荧光原位杂交(FISH)的优劣
荧光原位杂交技术在产前诊断中的应用价值

荧光原位杂交技术在产前诊断中的应用价值
荧光原位杂交技术(FISH技术)是一种细胞膜结构无关的非引物依赖性基因膜技术,具有信息量大、容易选择性特异性染色体的形式进行检测的突出优点,可以应用于癌症在细胞级别的诊断、早期筛查等基因检测中。
这种技术在产前诊断中的应用价值也是不容忽视的。
荧光原位杂交技术可以用于检测染色体畸形、携带减体和基因突变,这些特定的染色体特征是不育症、先天发育不良、慢性病等疾病发生的风险因素。
目前,荧光原位杂交技术已被广泛应用于根据细胞样本,检测病变染色体携带情况、检测胎儿祖母细胞等基因遗传病等医药诊断。
由于荧光原位杂交技术有较高的特异性,检测精度高,能够及早发现种类多样的遗传疾病,因此在产前诊断行业被大量应用。
通过荧光原位杂交技术可以检测不育和染色体易位,以及慢性缺陷疾病,如继发性近视次数多症和发育性阿尔兹海默,有助于孕妇可以把握宝宝的潜在健康风险并进行相应的治疗以减少其弊端。
此外,荧光原位杂交技术还可以用于检测肿瘤的细胞样本,通过检测染色体的数量、拷贝数、氧化性畸变与携带染色体异常情况,可以准确诊断病变染色体的携带情况,及早发现肿瘤的发展趋势,并为进一步采取相应疗法提供有力依据。
荧光原位杂交(FISH)技术检测水体中大肠菌群研究

荧光原位杂交(FISH)技术检测水体中大肠菌群研究王建龙【期刊名称】《中国生物工程杂志》【年(卷),期】2004(24)2【摘要】大肠菌群广泛用作饮用水的细菌学检测指标。
传统的检测方法有多管发酵法和滤膜法。
这些方法存在一些缺点 ,如检测时间长、专一性差、干扰因素多。
因此 ,迫切需要一些快速、灵敏的检测方法。
FISH(fluorescentinsituhybridization)技术利用寡核苷酸探针检测特定细胞内的互补核苷酸序列。
针对于Enterobacteriaceae的 1 6SrRNA分子区域专门设计的探针可以用于饮用水样品的微生物检测。
FISH技术可以用于饮用水中大肠菌群的检测 ,并且在较短的时间内 ( 6~ 8h)给出定量分析结果 ,但该技术用于日常检测尚需更深入的研究。
【总页数】4页(P70-73)【关键词】饮用水;检测;FISH;荧光原位杂交;大肠菌群【作者】王建龙【作者单位】清华大学核能技术研究院环境技术研究室【正文语种】中文【中图分类】R123【相关文献】1.荧光原位杂交(FISH)技术在转基因小鼠检测中的应用 [J], 谢建云;邵伟娟;潘漪清;高诚2.荧光原位杂交(FISH)技术与免疫组织化学(IHC)技术应用于乳腺癌患者Her2基因检测的评价 [J], 黄俊;邓明凤;郭华雄;陈登峰;王昌富3.工业化学品的致突变研究部分:—用荧光原位杂交(FISH)检测接触二硫化碳CS2工人精子X染色体非整倍体率的初步研究 [J], 郑履康;邓丽霞;等4.用三色荧光原位杂交(Three-Color FISH)检测小鼠精子中染色体数目异常的研究[J], 余龙;张坚宣;史庆华;I.-D.Adler因版权原因,仅展示原文概要,查看原文内容请购买。
荧光原位杂交技术在基因检测中的应用研究

