提高压射压力,也可使合金液的充型能力得到增强。
提高充型能力,改善流动性的措施如下:a 、适当调整合金的成分,严格控制合金液熔炼工艺,净化合金液,减少合金液中的非金属杂物和气体,加入微量元素,细化晶粒。
b 、增加铸型的溢流排气系统,提高除渣排气能力,采用导热率低的涂料。
c 、合理设置浇注系统,适当提高浇注温度及压射速度。
d 、慎重改进铸件结构,改善铸件的压铸工艺性。
2.收缩在铸造合金从液态到凝固完毕,以及此后继续冷却至常温的过程中,都将产生体积和尺寸的变化,这种体积和尺寸的变化总称为收缩。
a 、体收缩式中:V0-- 被测试合金的试样在高温to 时的体积(cm 3)。
V-- 被测试合金的试样至温度t 时的体积(cm 3)。
缩孔与缩松:%10000⨯=-V VV Ea由于合金在液态及凝固期间产生体收缩的结果,使铸件在最后凝固的区域产生宏观或显微孔洞,统称缩孔。
集中性缩孔,容积大而集中,多分布在铸件断面较厚(热节)且最后凝固的地方,分散性缩孔又称缩松,孔洞细小而分散,常与模具温度、压力传递有关。
缩孔与缩松产生的基本条件是合金的液态收缩及凝固收缩远大于固态收缩。
一般的规律是,合金的凝固温度范围愈小,则易形成集中缩孔;反之易形成缩松。
同一种合金,过热度大时缩孔就大,过热度小时缩孔就小。
b 、线收缩式中:L0--被测试合金的试样在高温t 0时的长度(毫米)L —被测试金属的试样降低至温度t 时的长度(毫米)压铸件在铸型内收缩时,往往由于受到摩擦阻碍(铸件表面与铸型表面之间的摩擦力),热阻碍(铸件各部分冷却速度不一致而产生),机械阻碍(铸型的突出部分或型芯的阻碍)等作用而不能自由收缩,故通常将铸件在这些阻力作用下实际产生的收缩,称为受阻收缩。
也称阻碍收缩,阻碍收缩总小于自由收缩。
设计模具时采用缩比,即将铸造收缩率E 铸,计入名义尺寸,用下式表示:L 型-L 件E 铸= ×100%L 件式中:L 型——铸型尺寸(毫米)L 件——压铸件尺寸(毫米)常用合金的综合计算收缩率为:锌合金:0.3~0.5%,铝合金:0.3~0.6%,镁合金:0.4~0.8%,铜合金:0.6~1.0%。
%100线00⨯=-L L L E铸件的热裂,是指合金在高温状态形成的裂纹。
铸件在凝固期间,因受铸型阻而不能自由的收缩时,在铸件内产生的收缩应力超过合金在该温度下的强度时,即产生热裂。
热裂的外形曲折而不规则,裂口表面被强烈氧化。
热裂按其在铸件的位置分为内裂和外裂,外裂常从铸件表面不规则处、尖角处、截面厚度有突变处开始,逐渐延伸至铸件内部,表面较宽内部较窄,有时会贯穿整个铸件断面。