韦达定理与整数根的问题专题
韦达定理全面练习题及答案 (1)

1、韦达定理(根与系数的关系)韦达定理:对于一元二次方程20(0)ax bx c a ++=≠,如果方程有两个实数根12,x x ,那么 说明:定理成立的条件0∆≥练习题一、填空:1、如果一元二次方程c bx ax ++2=0)(0≠a 的两根为1x ,2x ,那么1x +2x = , 1x 2x = .2、如果方程02=++q px x 的两根为1x ,2x ,那么1x +2x = ,1x 2x = .3、方程01322=--x x 的两根为1x ,2x ,那么1x +2x = ,1x 2x = .4、如果一元二次方程02=++n mx x 的两根互为相反数,那么m = ;如果两根互为倒数,那么n = .5方程0)1(2=-++n mx x 的两个根是2和-4,那么m = ,n = .6、以1x ,2x 为根的一元二次方程(二次项系数为1)是 .7、以13+,13-为根的一元二次方程是 .8、若两数和为3,两数积为-4,则这两数分别为 .9、以23+和23-为根的一元二次方程是 .10、若两数和为4,两数积为3,则这两数分别为 .11、已知方程04322=-+x x 的两根为1x ,2x ,那么2212x x += .12、若方程062=+-m x x 的一个根是23-,则另一根是 ,m 的值是 .13、若方程01)1(2=----k x k x 的两根互为相反数,则k = ,若两根互为倒数,则k = .14、如果是关于x 的方程02=++n mx x 的根是2-和3,那么n mx x ++2在实数范围内可分解为 .二、已知方程0232=--x x 的两根为1x 、2x ,且1x >2x ,求下列各式的值:(1)2212x x += ; (2)2111x x += ; (3)=-221)(x x = ; (4))1)(1(21++x x = .三、选择题:1、关于x 的方程p x x --822=0有一个正根,一个负根,则p 的值是( )(A )0 (B )正数 (C )-8 (D )-42、已知方程122-+x x =0的两根是1x ,2x ,那么=++1221221x x x x ( )(A )-7 (B) 3 (C ) 7 (D) -33、已知方程0322=--x x 的两根为1x ,2x ,那么2111x x +=( ) (A )-31 (B) 31 (C )3 (D) -3 4、下列方程中,两个实数根之和为2的一元二次方程是( )(A )0322=-+x x (B ) 0322=+-x x(C )0322=--x x (D )0322=++x x5、若方程04)103(422=+--+a x a a x 的两根互为相反数,则a 的值是( )(A )5或-2 (B) 5 (C ) -2 (D) -5或26、若方程04322=--x x 的两根是1x ,2x ,那么)1)(1(21++x x 的值是( )(A )-21 (B) -6 (C ) 21 (D) -25 7、分别以方程122--x x =0两根的平方为根的方程是( )(A )0162=++y y (B ) 0162=+-y y(C )0162=--y y (D )0162=-+y y四、解答题:1、若关于x 的方程02352=++m x x 的一个根是-5,求另一个根及m 的值.2、关于x 的方程04)2(222=++-+m x m x 有两个实数根,且这两根平方和比两根积大21. 求m 的值.3、若关于x 的方程03)2(2=---+m x m x 两根的平方和是9. 求m 的值.4、已知方程032=--m x x 的两根之差的平方是7,求m 的值.5、已知方程0)54(22=+--+m x m m x 的两根互为相反数,求m 的值.6、关于x 的方程0)2()14(322=++--m m x m x 的两实数根之和等于两实数根的倒数和,求m 的值.7、已知方程m x x 322+-=0,若两根之差为-4,求m 的值.8、已知12,x x 是一元二次方程24410kx kx k -++=的两个实数根.(1) 是否存在实数k ,使12123(2)(2)2x x x x --=-成立?若存在,求出k 的值;若不存在,请您说明理由.(2) 求使12212x x x x +-的值为整数的实数k 的整数值. 答案:。
2021年中考一轮复习数学重难点 :一元二次方程解法、判别式和韦达定理、整数根问题