荧光原位杂交技术在基因检测中的应用研究荧光原位杂交技术(FISH)是一种生物学技术,用于检测细胞和组织中的基因、染色体和蛋白质。
FISH技术是一种高分辨率的技术,能够针对单个基因分子或染色体进行检测,从而提高了基因检测的准确性和可靠性。
FISH技术的普及率越来越高,已经成为现代分子生物学领域中不可缺少的技术手段之一。
1. FISH技术的原理FISH技术是利用DNA分子的互补配对原理,将携带有荧光标记的探针与靶标DNA序列进行高度特异性的杂交反应,从而实现对靶标DNA序列的检测。
FISH技术的探针可以是DNA、RNA或蛋白质,根据探针的种类和用途不同,FISH技术也可分为基于DNA的FISH、基于RNA的FISH和基于蛋白质的FISH等多种类型。
基于DNA的FISH是最为常用的一种FISH技术,其原理是将DNA探针与靶标DNA杂交并检测荧光信号强度,以便确定目标DNA序列的分布情况、质量和数量。
2. FISH技术的应用FISH技术在基因检测中的应用非常广泛,可以用于研究各种遗传疾病、染色体异常、癌症等疾病。
FISH技术还可以用于分子诊断、肿瘤学、遗传咨询和生殖医学等领域。
下面将介绍FISH技术在遗传病、染色体异常和癌症等方面的应用。
2.1 遗传病的FISH检测遗传病是由基因异常导致的疾病,FISH技术可以用于检测遗传病相关的基因突变或染色体异常。
例如,FISH技术可以用于检测布氏菌和伤寒杆菌等病原微生物的存在,从而确定感染者的诊断和治疗方案。
FISH技术还可以用于分析多种遗传性疾病的基因突变和染色体缺陷,例如:唐氏综合症、先天性心脏病等。
2.2 染色体异常的FISH检测染色体异常是指染色体数量和结构异常,FISH技术可以用于检测染色体异常和定位染色体断点。
例如,FISH技术可以用于检测癌症细胞中的染色体缺失、重复和易位现象,从而确定癌症的类型、分级和预后。
在生殖医学中,FISH技术还可以用于检测染色体异常和筛查遗传病风险。
组织细胞荧光原位杂交检查

组织细胞荧光原位杂交检查组织细胞荧光原位杂交检查:新时代肿瘤诊疗的重要手段组织细胞荧光原位杂交检查(FISH)是一种现代肿瘤检测手段,已被广泛应用于癌症诊断、预后评估和治疗选择等方面。
本文将从技术原理、临床应用和未来发展三个方面进行介绍。
技术原理FISH技术首先需要获得肿瘤组织标本,并进行脱水、固定和切片等预处理。
随后,通过特定的探针标记DNA部位,FISH技术可以准确地检测染色体异常、基因拷贝数变异和染色体重排等基因结构异常。
同时,FISH技术能够利用荧光标记的探针直接定位到细胞核内某个部位,提高了细胞水平的检测精度。
临床应用FISH技术在临床上主要用于癌症检测和治疗决策。
例如,FISH技术可以检测HER2基因的扩增情况,预测HER2阳性乳腺癌患者对赫赛汀治疗的敏感性和疗效。
此外,FISH技术还可以检测多种癌症患者的病理类型、亚型和分级等信息,有助于个体化治疗的制定和预后评估的精准性提高。
FISH技术还可以应用于遗传学疾病的诊断和预测等方面。
未来发展随着生物技术的迅猛发展,FISH技术的应用范围将更加广泛。
例如,利用荧光标记的超高分辨率探针,可以实现单基因级别的检测。
此外,结合缺损补偿系统、多肽分子探针等新技术,FISH技术将更加高效、快速、精确地检测细胞内的基因变化和功能异常。
同时,在分子分型、免疫分析、仿生工程等多领域的应用下,FISH技术的潜力已经远远超出了当前的肿瘤诊疗范畴。
总之,FISH技术作为一种现代肿瘤检测手段,具有高度的准确性、灵敏度和特异性,为癌症诊断和治疗决策提供了重要依据。
随着技术的不断创新和应用范围的扩展,FISH技术的发展将为肿瘤诊疗带来新的突破和希望。
(注:本文700字)。
fish技术定量的方法