重难点突破:一元二次方程解法、判别式和韦达定理、整数根问题题型一、一元二次方程的定义:关于一元二次方程的定义考查点有三个:①二次项系数不为0;②最高次数为2;③整式方程 【例1】关于x 的方程22(1)260a x ax ++-=是一元二次方程,则a 的取值范围是( )A.1a ≠±B.0a ≠C.a 为任何实数D.不存在【解析】21a +恒大于0 【答案】C【巩固】已知关于x 的方程22(2)1a x ax x --=-是一元二次方程,求a 的取值范围. 【解析】整理方程得:2(3)10a x ax --+=,当3a ≠时,原方程是一元二次方程. 【答案】3a ≠【例2】若2(3)330n m x nx ---+=是关于x 的一元二次方程,则m 、n 的取值范围是( )A.0m ≠、3n =B.3m ≠、4n =C.0m ≠,4n =D.3m ≠、0n ≠【答案】B【例3】若2310a b a b x x +--+=是关于x 的一元二次方程,求a 、b 的值. 【答案】分以下几种情况考虑:⑴22a b +=,2a b -=,此时43a =,23b =-; ⑵22a b +=,1a b -=,此时1a =,0b =; ⑶21a b +=,2a b -=,此时1a =,1b =-【巩固】已知方程20a b a b x x ab +---=是关于x 的一元二次方程,求a 、b 的值.【答案】本题有3种情况:22a b a b +=⎧⎨-=⎩;21a b a b +=⎧⎨-=⎩;12a b a b +=⎧⎨-=⎩;解得20a b =⎧⎨=⎩;3212a b ⎧=⎪⎪⎨⎪=⎪⎩;3212a b ⎧=⎪⎪⎨⎪=-⎪⎩.题型二:一元二次方程根的考察关于一元二次方程根的考查就是需要将根代入方程得到一个等式,然后再考察恒等变换。
(将根代入方程,这是很多同学都容易忽略的一个条件)【例4】关于x 的一元二次方程22(1)10a x x a -++-=的一个根是0,则a 的值为( )A.1B.1-C.1或1-D.12【答案】B【例5】若m 是方程23220x x --=的一个根,那么代数式2312m m -+的值为________【解析】∵m 是方程23220x x --=的一个根, ∴23220m m --= 即2312m m -=,∴代数式23122m m -+=(像这样的恒等变形,很多学生掌握都不是很熟练)【答案】2【巩固】若两个方程20x ax b ++=和20x bx a ++=只有一个公共根,则( )A.a b =B.0a b +=C.1a b +=D.1a b +=-【解析】先确定方程的公共根,再将这个公共根代入某一方程,即可得a 、b 满足的关系式 【答案】设两方程的公共根为m ,则20m am b ++=①,20m bm a ++=②,①-②得,()0a b m b a -+-=,∴()a b m a b -=-,解得1m = 将1m =代入①得10a b ++= ∴1a b +=-选D【例6】一元二次方程22110a x ax a +-+-=()的一个根为0,则a =________。
韦达定理与根的判别式

韦达定理与根的判别式这个专题是一二次方程是的判别式与韦达定理知识要点和练习韦达定理与根的判别式知识点:1、根的判别式b24ac(1)b24ac 0 ,方程有两个不相等的实数根;(2)b2 4ac 0,方程有两个相等的实数根;(3)b2 4ac 0,方程没有实数根;2、韦达定理已知x1,x2是一元二次方程的两根,则有xb1 x2ax1x2ca例1:已知一元二次方程x22x m 1 0 (1)当m取何值时,方程有两个不相等的实数根?(2)设x21,x2是方程的两个实数根,且满足x1 x1x2 1,求m的值练习:1、方程x23 0的根的情况是()A有两个不等的有理实根B有两个相等的有理实根C有两个不等的无理实根D有两个相等的无理实根2、已知x2 1,x2是方程2x 3x 4 0的两个根,则()A x331 x2 2 ,x1x2 2 B x1 x2 2 ,x1x2 2 C x1 x322,x1x2 2 D x31 x22,x1x2 23、已知方程x2 2 0,则此方程()A 无实数根B两根之和为C两根之积为2D有一根为2 1这个专题是一二次方程是的判别式与韦达定理知识要点和练习4、已知x1,x2是方程2x 3x 1 0的两个根,则3221x11x2的值为()A 3B -3C D5、若将二次三项式x2 px 6因式分解,分解后的一个因式是x-3,则p的值是()A -5 B -1 C 1 D 56、已知x1,x2是方程x 4x 3 0的两个根,那么x1x2的值是() A - 4 B 4 C -3 D 37、在一元二次方程ax2 bx c 0(a 0)中,若a与c异号,则方程()A 有两个不相等的实数根 B 有两个相等的实数根 C 没有实数根 D 根的情况无法确定8、已知一元二次方程的两根分别为x1 3,x2 4,则这个方程为() A (x 3)(x 4) 0 B (x 3)(x 4) 0 C (x 3)(x 4) 0 D (x 3)(x 4) 09、关于x的一元二次方程3x 2x k 1 0有两个不相等的实数根,则k的取值范围是() A k432243且k 1 C k2243D k4310、若关于x的一元二次方程(m 2)x (2m 1)x 1 0有两个不相等的实数根,则m的取值范围为() A m43B m43C m43且m 2 D m43且m 22211、已知一直角三角形的三边为a、b、c,∠B=90 ,那么关于x的方程a(x 1) 2cx b(x 1) 0的根的情况为()A 有两个不相等的实数根B 有两个相等的实数根C 没有实数根D 无法确定12、设x1,x2是方程2x 4x 3 0的两个根,则2221x11x213、已知关于x的方程x 2(m 2)x m 0有两个实数根,且两根的平方和等于16,则m的值为14、已知方程x (12x20的两根为x1,x2,则x1 x2的值为2215、关于x的一元二次方程mx (3m 1)x m 0,其根的判别式的值为1,求m的值及该方程的根。
2021年中考一轮复习数学重难点 :一元二次方程解法、判别式和韦达定理、整数根问题

重难点突破:一元二次方程解法、判别式和韦达定理、整数根问题题型一、一元二次方程的定义:关于一元二次方程的定义考查点有三个:①二次项系数不为0;②最高次数为2;③整式方程 【例1】关于x 的方程22(1)260a x ax ++-=是一元二次方程,则a 的取值范围是( )A.1a ≠±B.0a ≠C.a 为任何实数D.不存在【解析】21a +恒大于0 【答案】C【巩固】已知关于x 的方程22(2)1a x ax x --=-是一元二次方程,求a 的取值范围. 【解析】整理方程得:2(3)10a x ax --+=,当3a ≠时,原方程是一元二次方程. 【答案】3a ≠【例2】若2(3)330n m x nx ---+=是关于x 的一元二次方程,则m 、n 的取值范围是( )A.0m ≠、3n =B.3m ≠、4n =C.0m ≠,4n =D.3m ≠、0n ≠【答案】B【例3】若2310a b a b x x +--+=是关于x 的一元二次方程,求a 、b 的值. 【答案】分以下几种情况考虑:⑴22a b +=,2a b -=,此时43a =,23b =-; ⑵22a b +=,1a b -=,此时1a =,0b =; ⑶21a b +=,2a b -=,此时1a =,1b =-【巩固】已知方程20a b a b x x ab +---=是关于x 的一元二次方程,求a 、b 的值.【答案】本题有3种情况:22a b a b +=⎧⎨-=⎩;21a b a b +=⎧⎨-=⎩;12a b a b +=⎧⎨-=⎩;解得20a b =⎧⎨=⎩;3212a b ⎧=⎪⎪⎨⎪=⎪⎩;3212a b ⎧=⎪⎪⎨⎪=-⎪⎩.题型二:一元二次方程根的考察关于一元二次方程根的考查就是需要将根代入方程得到一个等式,然后再考察恒等变换。
(将根代入方程,这是很多同学都容易忽略的一个条件)【例4】关于x 的一元二次方程22(1)10a x x a -++-=的一个根是0,则a 的值为( )A.1B.1-C.1或1-D.12【答案】B【例5】若m 是方程23220x x --=的一个根,那么代数式2312m m -+的值为________【解析】∵m 是方程23220x x --=的一个根, ∴23220m m --= 即2312m m -=,∴代数式23122m m -+=(像这样的恒等变形,很多学生掌握都不是很熟练)【答案】2【巩固】若两个方程20x ax b ++=和20x bx a ++=只有一个公共根,则( )A.a b =B.0a b +=C.1a b +=D.1a b +=-【解析】先确定方程的公共根,再将这个公共根代入某一方程,即可得a 、b 满足的关系式 【答案】设两方程的公共根为m ,则20m am b ++=①,20m bm a ++=②,①-②得,()0a b m b a -+-=,∴()a b m a b -=-,解得1m = 将1m =代入①得10a b ++= ∴1a b +=-选D【例6】一元二次方程22110a x ax a +-+-=()的一个根为0,则a =________。
韦达定理例题

解:设方程的两整数根为x1、x2,不妨设x1≤x2.由韦达定理,得
x1+x2=-p,x1x2=q.