fish技术定量的方法一、引言随着生物科学技术的不断发展,荧光原位杂交(Fluorescence in situ hybridization,简称FISH)技术在生物学研究领域得到了广泛应用。
作为一种非放射性杂交技术,FISH在基因表达、染色体核型分析、基因定位等方面具有显著优势。
本文旨在介绍FISH技术定量的方法,以期为相关领域的研究者提供参考。
二、FISH技术简介1.原理FISH技术利用荧光标记的核酸探针与目标DNA序列特异性结合,通过荧光显微镜观察杂交信号,实现对特定基因或染色体区域的定位与分析。
2.操作步骤FISH技术的操作步骤主要包括:探针设计、样本处理、染色、图像获取与分析、数据处理与定量分析。
3.优点与局限性FISH技术具有非放射性、高灵敏度、特异性强、操作简便等优点。
但同时也存在一定的局限性,如对探针设计的要求较高、样本制备过程较为繁琐等。
三、FISH技术定量方法1.荧光染料选择选择具有良好光谱分辨率和量子产率的荧光染料,如FITC、Cy3、Cy5等,用于标记核酸探针。
2.样本处理与染色针对不同类型的样本(如细胞、组织切片、染色体悬液等),采用适当的处理方法进行制备。
染色过程中,需注意控制探针浓度、杂交温度、杂交时间等条件,以获得最佳实验效果。
3.图像获取与分析利用荧光显微镜对染色后的样本进行观察,捕获杂交信号。
通过专业图像分析软件,对图像进行处理和定量分析。
4.数据处理与定量分析对处理后的图像进行阈值设定、背景扣除等操作,计算目标区域的荧光信号强度。
根据信号强度,对基因表达水平、染色体拷贝数等进行定量分析。
四、实验应用与案例分析1.基因表达分析FISH技术可用于检测特定基因在细胞或组织中的表达水平,有助于研究基因在生物过程中的功能。
2.染色体核型分析FISH技术可实现对染色体核型的快速准确分析,对遗传病的诊断和染色体异常研究具有重要意义。
3.细胞定位分析通过FISH技术,可定位特定基因在细胞内的表达位置,有助于研究细胞结构和功能。
浅谈荧光原位杂交技术(fish)在诊断精子多倍体中的应用研究进展

浅谈荧光原位杂交技术(FISH)在诊断精子多倍体中的应用研究进展浅谈荧光原位杂交技术(FISH)在诊断精子多倍体中的应用研究进展摘要:近年来,由于FISH 技术具有安全、快速及灵敏度高的特点,在诊断精子多倍体中得到了广泛应用,本文主要对荧光原位杂交技术(FISH)在诊断精子多倍体中的应用研究进展进行综述。
关键词:FISH技术精子多倍体1、荧光原位杂交(FISH)技术的概念及原理荧光原位杂交(fluorescence in situ hybridization, FISH)是在20世纪80年代末在放射性原位杂交技术的基础上发展起来的一种非放射性分子细胞遗传技术,以荧光标记取代同位素标记而形成的一种新的原位杂交方法,FISH的基本原理是将DNA(或RNA)探针用特殊的核苷酸分子标记,然后将探针直接杂交到染色体或DNA纤维切片上,再用与荧光素分子偶联的单克隆抗体与探针分子特异性结合来检测DNA序列在染色体或DNA纤维切片上的定性、定位、相对定量分析.FISH具有安全、快速、灵敏度高、探针能长期保存、能同时显示多种颜色等优点,不但能显示中期分裂相,还能显示于间期核。
2、异种体外受精技术的限制精子染色体检测方法主要有异种体外受精技术(人精子?仓鼠卵融合技术)制备人精子染色体和精子FISH分析[1,2]。
1978年Rudak[3]等采用异种体外授精技术首次制备出人精子染色体标本,此方法可以直接观察到精子全部染色体组成,精确分析染色体结构、数目。
但是由于这一技术需要模拟体内精卵结合,以及需要保证体外精子获能的条件和仓鼠的超排卵数等,技术难度大、实验条件要求高,制片成功率低,因此限制了此技术的广泛应用。
3、 FISH技术检测非整倍体的优点非整倍体是导致人类胚胎丢失和染色体疾病的主要原因之一,而非整倍体的产生是由于生殖细胞减数分裂过程中的染色体不分离造成的,因此,阐明非整倍体产生的机制具有重要的意义。
目前,国内外大部分的研究者都通过收集一定数量质量异常与正常的精液标本,通过应用XY性染色体重复序列探针,对处理后的精子细胞进行荧光原位杂交分析,探讨FISH技术在诊断精子多倍体中的应用,从而建立各自实验室精子FISH分析的技术平台,这种方法有助于患者的遗传咨询、PGD异常胚胎的风险预测及携带者有无PGD必要性的评估。
免疫荧光原位杂交技术