于是x1·x2-(x1+x2)=p+q=198,
即x1·x2-x1-x2+1=199.
例4已知二次函数y=-x²+px+q的图像与x轴交于(α,0)、(β,0)两点,且α>1>β,求证:p+q>1. (97四川省初中数学竞赛试题)
证明:由题意,可知方程-x²+px+q=0的两根为α、β.
由韦达定理得 α+β=p,αβ=-q.
于是p+q=α+β-αβ,
x1+x2=12-m,x1x2=m-1.
于是x1x2+x1+x2=11,
即(x1+1)( x2+1)=12.
∵x1、x2为正整数,
解得x1=1,x2=5;x1=2,x2=3.
故有m=6或7.
例3求实数k,使得方程kx^2+(k+1)x+(k-1)=0的根都是整数.
∴运用提取公因式法(x1-1)·(x2-1)=199.
注意到(x1-1)、(x2-1)均为整数,
解得x1=2,x2=200;x1=-198,x2=0.
例2已知关于x的方程x^2-(12-m)x+m-1=0的两个根都是正整数,求m的值.
解:设方程的两个正整数根为x1、x2,且不妨设x1≤x2.由韦达定理得
=-(αβ-α-β+1)+1
初中数学韦达定理习题及答案

10.(4分)(2004郑州)如果(2a+2b+1)(2a+2b﹣1)=63,那么a+b的值为_________ .
考点:单项式乘单项式;幂的乘方与积的乘方;同底数幂的除法;整式的除法。1923992
分析:根据单项式乘单项式的法则,单项式除单项式的法则,幂的乘方的`性质,同底数幂的除法的性质,对各选项计算后利用排除法求解.
解答:解:①3x3(﹣2x2)=﹣6x5,正确;
②4a3b÷(﹣2a2b)=﹣2a,正确;
③应为(a3)2=a6,故本选项错误;
整式的乘除与因式分解单元测试卷(选择题)
下面是对整式的乘除与因式分解单元测试卷中选择题的练习,希望同学们很好的完成。
整式的乘除与因式分解单元测试卷
选择题(每小题4分,共24分)
1.(4分)下列计算正确的是()
A.a2+b3=2a5B.a4÷a=a4C.a2a3=a6D.(﹣a2)3=﹣a6
2.(4分)(x﹣a)(x2+ax+a2)的计算结果是()
因式分解同步练习(解答题)
解答题
9.把下列各式分解因式:
①a2+10a+25②m2-12mn+36n2
③xy3-2x2y2+x3y④(x2+4y2)2-16x2y2
10.已知x=-19,y=12,求代数式4x2+12xy+9y2的值.
11.已知│x-y+1│与x2+8x+16互为相反数,求x2+2xy+y2的值.
(含答案)韦达定理(根与系数的关系)

根与系数的关系(韦达定理)练习题一、填空:1、 如果一元二次方程c bx ax ++2=0)(0≠a 的两根为1x ,2x ,那么1x +2x = ,1x 2x = .2、如果方程02=++q px x 的两根为1x ,2x ,那么1x +2x = ,1x 2x = .3、方程01322=--x x 的两根为1x ,2x ,那么1x +2x = ,1x 2x = .4、如果一元二次方程02=++n mx x 的两根互为相反数,那么m = ;如果两根互为倒数,那么n = . 5方程0)1(2=-++n mx x 的两个根是2和-4,那么m = ,n = .6、以1x ,2x 为根的一元二次方程(二次项系数为1)是 .7、以13+,13-为根的一元二次方程是 .8、若两数和为3,两数积为-4,则这两数分别为 .9、以23+和23-为根的一元二次方程是 .10、若两数和为4,两数积为3,则这两数分别为 .11、已知方程04322=-+x x 的两根为1x ,2x ,那么2212x x += .12、若方程062=+-m x x 的一个根是23-,则另一根是 ,m 的值是 .13、若方程01)1(2=----k x k x 的两根互为相反数,则k = ,若两根互为倒数,则k = .14、如果是关于x 的方程02=++n mx x 的根是2-和3,那么n mx x ++2在实数范围内可分解为 .二、已知方程0232=--x x 的两根为1x 、2x ,且1x >2x ,求下列各式的值:(1)2212x x += ; (2)2111x x += ;(3)=-221)(x x = ; (4))1)(1(21++x x = . 三、选择题:1、关于x 的方程p x x --822=0有一个正根,一个负根,则p 的值是( )(A )0(B )正数(C )-8(D )-42、已知方程122-+x x =0的两根是1x ,2x ,那么=++1221221x x x x ( ) (A )-7 (B) 3 (C ) 7 (D) -33、已知方程0322=--x x 的两根为1x ,2x ,那么2111x x +=( )(A )-31 (B) 31 (C )3 (D) -3(A )0322=-+x x (B ) 0322=+-x x (C )0322=--x x (D )0322=++x x5、若方程04)103(422=+--+a x a a x 的两根互为相反数,则a 的值是( )(A )5或-2 (B) 5 (C )-2 (D)-5或2 6、若方程04322=--x x 的两根是1x ,2x ,那么)1)(1(21++x x 的值是()(A )-21(B)-6 (C )21(D) -257、分别以方程122--x x =0两根的平方为根的方程是( )(A )0162=++y y (B ) 0162=+-y y (C )0162=--y y (D )0162=-+y y四、解答题:1、若关于x 的方程02352=++m x x 的一个根是-5,求另一个根及m 的值.2、关于x 的方程04)2(222=++-+m x m x 有两个实数根,且这两根平方和比两根积大21. 求m 的值.3、 若关于x 的方程03)2(2=---+m x m x 两根的平方和是9. 求m 的值.4、已知方程032=--m x x 的两根之差的平方是7,求m 的值.5、已知方程0)54(22=+--+m x m m x 的两根互为相反数,求m 的值.6、关于x 的方程0)2()14(322=++--m m x m x 的两实数根之和等于两实数根的倒数和,求m 的值.7、已知方程m x x 322+-=0,若两根之差为-4,求m 的值.8、已知12,x x 是一元二次方程24410kx kx k -++=的两个实数根.(1) 是否存在实数k ,使12123(2)(2)2x x x x --=-成立?若存在,求出k 的值;若不存在,请您说明理由.(2) 求使12212x x x x +-的值为整数的实数k 的整数值.9、设21x x ,是方程03422=-+x x 的两根,利用根与系数关系求下列各式的值:)1)(1()1(21++x x 、 2111)2(x x +、 2112)3(x x x x +、 121212)4(x x x x ++、10、设方程03742=+-x x 的两根为21x x ,,不解方程,求下列各式的值:(1) 2221x x + (2) 21x x - (3)21x x + (4)21x x -11、已知21x x ,是方程01322=-+x x 的两个根,利用根与系数的关系,求下列各式的值:(1) )32)(32(21--x x ; (2)321231x x x x +12、实数s、t分别满足方程0199192=++s s 和且099192=++t t 求代数式t s st 14++的值。