免疫荧光原位杂交技术免疫荧光原位杂交(immunofluorescence in situhybridization,简称FISH)技术是一种目前被广泛应用于细胞和组织中的分子生物学技术。
它的应用范围涵盖了人类健康、疾病诊断、基因表达和细胞遗传等诸多领域。
本文将介绍FISH技术的原理、操作步骤及其在各个领域的应用,希望能对你有所启发。
首先,我们来了解一下FISH技术的基本原理。
FISH技术结合了免疫荧光和原位杂交两种方法,可以同时检测细胞或组织中的特定DNA序列与特定蛋白质的共定位。
通过标记特定的DNA探针和特定的抗体,可以在细胞或组织中检测到目标分子的位置和表达水平。
使用FISH技术的步骤如下:首先,应选择合适的标记方法和荧光探针。
标记方法常用的有直接标记和间接标记两种。
接着,将标记过的DNA探针与样本(细胞或组织)接触,使其与目标DNA序列杂交。
经过洗涤、固定和照相,可以观察到目标DNA序列的位置及其与蛋白质的共定位情况。
FISH技术在各个领域都有广泛应用。
在人类健康方面,FISH技术可用于遗传疾病的诊断、肿瘤基因分析和染色体异常的检测。
通过检测染色体畸变和基因突变,可以帮助医生准确判断疾病的种类和程度,为疾病的预防和治疗提供指导。
在基因表达研究中,FISH技术可用于检测特定基因的表达水平、研究基因组中的微小区域以及非编码RNA的研究。
通过观察目标基因在细胞中的表达情况,可以深入了解基因在生理和病理过程中的功能及其调控机制。
此外,在细胞遗传学中,FISH技术可用于研究染色体结构、染色体的分离和重组事件的发生机制。
通过观察染色体在细胞分裂过程中的运动轨迹,可以揭示染色体复制、分离和重组等关键生物学过程的机制。
综上所述,免疫荧光原位杂交技术是一种生物学研究中重要的分子生物学技术。
它可以帮助我们更全面地了解细胞和组织中的分子表达及其调控机制。
未来,随着技术的不断发展和创新,FISH技术将在医学诊断、基础科学研究和药物开发等领域发挥更加重要的作用。
荧光原位杂交技术用于快速产前诊断临床评价

早期研究使用的是自行研制探针, 报道多见有 较高假阴性率,而假阳性报道很少。 例如对 4 500 例 羊水资料分析显示,FISH 检测常染色体时假阴性率 7.4% , 未 有 假 阳 性 ; 检 测 性 染 色 体 时 未 有 假 阴 性 , 假 阳性率仅为 0.003%。 近年随着各国使用商品化的探 针,FISH 检测假阴性和假阳性均显著降低。 曾有报 道 1 例 Vysis 探针检测为 21 三体, 实际为 7 号染色 体结构异常。 另有 1 例使用 13 号染色体位点特异性 探针(13q14),此探针 跨度为 440 kb,在 所 杂 交 的 区 域中含有 180 kb 的 RB1 基因,RB1 基因可在视网膜 母细胞瘤 retinoblastoma 中缺失。 因此如果当胎儿 13 号 染 色 体 上 有 大 片 段 的 RB1 基 因 缺 失 或 是 侧 翼 序 列缺失,可导致 13 三体漏检,这种情况只 有在中期 细 胞 核 中 染 色 体 浓 缩 状 态 时 方 能 检 测 出 信 号 [4]。
【Key words】 Fluorescence in situ hybridization; Prenatal diagnosis; Amniocentesis; Chorionic villus sampling (J Int Obstet Gynecol, 2009, 36:172-177)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
荧光原位杂交(FISH)的优劣
优点:
1、应用广泛,不仅可用于已知基因或序列的染色体定位,也可用于未克隆基因或遗传标记,染色体变异,基因突变,基因拷贝数变化的检测。
既可用于DNA检测也可用于RNA 检测,一定程度上即可反应基因水平变化,也可间接反应蛋白水平变化。
2、荧光试剂和探针经济、安全,探针稳定,一次标记后可在两年内使用;
3、实验周期短、能迅速得到结果、特异性好、定位准确;
4、FISH可定位长度在1kb的DNA序列,其灵敏度与放射性探针相当;
5、多色FISH通过在同一个核中显示不同的颜色可同时检测多种序列;
6、既可以在玻片上显示中期染色体数量或结构的变化,也可以在悬液中显示间期染色体DNA的结构。
缺点:
1、步骤繁多,容易造成信号丢失,造成假阴性结果;
2、只能定性检测,不能定量;
3、 RNA检测只能间接反应检测基因的表达情况,会与蛋白质水平检测结果不一致;
4、不能达到100%杂交,特别是在应用较短的cDNA探针时效率明显下降。