韦达定理的应用题_证明_公式

韦达定理的应用题_证明_公式(总8页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--根的判别式和韦达定理是实系数一元二次方程的重要基础知识,利用它们可进一步研究根的性质,也可以将一些表面上看不是一元二次方程的问题转化为一元二次方程来讨论.1.判别式的应用例1 (1987年武汉等四市联赛题)已知实数a、b、c、R、P满足条件PR>1,Pc+2b+R a=0.求证:一元二次方程ax2+2bx+c=0必有实根.证明△=(2b)2-4ac.①若一元二次方程有实根,必须证△≥0.由已知条件有2b=-(Pc+Ra),代入①,得△ =(Pc+Ra)2-4ac=(Pc)2+2PcRa+(Ra)2-4ac=(Pc-Ra)2+4ac(PR-1).∵(Pc-Ra)2≥0,又PR>1,a≠0,(1)当ac≥0时,有△≥0;(2)当ac<0时,有△=(2b)2-4ac>0.(1)、(2)证明了△≥0,故方程ax2+2bx+c=0必有实数根.例2 (1985年宁波初中数学竞赛题)如图21-1,k是实数,O是数轴的原点,A是数轴上的点,它的坐标是正数是数轴上另一点,坐标是x,x<a,且OP2=k·PA·OA.(1) k为何值时,x有两个解x1,x2(设x1<x2);此处无图(2)若k>1,把x1,x2,0,a按从小到大的顺序排列,并用不等号“<”连接.解(1)由已知可得x2=k·(a-x)·a,即x2+kax-ka2=0,当判别式△>0时有两解,这时△ =k2a2+4ka2=a2k(k+4)>0.∵a>0,∴k(k+4)>0,故k<-4或k>0.(2)x1<0<x2<a.例3(1982年湖北初中数学竞赛题)证明不可能分解为两个一次因式之积. 分析若视原式为关于x的二次三项式,则可利用判别式求解.证明将此式看作关于x的二次三项式,则判别式△ =显然△不是一个完全平方式,故原式不能分解为两个一次因式之积.例3 (1957年北京中学生数学竞赛题)已知x,y,z是实数,且x+y+z=a,①②求证:0≤x≤0≤y≤0≤z≤分析将①代入②可消去一个字母,如消去z,然后整理成关于y的二次方程讨论.证明由①得z=a-x-y,代入②整理得此式可看作关于y的实系数一元二次方程,据已知此方程有实根,故有△ =16(x-a)2-16(4x2-4ax+a2)≥0≥0≤x≤同理可证:0≤y≤,0≤z≤.例5设a1,a2,a3,b是满足不等式(a1+a2+a3)2≥2()+4b的实数.求证:a1a2+a2a3+a3a1≥3b.证明由已知可得≤0.设则∵a3是实数,故△≥0,即有(a1+a2)2≥()-2a1a2+4b+r≥2()-(a1+a2)2+4b.于是(a1+a2)2≥()+2b,∴a1a2≥b.同理有a2a3≥b,a3a1≥b.三式相加即得a1a2+a2a3+a3a1≥3b.例6 设a、b、c为实数,方程组与均无实数根.求证:对于一切实数x都有>证明由已知条件可以推出a≠0,因为若a=0,则方程组至少有一个有实数解.进一步可知,方程ax2+bx+c=±x无实根,因此判别式△=<0,于是(b-1)2+(b+1)-8ac<0.即 4ac-b2>1.∴>2.韦达定理的应用例7 (1899年匈牙利数学奥林匹克竞赛题)假设x1、x2是方程x2-(a+d)x+ad-bc=0的根.证明这时是方程的根.证明由已知条件得∴=a3+d3+3abc+3bcd,由韦达定理逆定理可知,、是方程的根.例8已知两个系数都是正数的方程a1x2+b1x+c1=0,①a2x2+b2x+c2=0,②都有两个实数根,求证:(1)这两个实数根都是负值;(2)方程 a1a2x2+b1b2x+c1c2=0 ③③也有两个负根.证明∵方程①有两个实数根,∴>0. ④同理>0. ⑤又a1、b1、c1都是正数,∴>0,<0.由此可知方程①的两根是负值.同样可证方程②的两根也是负值.显然a1c1<4a1c1代入④,得>0,⑥由>0,得>⑦∴△=≥=>0,∴方程③也有两个实数根.又a1a2>0,b1b2>0,c1c2>0,∴>0,<0.由此可知方程③的两个根也是负值.例9(1983年上海初中数学竞赛题)对自然数n,作x的二次方程x2+(2n+1)x+n2=0,使它的根为αn和βn.求下式的值:+解由韦达定理得=而=(n≥3),∴原式=+=例10(1989年全国初中联赛试题)首项不相等的两个二次方程(a-1)x2-(a2+2)x+(a2+2a)=0 ①及(b-1)x2-(b2+2)x+(b2+2b)=0 ②(其中a,b为正整数)有一公共根,求的值.解由题得知,a,b为大于1的整数,且a≠b.设x0是方程①②的公共根,则x0≠1,否则将x=1代入①得a=1,矛盾.得x0代入原方程,并经变形得③及④所以a,b是关于t的方程相异的两根,因此于是 ab-(a+b)=2,即(a-1)(b-1)=3.由或解得或∴例11 (仿1986年全国高中联赛题)设实数a,b,c满足①②求证:1≤a≤9.证明由①得bc=a2-8a+7.①-②得 b+c=所以实数b,c可看成一元二次方程的两根,则有△≥0,即≥0,即(a-1)(a-9)≤0,∴1≤a≤9.例12 (1933年福建初中数学竞赛题)求证:对任一矩形A,总存在一个矩形B,使得矩形A和矩形B的周长和面积比都等于常数k(k≥1).分析设矩形A及B的长度分别是a,b及x,y,为证明满足条件的矩形B存在,只须证明方程组(k,a,b为已知数)有正整数解即可.再由韦达定理,其解x,y可以看作是二次方程z2-k(a+b)z+kab=0的两根.∵k≥1,故判别式△ =k2(a+b)2-4kab≥k2(a+b)2-4k2ab=k2(a-b)2≥0,∴上述二次方程有两实根z1,z2.又z1+z2=k(a+b)>0,z1z2=kab>0,从而,z1>0,z2>0,即方程组恒有x>0,y>0的解,所以矩形B总是存在的.练习二十一1.填空题(1)设方程的两根为m,n(m>n),则代数式的值是_____ __;(2)若r和s是方程x2-px+q=0的两非零根,则以r2+和为根的方程是_____ _____;(3)已知方程x2-8x+15=0的两根可以写成a2+b2与a-b,其中a与b是方程x2+px+q=0的两根,那么|p|-q=__________.2.选择题(1)若p,q都是自然数,方程px2-qx+1985=0的两根都是质数,则12p2+q的值等于( ).(A)404 (B)1998 (C)414 (D)1996(2)方程的较大根为r,的较小根为s,则r-s等于( ).(A) (B)1985 (C) (D)(3)x2+px+q2=0(p≠0)的两个根为相等的实数,则x2-qx+p2=0的两个根必为().(A) 非实数 (B)相等两实数 (C)非实数或相等两实数 (D)实数(4)如果关于方程mx2-2(m+2)x+m+5=0没有实数根,那么关于x的方程(m-5)x2-2(m +2)x+m=0的实根个数为(A)2 (B)1 (C)0 (D)不确定3.(1983年杭州竞赛)设a1≠0,方程a1x2+b2x+c1=0的两个根是1-a1和1+a1;a1x2+b1x+c2=0的两个根是和;a1x2+b1x+c1=0的两根相等,求a1,b1,c1,b2,c2的值.4.常数a是满足1≤a≤50的自然数.若关于x的二次方程(x-2)2+(x-a)2=x2的两根都是自然数,试求a的值.5.设x2、x2为正系数方程ax2+bx+c=0的两根,x1+x2=m,x1·x2=n2,且m,n.求证:(1) 如果m<n,那么方程有不等的实数根;(2) 如果m>n,那么方程没有实数根.6.求作一个以两正数α,β为根的二次方程,并设α,β满足7.(1987年全国初中竞赛题)当a,b为何值时,方程x2+(1+a)x+(3a2+4ab+4b2+2)=0有实根?8.(1985年苏州初中数学竞赛题)试证:1986不能等于任何一个整系数二次方程ax2+bx+c=0的判别式的值.9.(第20届全苏中学生数学竞赛题)方程x2+ax+1=b的根是自然数,证明a2+b2是合数.10.(1972年加拿大试题)不用辅助工具解答:(1)证满足的根在和197.…间;(2)同(1)证<1..练习二十一1.(1)(2)(3)3.B A.3.=a+2±由于x为自然数,可知a为完全平方数即a=1,4,9,16,25,36,49.5.略+2=0.7.因为方程有实根,所以判别式8.设1986=4k+2(其中k是自然数).令△=b2-4ac=4k+2,这时b2能被2整除,因而b也能被2整除.取b=2t,这时b2=4t2,且4t2-4ac=4k+2.这时等式左边的数能被4整除,而右边的数不能被4整除,得出矛盾,故命题得证.10.由,可得x2-198x+1=0,其根。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
韦达定理与整数根的问题专题
知识结构图
一.韦达定理与代数式求值
如果的两根是,,则,.(隐含的条件:)特别地,当
一元二次方程的二次项系数为1时,设,是方程的两个根,则,.利用平方差公式、完全平方公式等,对代数式进行变形,代入求值.
二.韦达定理与根的分布
在的条件下,我们有如下结论:
当时,方程的两根必一正一负.若,则此方程的正根不小于负根的绝对值;若,则此方程的正根小于负根的绝对值.
当时,方程的两根同正或同负.若,则此方程的两根均为正根;若,则此方程的两根均为负根.
更一般的结论是:
若,是的两根(其中),且为实数,当时,一般地:
①,
②且,
③且,
特殊地:当时,上述就转化为有两异根、两正根、两负根的条件.
其他有用结论:
⑴若有理系数一元二次方程有一根,则必有一根(,为有理数).
⑵若,则方程必有实数根.
⑶若,方程不一定有实数根.
⑷若,则必有一根.
⑸若,则必有一根.
三.整数根问题
对于一元二次方程的实根情况,可以用判别式来判别,但是对于一个含参数的一元二次方程来说,要判断它是否有整数根或有理根,那么就没有统一的方法了,只能具体问题具体分析求解,当然,经常要用到一些整除性的性质.
方程有整数根的条件:
如果一元二次方程有整数根,那么必然同时满足以下条件:
1. 为完全平方数;
2. 或,其中为整数.
以上两个条件必须同时满足,缺一不可.
另外,如果只满足判别式为完全平方数,则只能保证方程有有理根(其中、、均为有理数).
题模一韦达定理与代数式求值
例1.1、设是一元二次方程的两个根,利用根与系数的关系,求下列各式的值:
(1)(2)(3)
(4)(5)(6)
例1.2、设实数分别满足,并且,求的值例1.3、已知,是一元二次方程的两个根,求的值
题模二韦达定理与根的分布
例2.1、已知一元二次方程.
(1)当a为何值时,方程有一正、一负两个根?
(2)此方程会有两个负根吗?为什么?
例2.2、实数k为何值时,关于x的一元二次方程.
(1)有两个正根?
(2)两根异号,且正根的绝对值较大?
(3)一根大于3,一根小于3?
题模三整数根问题
例3.1、已知:关于的一元二次方程 (为实数)
(1)若方程有两个不相等的实数根,求的取值范围;
(2)求证:无论为何值,方程总有一个固定的根;
(3)若为整数,且方程的两个根均为正整数,求的值及方程所有的根
例3.2、已知关于的方程的两根都是整数,求的值.
例3.3、求使关于x的方程的根均为整数的所有整数a.
随堂练习
随练1.1、已知一元二次方程x2-2x+m=0.
(1)若方程有两个实数根,求m的范围;
(2)若方程的两个实数根为x1,x2,且x1+3x2=3,求m的值.
随练1.2、如果方程x2+px+q=0的两个根是x1,x2,那么x1+x2=-p,x1.x2=q,请根据以上结论,解决下列问题:(1)已知关于x的方程x2+mx+n=0,(n≠0),求出一个一元二次方程,使它的两个根分别是已知方程两根的倒数;
(2)已知a、b满足a2-15a-5=0,b2-15b-5=0,求+的值;
(3)已知a、b、c满足a+b+c=0,abc=16,求正数c的最小值.
随练1.3、若,且有及,则,_________
随练1.4、已知是不等式组的整数解,、是关于的方程的两个实根,求:⑴
的值;⑵的值
随练1.5、已知关于的方程的一个根大于1,另一个根小于1,求的取值范围.
随练1.6、已知关于x的方程(m≠0)
(1)求证:方程总有两个不相等的实数根;
(2)如果方程的两个实数根都是整数,求整数m的值.
随练1.7、求出所有正整数,使方程至少有一个整数根.
随练1.8、设关于x的二次方程的两根都是整数,求满足条件的所有实数k 的值.
能力拓展
拓展1、已知,是方程的两个根,不解方程,求下列代数式的值:
(1)(2)(3)
拓展2、已知关于的方程的两根、满足条件,求的值.
拓展3、已知方程的根是和,方程的根是和.其中,、、、为不同实数,求、、、的值?
拓展4、已知()是方程的两个实数根,是方程的两实数根,且,,求的值?
拓展5、已知关于的方程的两根都大于5,求的取值范围.
拓展6、已知方程的两实根为、,方程的两实根为、.
(1)若、均为负整数,且,求、的值;
(2)若,,求证:
拓展7、已知为常数,关于的一元二次方程的解都是整数,求的值.
拓展8、已知是正整数,如果关于的方程的根都是整数,求的值及方程的整数根。